
NASA’s OCA Mirroring System

An application of multiagent systems in Mission Control
Maarten Sierhuis

Carnegie Mellon Silicon Valley

NASA Ames Research Center

Moffett Field, CA 94035
(+1) 650-604-4917

Man-Machine Interaction Group
Delft University of Technology

Maarten.Sierhuis@nasa.gov

William J. Clancey
NASA Ames Research Center

Moffett Field, CA 94035
(+1) 650-604-2526

IHMC
Pensacola, FL

William.J.Clancey@nasa.gov

Ron J.J. van Hoof

Chin H. Seah

Michael S. Scott

Robert A. Nado

Susan F. Blumenberg

Michael G. Shafto
NASA Ames Research Center

Moffett Field, CA 94035

Brian L. Anderson

Anthony C. Bruins

Chris B. Buckley

Thomas E. Diegelman

Timothy A. Hall

Deborah Hood

Fisher F. Reynolds

Jason R. Toschlog

Tyson Tucker
NASA Johnson Space Center

Houston, TX

ABSTRACT
Orbital Communications Adaptor (OCA) Flight Controllers, in
NASA’s International Space Station Mission Control Center, use
different computer systems to uplink, downlink, mirror, archive,
and deliver files to and from the International Space Station (ISS)
in real time. The OCA Mirroring System (OCAMS) is a
multiagent software system (MAS) that is operational in NASA’s
Mission Control Center. This paper presents OCAMS and its
workings in an operational setting where flight controllers rely on
the system 24x7. We also discuss the return on investment, based
on a simulation baseline, six months of 24x7 operations at NASA
Johnson Space Center in Houston, Texas, and a projection of
future capabilities. The paper ends with a discussion of the value
of MAS and future planned functionality and capabilities.

Categories and Subject Descriptors
I.2.5 [Programming Languages and Software]: Multiagent
systems, tools and techniques, J.2 [PHYSICAL SCIENCES

AND ENGINEERING]: Aerospace, Mission Control, I.6.2
[Simulation Languages]: Multiagent simulation, agent-based
simulation, agent-directed simulation, I.6.3 [Applications]:
Multiagent systems, tools and techniques, Agent-based simulation

General Terms
Design, Human-Centered Design, Human Factors, Languages.

Keywords
Multiagent systems, MAS, agent-based simulation, agent-oriented
languages, ISS, mission control, human centered design, human
factors, applications

1. INTRODUCTION
The Mission Control Center (MCC) in Houston, Texas, of the
National Aeronautics and Space Administration (NASA) is one of
the most complex and best-known organizations for command and
control of human space flight. This paper describes the
development and deployment of the first multi-agent system

(MAS) in the International Space Station (ISS) MCC.

NASA’s ISS MCC is charged with managing, commanding and
controlling every aspect of the ISS, from docking with the Space
Shuttle and Soyuz spacecrafts to uplinking and downlinking all
information to and from the ISS. The ISS MCC, as most MCCs, is
divided into a “front room”—the room where the main flight
controllers are located—and a “back room”—where the support
flight controllers are located. Each flight controller in the front
room has several support flight controllers in the back room.
Together the people in the front- and back room are organized in
flight control groups for the different subsystems for the ISS,
overall named the Flight Control Team (FCT). The Orbital
Communications Adapter (OCA) officer is a back room flight
controller and a member of the Operations Planner (OPSPLAN)
group. The ISS OCA Officer is responsible for manually
uplinking and downlinking all files to and from the ISS. These
files include schedules, procedures, commands, email,
photographs, health data, newspapers, etc.

Over a six-month period, computer scientists and ethnographers in
the Work Systems Design & Evaluation Group of the Intelligent
Systems Division at NASA Ames studied and simulated OCA
work practices in collaboration with the OCA team to identify
possible process improvements. Using statistics generated from an
agent-based simulation model, the team, over the next three-
month period, designed and simulated an agent-based workflow
system that automates the process of creating a ground-based
replica of the ISS file system (the Mirror LAN). Simulation
statistics predicted a reduction in mirroring time from 6% to 0.4%
of the OCA Officer’s shift—a more than 90% reduction. Using
the Simulation-to-Implementation engineering method, agents
were then converted, in a one-month period, into a distributed
MAS run-time tool called OCAMS [1]. Using the Brahms virtual
machine (BVM), these agents manage the workflow on multiple
computers and servers using secure communications provided by
the Brahms collaborative infrastructure (CI). The tool also
automatically writes large parts of the OCA Handover Log.

 In this paper, we present the OCA Mirroring System (OCAMS)
as it was deployed on July 8, 2008, to support the OCA Officer
24x7 in the mirroring and logging activities of their uplinking and
downlinking process. The paper is organized as follows; We start
with a review of some relevant work in Section 2, followed by a
technical description of the OCAMS system in section 3; Section
4 discusses our software engineering approach for MAS we

Cite as: NASA’s OCA Mirroring System, Sierhuis, Clancey, et al, Proc.

of 8th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS

2009), Decker, Sichman, Sierra, and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX. Copyright © 2009,
International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

dubbed “from simulation to implementation;” In section 5 we
discuss the return on investment of the OCAMS system, and we
end in section 6 with a discussion of the value of multiagent
architectures and future functionality of the OCAMS system.

2. RELEVANT WORK
The agent-oriented language (AOL) used to develop both the
OCA Officer work practice simulations and the run-time OCAMS
MAS is Brahms [2]. Brahms is a multi-agent modeling language
for simulating human work practice that emerges from work
processes in organizations [3]. The same Brahms language can be
used to implement and execute distributed multi-agent systems,
based on models of work practice that were first simulated.
Brahms demonstrates how a multi-agent belief-desire-intention
language, symbolic cognitive modeling, traditional business
process modeling, activity- and situated cognition theories are
brought together in a coherent approach for analysis and design of
organizations and human-centered systems.

The OCAMS system can be compared with workflow
management systems evolved from business process management.
Traditionally, Petri-Nets are used to make workflow systems able
to deal with concurrency [4, 5]. However, modeling complex
human decision-making is often easier represented in a belief- and
rule-based format developed in DAI and Expert Systems. More
recently, BDI agents are being combined with workflow and
service-oriented architectures [6]. As we have found with
OCAMS as well, BDI agents provide a flexible way of
configuring services in a distributed work system in which both
people and agents work together to perform the work [7].

Agent-based modeling and simulation (ABMS) has become a
wide-ranging field in modeling and simulation [8, 9]. Our
approach is founded in ABMS of human work systems and
practices [10], business anthropology [11], ethnography [12], and
participatory design [13].

3. THE OCAMS MULTI AGENT SYSTEM
The OCA Officer is responsible for all ISS uplink and downlink
activity on the ISS Operations LAN (OPS LAN). As part of the
old OCA work process, the OCA Officer spent much of his or her
shift archiving selected files and mirroring files to the ground-
based Mirror LAN, which replicates the ISS onboard OPS LAN
directory structure.

Many uplink/downlink activities have to be duplicated (mirrored)
on the Mirror LAN, using a laborious manual process of logging,
searching, transferring, and verifying. The information necessary
to determine the actions required can be categorized and extracted
from the uplink/downlink log maintained by the file transfer
(KFX) application. Automating these mirroring activities gives
the OCA Officer more time to work on other important tasks, as
well as reducing file-mirroring errors. This is now the work of the
OCAMS MAS.

Architecturally, the OCAMS system is divided into three separate
distributed agent systems, each of which are running in a separate
Brahms Hosting Environment (BHE) (see Figure 1). These BHEs
can run on any desired computer and network configuration,
making the architecture easily adaptable to the computer
architecture and network safety concerns of the ISS MCC (see
section 6.2).

The communications infrastructure between OCAMS components
is established using the NASA Collaborative Infrastructure (CI).

The CI is an infrastructure that provides an application
programming interface and a set of services that allows
components to interact with one another using structured
messages (transport service), allows components to find one
another (directory service), allows components to share data with
one another using a publish/subscribe service (data distribution

service), and allows components to be managed using a common
interface (management service). The components that make use of
the CI are called agents or actors. The CI, in addition, provides
process management tools to manage the startup, monitoring, and
shutdown of actor hosting environments and their actors.

3.1 OCAMS Agents
The OCAMS Release 1 MAS consists of nine individual software
agents (see Figure 2). Three agents are rule-based BDI agents
written in the Brahms language, while six are Java-based agents
written using the Brahms Java application interface. These Java
agents are referred to as a “communication agent,” because their
purpose is to communicate with external systems or files outside
of the OCAMS system.

Figure 1. OCAMS Architecture

The agents are currently divided over three agent subsystems
(BHEs), but could easily be loaded in a different number of
BHEs. The OCA BHE consists of the central OCA Personal Agent
that coordinates all work with the other agents in the system, and
four human interface agents, one GUI agent and three Microsoft
Office agents. The Mirroring BHE consists of the agents that
interface with the KFX file uplink and downlink software
currently used by the flight controllers and decides which file to
mirror on the Mirror LAN. The Monitoring BHE is the workhorse
of OCAMS. It has agents that monitor FTP and copy files to the
Mirror LAN, and monitor for errors that might occur in the FTP
and copying between file systems on the network, as well as
problems with monitoring the specific file processing that needs
to occur on the Mirror LAN depending on the mirrored file type.
Brahms agents (the solid circles in Figure 2) are used there where
belief- and rule-based decision-making is needed. From our
experience in developing BDI-based MAS, we developed some

basic rules-of-thumb for deciding whether an agent should be a
BDI agent (i.e. written in the Brahms language), or an imperative
agent (i.e. written in the Java language). We will come back to
this point in the Discussion section.

Figure 2. OCAMS Agent System Architecture

3.2 Agent Communication

3.2.1 Communicative acts
Communication between agents is performed using the
Brahms/Java communication library [2]. This library allows local
and distributed Brahms and Java agents to communicate with each
other using an implementation of the FIPA agent communication
protocol. The agent communication protocol is based on the FIPA
ACL Message Structure Specification1 and FIPA Communicative
Act Library Specification2. An OCAMS communicative act
(ComAct) is an object containing the envelope and payload

1 http://www.fipa.org/specs/fipa00061/SC00061G.html
2 http://www.fipa.org/specs/fipa00037/SC00037J.html.

attributes of a FIPA compliant ACL message. Both the envelope
and payload attributes are map-types and contain the key-value
pairs for each ACL message. The envelope attribute is used to
contain address-related information for a ComAct, while the
payload attribute is used to contain the content of a ComAct (see
Table 1 for an example of ComActs to/from two agents in Figure
2).

3.2.2 Network communication and security protocols
OCAMS uses multiple network protocols to have agents
communicate with one another and with systems external to
OCAMS3. As needed for Homeland Security standards, the
OCAMS agent and network communication protocols adhere to
Federal Information Processing Standards Publications (FIPS)
140-24.

The CI transport service provides a pluggable transport allowing
the transport to be expanded with different types of transport
endpoints as needed by specific implementations, without
affecting the components and their implementations (see Figure
3). OCAMS securely transmits all application-level data between
the OCAMS Agent Systems (BHEs) over TCP/IP using the
Secure Sockets Layer5 (SSL). Other OCAMS subsystem
components (Application Manager, Process Managers,
Distributed Directory Service), that need to publish and subscribe
to process status data, use Universal Data Packets6 (UDP) over IP-
multicasting. The application-level data communication includes
distributed agents sending ComActs to one another that contain
ACL messages (see Figure 3)7.

Figure 3. CI Transport Service

3 Because of security reasons, we cannot provide a description of

the actual network configuration in NASA’s MCC. All
descriptions are generic.

4 http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
5 http://en.wikipedia.org/wiki/Transport_Layer_Security
6 http://en.wikipedia.org/wiki/Universal_Data_Packet
7 Brahms agents hosted within the same Brahms virtual machine

use an optimized communication mechanism that bypasses the
CI transport service.

Table 1. Example ComActs for OCAMS agents

Conv

ID

Sender Receiver FIPA Performa-

tive

Action Content

<1> KFX Log

Com Agent

Mirroring

Agent

REQUEST processNewBatch Array of Java

KFX File

Objects

<1> Mirroring

Agent

KFX Log

Com Agent

AGREE processNewBatch

<1> Mirroring

Agent

KFX Log

Com Agent

REFUSE processNewBatch No Files &

Explanation

Message

<1> Mirroring

Agent

KFX Log

Com Agent

FAILURE processNewBatch Explanation

Message with

array index of

last processed

4. FROM SIMULATION TO

IMPLEMENTATION
This section describes the findings from the first three project
phases: Current- and future simulation and system
implementation. For a more extensive description of the “from
simulation to implementation” methodology see [1].

4.1 Current OCA Simulation
The objective of the first phase (simulation of the current work
system) was to develop a detailed agent-based OCA work practice
simulation of the mirroring activity of the OCA Officer. This
focus was chosen based on the work practice observations of the
OCA Officers and observed issues involved with the current way
of doing the mirroring of files from the ISS to the Mirror LAN
machine (a Space Station Computer—SSC) located in the Flight
Activities Multi Purpose Support Room (MPSR), i.e. the ISS
backroom area for the OCA Officer.

Figure 4. OCA Area in ISS MPSR

As part of the current OCA work process, the OCA Officer spends
time after each file uplink/downlink activity mirroring the same
files to the Mirror LAN. This cumbersome activity is both error
prone, because of the manual “sneaker net” being used, and time
consuming, because many uplink/downlink activities have to be
duplicated on the Mirror LAN using a laborious manual process.
OCA Officer observations, and modeling and simulation have
given us insight into the intricate details of the work practice of
the mirroring activity.

Figure 5. Simulation results for OCA Officer's Mirroring

subactivities (Orbit 1-3)

Figure 5 shows the results of the Current OCA Mirroring Activity
agent-based simulation for the three shifts (Orbits 1-3), based on
actual ISS file mirroring data for November 2006. Striking in
these results is the fact that the highest time-cost for the OCA
Officer are the (handover) logging and mirroring verification
(verifying) subactivities. Figure 6 shows a part of the simulated
OCA Officer activities timeline for Orbit 3 (3rd shift). On the right
top (1) you can see agent OCA Orbit 3 executing the Mirroring
activity with its subactivities. Below that (2), the timeline also
shows the actual file object being moved (due to agent OCA Orbit

3’s copying subactivities) from folder “V:” to a folder on the
Mirror LAN, via a USB “stick” (the colored bars above the black
timeline shows location movements of the OCA Officer agent (1)
and file object (2)).

Figure 6. Simulation of OCA Officer's Mirroring Activity

during the 3rd shift (Orbit 3).

In the logging activity the OCA Officer writes the particulars of
files uplinked/downlinked and mirrored in a Word document (not
shown in Figure 6). This document provides the log of what
happened during the shift, and is used for the next OCA shift to
get a grasp of what happened in the previous shift. The verifying
activity is where the OCA Officer verifies the processing of
specific types of files (e.g. the ISS astronaut activity timeline
updates files) by the Mirror LAN. As part of the copying
processes, the Mirror LAN server executes and processes the
“dropped” files. The OCA Officers have to verify that these batch
processes execute correctly and the files are “absorbed” without
errors. In case of errors, the OCA Officer needs to deliver the
error files to the responsible flight controller in the MCC. Of
course, all this needs to be logged in the handover log.

Our OCAMS design focused on automating the complete
mirroring activity in such a way that the subactivities do not have
to be done by the OCA Officer, but instead are done by the
Mirroring-, OCA Personal- and Monitoring software agents from
Figure 2, mimicking the work of the OCA Officer.

4.2 Future OCAMS Simulation
After the Current OCA simulation, an OCAMS requirements and
design phase was started. The OCAMS MAS design from Figure
2 was implemented in a Brahms agent-based simulation of the
future work system that includes both the OCA Officer and the
OCAMS system.

This future simulation model included a simplified work practice
model for the OCA Officer agent. The OCAMS agents perform
all the mirroring and logging activities. The OCA Officer agent
only has to select uplinked and downlinked files in the GUI, and
review the OCAMS activity when complete. The GUI agent
displays the mirroring status back to the OCA Officer who
verifies the mirroring by OCAMS. All OCAMS activity is also
reported in the handover log, which the OCA Officer uses to
verify mirroring was completed correctly.

Figure 7. Simulation results for OCA Officer's Mirroring

subactivities with OCAMS (Orbit 1-3)

Figure 7 shows the result of the Future OCA Mirroring agent-
based simulation using OCAMS. The simulation is based on the
same November 2006 uplink/downlink data as the Current
simulation. Comparing Figure 5 with Figure 7, the amount of time
spent by the OCA Officer on all mirroring subactivities, except
Moving, have gone down dramatically (see Figure 8 for a
comparison of how much time has been saved by OCAMS).
There is a new activity that has been added, referred to as
Checking. In this activity the OCA Officer is checking OCAMS
for errors in mirroring. Figure 8 shows that the mirroring activity
has dropped more than ten-fold8.

 (a) (b)

Figure 8. Percent OCA Officer Activities for

(a) current simulation and (b) future simulation

4.3 OCAMS Implementation
The third phase was the implementation of the run-time MAS,
based on the agents developed in the Future Simulation model.
We accomplished this step in a one-month development effort
with a team of three full-time developers. The development team
consisted of one Brahms modeler for implementing the Brahms
agents, and two Java developers implementing the Java agents.

The OCAMS Future Simulation in Brahms included all the major
Brahms and Java agents that became part of the OCAMS MAS;
The Mirroring, Monitoring, GUI CA, KFX Log Parser CA agents
(see Figure 2). The work left to do during the transition from
simulation to run-time implementation, was to (a) make the
OCAMS application robust in case of system failures (automatic
restart of the BHE’s and state recovery, etc), (b) add the Word CA
(for generating handover logs) and Excel CA (for monthly
generating statistics), and (c) make changes to the Brahms/CI
environment allowing agents to communicate securely (being
FIPS 140-2 compliant).

8 The Mail Synch activity is not in Figure 8(b), because the Future

simulation excludes simulating the mail synch. The time spent
on this is included in the Other Work category.

4.3.1 Robustness
OCAMS is robust in the sense that the OCAMS Application
Manager (AM) detects a system failure of one of the three BHE’s
(see Figure 1). The BHE notifies the AM when an agent
unexpectedly terminates, a deadlock is detected, or out of memory
exceptions are raised. As part of the notification the BHE provides
the AM with the detected error condition and basic state
information such as the hostname, IP address of the host, current
Java VM memory usage, and CPU load.

The Application Manager subscribes with the data distribution
service for process status. Whenever the status of a process
changes (i.e. a process shuts down) the AM receives a data object
with the process identifier and status of a process. The AM uses
this information to update its status display and, if a process shuts
down unexpectedly generates an alert to the OCA Officer
requesting the OCA officer to initiate recovery of the OCAMS
system.

4.3.2 OCAMS Agent Process Flow
The KFX Log File CA agent parses all files uplinked and
downlinked from the ISS and sends these parsed files to the
Mirroring agent (see Figure 2). The Mirroring agent then decides
if a file needs to be mirrored or not. The OCA Officer, through the
OCAMS GUI (see Figure 9) selects which files need to be further
processed by OCAMS as a session.

The OCA Personal Agent (see Figure 2) further processes files
selected as part of a session. The OCA Officer has the choice to
keep the mirror-or-not decision by the Mirroring agent, or
overwrite this decision by selecting a file and changing the
decision to be mirror, don’t mirror, or mirror manually. This way
the OCA Officer always has the last say in what OCAMS should
do with the file. All files are processed through OCAMS so that
they are logged in the handover log, which provides a permanent
record of files uplinked, downlinked, and mirrored.

In case of errors during the mirroring of files (FTP-ing, copying,
and monitoring), the Monitoring agent sends error messages to the
OCA Personal Agent, which in turn sends these error messages to
both the GUI CA and the HandoverLog CA. The OCA Officer
can then handle the error appropriately; send error file to
appropriate flight controllers, change status of file and reprocess,
or manually mirror the file.

Figure 9. OCAMS GUI

One of the requirements of the OCA team is that an OCA Officer
can always return to manually performing the mirroring process.

This way training of new OCA Officers can always be done on
console, since new trainees (OJT’s) need to know how to perform
the job without OCAMS.

4.3.3 Getting OCAMS Operational
Deployment of OCAMS in the ISS MCC was not a trivial process.
Security and safety of both astronauts and spacecraft is priority
number one. To accomplish this, there are many levels of
approvals needed for a new application to be accepted into
operations. Implementing a MAS, almost by definition, means
running a distributed application over one or more networks.
OCAMS relies on interfacing with three separate communication
networks inside the ISS MCC. These three networks had not been
connected before, because of their different security levels. This
was the main reason for a USB “sneaker net” to exist in the OCA
Officer’s work practice. For OCAMS to succeed in automating
the mirroring, we had to get approval to interface to these three
networks. It took six months of presenting the OCAMS
architecture to several MCC engineering boards to get this
approval. In section 6.2 we will briefly return to why we were
able to convince so many that our solution would work; a big
reason is the deployment flexibility MAS architectures provide.

5. Analysis of OCAMS Operations
As of this writing, OCAMS has been in operations for more than
five months (June 26 – Dec 1, 2008). All 38 OCA certified flight
controllers have been trained on using OCAMS. Around 10 OCA
Officers are regularly on console and use OCAMS as part of their
regular work. The other 28 are on console only when needed,
which might be once or twice a month. All OCA Officers on
console use OCAMS for mirroring their files.

5.1 OCAMS effectiveness
During the operational period, OCAMS has processed a total of
128,311 files. Of this total, OCAMS mirrored 19,711 files or
~15% (see Figure 10). Interesting to see is the differences, per
month, in the number of files uplinked and downlinked from the
ISS. These differences have to do with the crew that is onboard
and the work the crew is doing—there have been two crews
onboard the ISS since OCAMS became operational (Oct. 14, 2008
is when the Expedition 18 crew docked with the ISS).

Figure 10. OCAMS files processed from June 26 - Dec 1, 2008

How well did OCAMS do in the first five months of operations?
Subjectively—we asked the OCA Officers—the answer is that
OCAMS is liked very much. OCAMS is automating the task that
is perceived by the OCA Officers as very cumbersome and
annoying. However, we want to have some objective measure of
how well OCAMS performs. To do this OCAMS generates
statistics about its file processing. In the period from June 16 –
Dec 1, 2008, about 14% of the total files mirrored by OCAMS

had an issue, causing the OCA Officer to mirror the file manually
or deal with the failure in OCAMS (see Figure 11). Thus, we infer
that the OCA Officer still had to be involved in mirroring ~14%
more files than necessary, which makes OCAMS ~86% effective
in the mirroring of files.

Figure 11. OCAMS mirrored files from June 26 - Dec 1, 2008

In Table 2 we compare OCAMS’ actual effectiveness with the
simulated effectiveness discussed in section 4 (going from 6%
shift time to 0.4% shift time). When we assume that the simulated
effectiveness is valid and that the amount of time spent—by the
OCA Officers—on files with an issue is equal to the amount of
time spent manually mirroring a file, then the actual OCAMS
effectiveness is ~14% lower than the simulated effectiveness. In
that case, we can say that OCAMS currently saves ~80% of the
OCA Officer’s mirroring time, instead of the ~93% predicted
savings by the Future Simulation.

Table 2. OCAMS effectiveness

Future
Mirroring

Time

% of Current
Mirroring Time

(6%)

% Savings of
Current Mirroring

Time

Simulated 0.40% 6.7% 93.3%

Actual 1.18% 19.7% 80.3%

5.2 Calculating return on investment
Design and development of OCAMS started in 2007 and will
continue until only maintenance of OCAMS will remain. As
development continues, the amount of OCA automation and thus
the savings will increase.

Figure 12. OCAMS ROI

Figure 12 shows how we calculate the return of investment (ROI)
of OCAMS9, including both development cost and savings in the

9 Actual time, cost and savings are changed in Figure 12.

out years. As long as OCAMS does not automate the complete
work of the OCA Officer, there is only development cost and no
savings. Breakeven is calculated to happen somewhere in the
future years, based on development cost and operations savings.
Operations savings will end with the projected end of the ISS
program.

6. DISCUSSION
In this section we discuss some of the benefits of our engineering
approach and that of multi-agent architectures. We also touch
upon the verification and validation (V&V) of our simulations,
and end with planned future OCAMS functionality.

6.1 Work practice simulation
Our human-centered engineering approach is based on the
following principles: 1) Development of software needs to be
rooted in a thorough understanding of the work practice of the
user and organization. This is done by performing in-situ work
practice observations throughout the analysis and design process;
2) Work practice observations need to be modeled and simulated
in a Current Simulation Model (CSM) and the designed software
system in a Future Simulation Model (FSM), so that the result can
be compared; 3) Design, modeling, and simulation of the new
work system needs to follow a participatory design approach,
involving the end-users and their management all throughout the
design process.

As we have shown in the OCAMS project, the benefits of the
OCA work practice simulations with Brahms were that a) the
changes to the ISS MCC work system were analyzed upfront,
allowing users and management to understand the impact of the
new OCAMS system early on in the project; b) the use of the
agent-based simulation environment enabled an easy transition
from the FSM to the implementation of the OCAMS MAS; c)
generation of statistics during the simulation were built into the
actual system, allowing for return of investment analysis. Using
this approach we have had 100% user acceptance from the
moment OCAMS was put into operations, and continue to have
strong user support.

The OCA Officers validated both the CSM and FSM by
inspecting the output agent timelines from the simulation (e.g. see
Figure 6). We verified the Current OCA model (CSM) by
verifying that the OCA Officer agent correctly mirrored all files to
the Mirror LAN server. To compare the current and future
simulation runs, we used as input data the uplinked and
downlinked files for the entire month of November 2006 (Nov. 1-
30), with a total of 3843 ISS uplinked and downlinked files
totaling 13 Gigabytes. The OCA team provided this data to us.

The Future OCA simulation model (FSM) was run from October
10 through October 12, 2007, on a Mac G5 multi-processor (4
CPUs) machine using 2GB of memory. The entire simulation ran
in one BVM. It took about 31 hours to finish the simulation
(BVM running time: 31:22:54.117).

6.2 Benefits of the MAS approach
The automation of the OCA work requires integrating multiple
computer systems running on separate MCC networks. To
integrate these systems, a distributed software- and hardware
architecture is required. An agent architecture allows for a natural
design of distributed system functionality as distributed services
implemented by software agents. MAS architectures therefore

naturally enable the design and implementation of a service-
oriented architectures (SOA) [14]. In the OCAMS case, the
Brahms environment enabled the easy transition from an agent-
based simulation of people and systems to a system of multiple
software agents, based on the functionality first simulated.

The ISS MCC is a complex environment with people, hardware
systems and networks. Limitations in current OCA hardware, as
well as the needed security requirements, made it necessary to
change the OCAMS software and hardware architecture design
multiple times over the course of two years. The flexibility of the
MAS approach allowed the development team to adjust the
OCAMS agent architecture to any new requirement that was put
forward (e.g. on which machine and on what network different
agents should be executed). Our customer was extremely pleased
with the ease at which we were able to accommodate every
change in system requirement.

A multi-agent architecture hides the details for distributing
different software agents. Agents can run wherever and whenever
they are needed, without impacting the integrity and overall
functioning of the system. The agent developer does not have to
deal with the intricate details of object and network
communication protocols, such as Corba, SOAP or SSL. Agent
communication is implemented at the designed agent
communication language level. Low-level agent communication
and distribution is taken care of by the agent framework used
(Brahms/CI in our case). This enables an enormous flexibility in
system architecture decisions.

Also, extension of functionality in a MAS is extremely easy.
Adding new agents or extending old ones can provide new
functionality without negative impact to the existing system
functionality. This enables easy extension of OCAMS.

6.3 Future functionality of OCAMS
The OCAMS system will be extended over the next three years.
The objective is for the OCAMS system to enable the future
concept of operations for the ISS OPSPLAN team. We have
planned five separate releases that will increase the capability of
OCAMS over time. Release 2 will include the automation of the
archiving task. Release 3 will include the automatic notification of
the uplinks and downlinks, and delivery of downlinked files to
responsible flight controllers. In release 4 OCAMS will automate
the actual uplinking and downlinking of files to the ISS. In the
new concept of operation, flight controllers need to be able to run
OCAMS from anywhere in MCC. This will require a web-based
interface that is scheduled for Release 5.

The uplinking and downlinking of files to the ISS is a critical task
for anyone who needs to send and receive file-based information
from the ISS. We are planning to extend the reach of OCAMS to
other flight controller positions.

7. CONCLUSIONS
This paper describes the development and operations of the OCA
Mirroring Systems called OCAMS. OCAMS is a MAS deployed
in NASA’s Mission Control Center for the International Space
Station. Release 1 of OCAMS automates the mirroring activity of
the OCA Officer. In the mirroring activity files that are uplinked
and downlinked from the Ops LAN onboard the ISS are mirrored
to the ground-based Mirror LAN. OCAMS has been in operations

since July 8, 2008 and is used 100% of the time by the OCA
Officers in the ISS MCC.

8. ACKNOWLEDGMENTS
We thank all the OCA Officers in DO4 at NASA Johnson Space
Center for their continued support in the use and development of
OCAMS.

We also thank our current funders at NASA Johnson Space
Center, and all our past funders of the Brahms project.

9. REFERENCES
[1] Clancey, W.J., et al., Multi-Agent Simulation to
Implementation: A Practical Engineering Methodology for
Designing Space Flight Operations, in The Eighth Annual
International Workshop "Engineering Societies in the Agents
World" (ESAW 07) A. Artikis, et al., Editors. 2008, Springer:
London.

[2] Sierhuis, M., W.J. Clancey, and R.J.J.v. Hoof, Brahms: An
Agent-Oriented Language for Work Practice Simulation and
Multi-Agent Systems Development in Multi-Agent Programming,
2nd Edition, M.D. Rafael H. Bordini, Jürgen Dix, Amal El Fallah-
Seghrouchni, Editor. Submitted, Springer.

[3] Sierhuis, M., W.J. Clancey, and R.v. Hoof, Brahms: A
multiagent modeling environment for simulating work processes
and practices. International Journal of Simulation and Process
Modelling, Inderscience Publishers, 2007. 3(3): p. 134-152.

[4] Aalst, W.v.d., Putting Petri Nets to Work in the Workflow
Arena, in Petri Net Approaches for Modelling and Validation,
J.M.C. W. van der Aalst, F. Kordon, G. Kotsis and D. Moldt,
Editor. 2003, Lincom Europa: Munich. p. 125-143.

[5] Aalst, W.M.P.v.d. and A.H.M.t. Hofstede, YAWL: Yet
Another Workflow Language. Information Systems, 2005. 30(4):
p. 245--275.

[6] Burmeister, B., et al., BDI-Agents for Agile Goal-Oriented
Business Processes, in Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008) -

Industry and Applications Track, B. Berger, Nishiyama, Editor.
2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org): Estoril, Portugal. p. 37-
44.

[7] Caire, G., D. Gotta, and M. Banzi, WADE: A software
platform to develop mission critical applications exploiting agents
and workflows, in Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008) - Industry and
Applications Track, B. Berger, Nishiyama, Editor. 2008,
International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org): Estoril, Portugal. p. 29-36.

[8] Ören, T.I., Agent-directed Simulation - Challenges to meet
Defense and Civilian Requirements, in The 2000 Winter
Simulation Conference, J.A. Joines, Editor. 2000: Orlando, FL. p.
1757-1762.

[9] Yilmaz, L., T. Ören, and A. Nasser-Ghasem, Agents,
Simulation, and Gaming. Simulation and Gaming Journal, 2006.
37(3): p. 339-349.

[10] Clancey, W.J., et al., Brahms: Simulating practice for work
systems design. International Journal on Human-Computer
Studies, 1998. 49: p. 831-865.

[11] Sachs, P., Transforming Work: Collaboration, Learning, and
Design. Communications of the ACM, 1995. 38(9): p. 36-44.

[12] Blomberg, J., et al., Ethnographic Field Methods and Their
Relation to Design, in Participatory Design: Principles and
Practices, A.N. D. Schuller, Editor. 1993, Lawrence Erlbaum
Associates: Hillsdale, NJ. p. 123-155.

[13] Greenbaum, J. and M. Kyng, eds. Design at Work:
Cooperative design of computer systems. 1991, Lawrence
Erlbaum: Hillsdale, NJ.

[14] Papazoglou, M.P. and v.d. W-J. Heuvel, Service oriented
architectures: approaches, technologies and research issues. The
VLDB Journal, 2007(16): p. 389–415.

