
13 Organization and Work Systems
Design and Engineering
From simulation to implementation of multi-agent systems

MAARTEN SIERHUIS†‡ WILLIAM J. CLANCEY§¶ CHIN H. SEAH‖

13.1 INTRODUCTION

In this chapter we present a specific approach to analyzing and designing work
systems we call Work Systems Design (WSD), that is based on a theory of modeling
and simulating work practice. The theory is made explicit in an agent-based modeling
and simulation environment called Brahms (see also Chapter 12). In the next section
we start with explaining what work systems design is. We then give a short overview
of the Brahms language. This overview is in addition to the Brahms description in
Chapter 12. It gives a more detailed description of some of the language constructs for
modeling work systems. Next, we describe the “from simulation to implementation”
software engineering methodology. In this we turn an agent-based simulation of a
work system into a distributed multi-agent system (MAS). It is here where Brahms
differs from other agent simulation environments and where agent-based modeling
and simulation meets agent-oriented software engineering (22). After the description
of the methodology, we describe NASA’s OCAMS project in which this approach
was successfully applied. The OCAMS MAS has been in operation 24x7 for over six
months as of the writing of this chapter, in NASA’s Mission Control Center (MCC) for
the International Space Station (ISS) in Houston, TX. In this project we first modeled
and simulated the current work system in Brahms as an agent-based simulation of
people, artifacts and environment. We then designed the OCAMS system as a MAS
simulation interacting with a simulation of people agents. We end this chapter with
some conclusions about the approach and experiences from the OCAMS project.

† Carnegie Mellon University Silicon Valley, NASA Ames Research Center, M/S 269-1 Moffett Field,
CA 94035 USA; Maarten.Sierhuis@nasa.gov
‡ MMI Group, Delft University of Technology, 2628 CD Delft, The Netherlands
§ NASA Ames Research Center, M/S 269-1 Moffett Field, CA 94035. USA;William.J.Clancey@nasa.gov
¶ Florida Institute for Human & Machine Cognition Pensacola, FL 32502
‖ Stinger Ghaffarian Technologies, NASA Ames Research Center, M/S 269-1 Moffett Field, CA 94035.
USA; Chin.H.Seah@nasa.gov

1



2 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

13.2 WORK SYSTEMS DESIGN

A work system is a “natural” setting for those who work within it, because every
setting is natural for those who frequent it. In this chapter we focus on workplaces
for work systems. A workplace is where the work system comes alive, where the
daily work is continuously being performed, based on familiar past performance as
well as changes unknown until faced. In other words, work is like a symphony, well
rehearsed, but always different. It is this “symphony” we are interested in composing
(designing) changes, using an engineering method that allows us to predict the impact
of designed change on the current system.

A work system covers more than the people working inside it, just like a whole that
is bigger than the sum of its parts. From the perspective of designing and engineering
a work system, we see the system as a socio-technical system of people, artifacts
and (computer) systems, their (joint) activities, organization, and communication.
Everything is interconnected (13). The design of a work system sometimes involves
the completely new design of people’s tasks, procedures and activities. However,
often a change to a work system is created by the introduction of a new software
system that changes the activities of people. It is this change that we want to
understand upfront in the design of software systems so that we can predict how the
system should operate within the work system and how it changes the work.

13.2.1 Existing work systems design methods

There are a number of existing methods for analyzing and/or designing work systems.
Most of these methods are referred to as “soft system” methods. In these methods
working with the people in the workplace is one of the big differences from more
traditional (software) engineering methods. A number of methods were developed as
by-products of the “Scandinavian approach” to systems design, called participatory
design. Other approaches are by-products from tasks analysis mostly performed by
cognitive psychologists. Below are four existing approaches from the participatory
design realm:

• Design at Work: Cooperative Design of Computer Systems (17) gives de-
tailed examples, theory, and methods for participatory design. It gives the
Scandinavian perspective that defined observational studies of workplaces as
a theoretically grounded activity in software engineering.

• Contextual Design (CD) (1) can be seen as a method for “contextual inquiry,”
including how to observe and work with customers, conduct interviews, and
how to model work as organizational flow, task sequences, artifacts, culture,
stakeholders, and physical environment; and how to redesign work.

• Soft Systems Methodology (SSM) (6) descibes an engineering method for un-
derstanding the “soft” issues of a system, through examples how different
stakeholders use different “lenses” looking at the same problem. Checkland,
himself a civil engineer, realized that engineered artifacts are part of a human



WORK SYSTEMS DESIGN 3

work system he called an activity system. The process of designing an activity
system is a holonic modeling process that involves many parties (customers,
users, designers, policy makers, etc.).

• Cognitive Work Analysis (CWA) (36) is another method for analyzing work
systems and designing software systems, based on detailed mapping of infor-
mation flows and tasks. CWA was developed by Ransmussen and colleagues
(26): Work models are detailed cognitive models rooted in cognitive task anal-
ysis for tool design, and hence observation must be systematically organized
to understand the domain.

What all these approaches have in common is that they are mostly ad hoc modeling
approaches. Most of them are pen and paper based, and have no specific modeling
and simulation tool that help guide what to do; although some of the approaches lend
themselves to one or more modeling methods; such as system dynamics modeling
(34) for SSM, and GOMS (5) for CWA.

13.2.2 A brief history of work systems design

WSD finds its roots in business anthropology, which started in the nineteen-eightees
as the Scandinavian approach to system design (12; 17). The use of photography
and video in studying workplaces was pioneered in cultural anthropology. Today,
digital photography and video makes the use of capturing the practice of people in the
workplace much easier. Descriptive textual notes of a setting are replaced by high-
resolution digital photos, or a short videos recorded on ones digital camera. These
recordings are extremely useful in the analysis of how people use space, interact with
artifacts and communicate with each other.

Improvement of procedures and tasks through the design of new technology used
in the workplace has taken place throughout the last fifty or so years. Studying schools
and other natural settings by developmental psychologists (20), modeling workflow
by management consultants and organizational analysts (30) has led to major fads
in business process reengineering. Often it is not the academic studies that create
change in the development of methods, but the application of academically rooted and
developed methods to real-world problems that move a field forward. Similarly, this
happened with the coming of expert systems and knowledge acquisition (3). Where
computer scientists and business consultants failed, anthropologists, together with
computer scientists, succeeded in developing a participatory software engineering
practice (24; 19).

For a more complete history of how WSD came to be, we refer the reader to
Clancey (9). At this point in time, we are applying modeling and simulation to the
understanding of work practices—how people work. This is where social science is
finally meeting systems engineering, and a truly holistic human-centered engineering
approach—an approach in which people are at the center and people, environment
and systems are understood as an interacting system—is created. This is the topic of
the next section.



4 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

13.3 MODELING AND SIMULATION OF WORK SYSTEMS

In this chapter we argue that we need to move the design of human work systems
from a seemingly mystical social-science art-form to systems engineering with, more
or less, formal methods, tools and guidelines. To do this, we need to show how the
social-science “methods,” mentioned in the previous section, can be made useful as
data-gathering methods, not for ethnographic analysis, but for the purpose of work
systems design.

What is needed is a theory of analysis and design of human activity systems.
This theory will then form the foundation upon which we can develop a systems
engineering approach that has clear guidelines and procedures to follow; a sort of
cookbook for analysis and design of work systems. We argue that modeling and
especially simulation focuses the attention on system engineering methods. This is
mostly because a computer simulation requires a formal description of the system
in order to simulate changes to the system over time, based on operationalization of
theories.

13.3.1 Designing work systems: What is the purpose and what can go wrong?

If we develop a methodology with appropriate methods for designing work systems,
what is its purpose? How many new work systems get developed from scratch? The
answer is, not many. There are situations, for example at NASA, where a complete
new work systems gets designed and put in place for a short duration of say three
months to ten years. Space mission operations organizations are such an example.
However, in most cases design mostly entails changes to existing systems. More
often than not there is a current system that exists and the objective is to change just
a small part of the current system to make it more efficient or effective, or both. In
the first, not so frequent case, the use of modeling and simulation is to design the
future system as a computer model and then to simulate it in order to understand how
the system will behave in the future. We use the methods to understand a system in
the future before it is actually there. In the second, more frequent case, the objective
is to understand the change trajectory of an existing system and understand how the
designed change fits into the current system.

In both cases we are talking about predicting future behavior of people and
machines. The danger of a modeling and simulation approach is the well-known
“garbage-in-garbage-out” dilemma. In the nineteen-nineties this issue became well
known in the process re-engineering fad (10). Expensive, external business consul-
tants were hired to re-engineer a company’s work processes to make them “leaner
and meaner.” On top of bringing in outside consultants, who knew very little of
the company’s work process, most of the time this was done just prior or during a
company merger. The approach became synonymous with “cutting cost by cutting
heads,” while in the mean time management “forgot about the people” (11). The
approach was not driven from understanding the work of the people within the sys-
tem, but it was mainly driven from management’s view of cutting cost. The result
was often that the models and workflow simulation tools that were used were geared



MODELING AND SIMULATION OF WORK SYSTEMS 5

to showing high-level tasks and information flow, and the objective-function of the
simulation effort was to cut-down on processing time and simplify information flows
to cut down time as it was modeled.

Clancey, et al (7) have shown how business process-flow modeling approaches
from the nineties lacked the capabilities of modeling people’s work. Together,
Clancey and Sierhuis have been working on an agent-based modeling approach for
modeling people’s work at the practice level—how work really gets done. This
work practice modeling approach is the topic of the next section, and the main topic
of this chapter. However, before we get to that we explain why it is that agent-
based modeling and simulation is a powerful method for work system design and
engineering, we turn briefly to the fact that management often does not like modeling
and simulation of work systems, regardless of the fact that, if done right, it allows for
an “objective” and “quantifiable” view of the work system’s improvement.

13.3.2 The difficulty of convincing management

It seems contradictory to the modeler and engineer that management is uninterested
in getting objective and quantifiable measures about their organization, in order to
improve the work product. However, it is on purpose that we use quotations marks
around the words objective and quantifiable at the end of the previous section.

First, it has to be understood that the modeler can never be completely objective.
It is important to recognize that a model of a work system (any system for that matter)
is build with a particular point of view, namely that of the modeler. It is extremely
important for any modeling effort to have a well-defined objective for the modeling
effort. This objective needs to be developed participatory with management and
workers from the work system that is to be modeled. Management will and should
drive the when, what and why of the modeling effort. Without management (or
customer, i.e. the one who pays for the effort) approving and standing behind the
when, what and why of a modeling and simulation effort, the project will not succeed.
Besides the so called buy-in from management, it is as important to get buy-in from
the workers whose work is going to be modeled, because they will be the ones that
benefit or not from the outcome of the effort. Without their help the accuracy of the
model will be compromised and the garbage-in-garbage-out phenomena will crop
into the effort.

The second important aspect of getting buy-in is to convince management that
the simulation can quantify important variables that are part of the why of the effort.
Often the why’s of a modeling and simulation effort of a work system is about
increasing efficiency, which most often will translate into reducing cost. However,
this is not always the case. The example we use in this paper is based on an
actual NASA project in which the why of the modeling effort, as put forward by
management (the customer), was indeed related to efficiency, however not to reduce
cost (because no jobs were lost), but to increase efficiency of the work system by
introduction of a designed agent-based workflow system to reduce manpower for one
particular organizational task. The overall objective was to add this manpower to
other, understaffed tasks.



6 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.1 Relation of a model of work to a description of the work practice

The key of convincing management of the benefits of modeling and simulation
for work systems design is to (a) use it as a decision-making method for management
and (b) use it as a design and engineering method to provide an implementation of
the decision that is supported in (a). As mentioned before, the quality of the model of
the work systems depends on the amount of participation one gets from the workers
in the organization that is being modeled. This participation goes two ways; (c)
without participation the quality and the outcome of the simulation should always be
questioned, and (d) without participation the implementation of the resulting design
will not be accepted by those who have to live with it.

13.4 WORK PRACTICE MODELING AND SIMULATION

Work practice modeling and simulation is a model-based method for developing a
time-based representation of the practices of people. Whereas work practice modeling
is a process of developing static representations of a work system at the practice level,
simulation adds a time dimension to such static models allowing us to view the model
at different moments in time, and thus providing a way to see how the work happens in
practice. In this section we describe what is meant with work practice. The modeler
in Figure 13.1 develops a model of the work using the representational power of the
Brahms language (see section 13.5). Model creation is an elaborate process of data
collection and work description that leads to a static model of the situated activities of
the individuals involved. Using the Brahms simulator, the model is simulated and a
dynamic behavioral model of the work (i.e. a situation specific model of the practice)
is generated. The observer of the simulation model can observe the model during
and after the simulation, interpreting the work practice model.



WORK PRACTICE MODELING AND SIMULATION 7

13.4.1 Practice vs. Process

Many researchers in the social sciences use the word practice as if it is a well-defined
concept that everyone knows, described as “work as experienced by those who engage
in it” (4). Practice is also called “lived work”—“what work consists of as it is lived
as part of organizational life by those who do it” (4). In short, practice is doing in
action (35). However, it is difficult to describe what a practice is. People notice
when something is not a practice, and can often describe why—“we normally don’t
do things this way.” It can be said that a group of people has developed a practice, but
when asked to describe what it consists of, we find it difficult to describe in words.
As such, practice is part of our tacit knowledge (25). An ad hoc definition of practice
that we use is:

The collective performance of contextually situated activities of a group of
people who coordinate, cooperate and collaborate while performing these ac-
tivities synchronously or asynchronously, making use of knowledge previously
gained through experiences in performing similar activities.

Practice is to be contrasted with formal process specification of what work is to
be done. In the workplace itself, processes are often idealized and constitute shared
values. Narratives that people record or present to authorities cater to these policies or
preferences and create an inherent conflict in the work system between what people
do and what they say they do. Two fundamental concepts related to the practice
versus process distinction are behavior versus function and activity versus task.
Process models (e.g, workflow diagrams) are idealized functional representations of
the tasks that people in certain roles are expected to do. In contrast, practice concerns
chronological, located behaviors, in terms of everyday activities, for example, reading
email, meeting with a client, and sorting through papers. Activities are how people
“chunk” their day, how they would naturally describe “what I am doing now” (8; 9).

13.4.2 Modeling Work Practice

In the model of Technical Rationality, the notion of a practice is automatically
associated with the application of scientific knowledge in “major” professions (31).
Not only are we claiming that practical knowledge is an important category of
knowledge, but the concept of work practice allows us to view practical knowledge
within the scope of all kinds of practitioners (not only within those of “major”
professions). Here we focus on creating a framework that allows us to investigate,
collect data about, and model the work practices of any group of individuals from any
type of profession. Even more so, we focus the attention on work situations where
multiple individuals from different professional backgrounds are collaborating.

Work practice is constituted by the way people act and interact in their daily tasks
as part of their job, socially and psychologically situated within their environment.
It is situated action (35) described in terms of activities and their context. It is
how people act and interact in order to accomplish what they have to do. In the
next sections, we give definitions of the important elements: community of practice,



8 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

activity, communication, artifacts, and geographical environment that are important
elements in a theory on modeling work practice.

13.4.2.1 Community of practice People who are engaged in a work practice
together belong to a community that has an identity (38). Together this group of
people is engaged in choreographed activities, acting either together or on their
own. For example, consider the interplay of activities of people working and dining
in a restaurant. There are different roles that are played, the waiters, the chef,
the dishwashers, the maı̂tre d’homme, etc. Even the dinner guests are part of the
practice. They all engage in interplay, a kind of theatrical improvisation in real-time.
An unwritten play, so to speak, unrehearsed, but still they never forget their lines.
They seem to know what the play is about, reacting to each other, never stepping out
of character. They all seem to know their parts. They react to and communicate with
each other. They have all played their parts before they have ever met each other,
because their actions are based on similar previous experiences working and eating
in restaurants. This is what the activity of working in a restaurant, and going to eat
in a restaurant is all about. It is a conceptual choreography. Everyone knows their
roles, because they have done it so many times before. They are part of a community
of practice that exists inside and outside the restaurant. This type of community of
practice focuses on a group of people who produce something together.

(a. Community of practice) A community of practice is a group of individuals,
each with different individual skills and knowledge, performing complementary
activities while producing something together, that collectively can be seen as
a unity within a practice.

We define a second type of community of practice (b). The distinction between the
first definition and the second is the type of people that belong to a community. The
first definition (a) includes individuals playing different roles and performing different
activities. The second definition includes people with similar skills and knowledge,
playing the same role and performing similar activities. This type of community
of practice includes the professional communities, such as the Java programmers at
company X, the architects at company Y, or the group of waiters at a restaurant,
etc. However, it does not by definition have to be a professional community. For
example, we could also talk about the practice of the group of people meeting each
other regularly at the water cooler. Such communities are more informal or social,
and do not have to include people from the same professional background. The point
is that this definition of community of practice focuses on people that play similar
roles and perform similar activities.

(b. Community of practice) A community of practice is a group of individuals
playing similar roles, each with similar skills and knowledge that allow them
to perform the same activities, that collectively can be seen as a unity within a
practice.

Both definitions are useful and hold true at the same time. The reason for making
a distinction is for the purpose of identifying these types of communities of practice,



WORK PRACTICE MODELING AND SIMULATION 9

and the ability to talk about their practice as a whole. For purpose of modeling, it
is useful to make a distinction in the practice of a community in terms of different
groups of people in an organization performing different activities, or in terms of a
group of people performing similar activities. By describing a community of practice
as a group to which individuals belong, we can represent people’s practice in terms
of the sum of the communities (groups) they belong to.

13.4.2.2 Activity An important concept in modeling practice is that of an activity.
In describing the practice of a group of people, we describe the individual and group
activities over time, as a day in the life (DITL) model of the group. To understand
activities we must first understand that human action is inherently social. The key is
that ”action” is meant in the broad sense of an “activity,” and not in the narrow sense
of altering the state of the world (15). Describing human activities as social means
that the tools and materials we use, and how we conceive of what we are doing, are
socially and culturally constructed (37; 21). Although an individual may be alone,
as when reading a book, there is always some larger social activity in which he or
she is engaged. For instance, the individual is reading the book, as relaxation, while
on vacation. Engaging in the activity of “being on vacation,” there is an even larger
social activity that is being engaged in, namely while on vacation still “working for
the company” and while working also “being a parent,” and so on. The point is that
we are always engaged in a social activity, which is to say that our activity, as human
beings, is always shaped, constrained, and given meaning by our ongoing interactions
within a business, family, and community. An activity is therefore not just something
we do, but a manner of interacting. Viewing activities as a form of engagement
emphasizes that the conception of activity constitutes a means of coordinating action,
a means of deciding what task to do next, what goal to pursue, in other words, a
manner of being engaged with other people and things in the environment. The idea
of activity has been appropriately characterized in cognitive science as intentional, a
mode of being. The social perspective adds the emphasis of time, rhythm, place, and
a well-defined beginning and end.

Conceptually, we can view activities as the “what we are doing at each moment in
time”. Goals can be viewed as the “why we are doing what we are doing,” while tasks
can be viewed as the “how we are doing what we are doing.” In other words, goals
and tasks are being executed within activities, or better, activities at the meso-level are
our social conception of goals and tasks at the micro problem-solving level. Viewing
work as the collective activities of individuals (14) allows us to understand why a
person is working on a particular task at a particular time, why certain tools are being
used or not, and why others are participating or not. This contextual perspective
helps us explain the quality of a task-oriented performance.

We can be in more than one activity at the same time. This is situated action, an
activity that is not fully planned in detail, and can be interrupted and resumed (35);
think about putting on your pants in the morning, and the phone rings. While there is
not a control program that runs and controls our activities, a situation that suddenly
comes up has to be dealt with, without articulated task knowledge. While switching
context, the higher-level activity is still being engaged in. Therefore, it is such higher-



10 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

level activities that constrain us from switching context from one lower-level activity
to another lower-level activity and back.

People choose which activity they engage in, but cannot choose this for others.
Therefore, when people suddenly enter our space to interact, we juggle the activities
we engage in. We suspend the current activity, start a new one, stop a third one never
to come back to it again, etc. We act in the situation and react to our environment.
This is how the work practice of an organization is formed, and work happens or does
not happen. If we are interrupted all the time during our work activities, we start
acting a certain way, conscious or unconscious. We might hide, so that interruptions
are minimized, or we might just do those activities that do not require a lot of time,
or can be interrupted at any moment. In short, the situation and the environment
determine our activities, which in turn form our work practice.

(Activity) An activity is a collection of actions performed by one individual,
socially constructed, situated in the physical world, taking time, effort, and
application of knowledge. An activity has a well-defined beginning and end,
but can be interrupted.

13.4.2.3 Communication In order for two or more people to collaborate they
need to communicate. In Searle’s Speech Act theory (28), the meaning and intent
of speech acts are formalized in terms of sending and receiving communicative acts
triggering response actions. A speech act has at least four distinct types of acts (28)
that are all part of the same collaborative activity:

1. Uttering words is performing an utterance act. This is modeled with a time
consuming communication activity the sender is engaging in.

2. Referring and predicating is performing a propositional act. This is modeled
as the content of the message (beliefs of the sender) being communicated in
the communication activity.

3. Stating, questioning, commanding, promising, etc, is performing an illocution-
ary act. This is modeled as the type of communication, defining the type of
response expected from the receiver(s) of the communication.

4. The consequence or effect on actions, thoughts, and beliefs of the hearers is
the perlocutionary act. This is modeled as the activity the receiver(s) engages
in, because of receiving the communication. Together with the utterance act
of the sender this defines the collaborative activity both sender and receiver(s)
engage in.

Searle went as far as defining a taxonomy of types of speech acts in which
he classified all types as embodying one of five illocutionary points: assertives,
directives, commissives, expressives, and declarations (29). Speech Act theory
analyzes communication in terms of its illocutionary point, -force and propositional
content. Using this type of communication analysis, we can model the sequence of
communications in a collaboration activity between sender and receiver, as well as



WORK PRACTICE MODELING AND SIMULATION 11

the intention and meaning of the speech act. In our theory for modeling work practice
sending and receiving information is minimally a coordination activity.

However, in analyzing the way collaboration occurs in practice, we also need
to analyze communication in terms of how it actually happens in the real world,
thereby modeling collaboration as it really occurs. Speech Act theory abstracts
communication in terms of patterns of commitment entered into by the speaker and
the hearer. While this is important, in modeling communication as it happens in
practice we also need to take into account if a communication activity between two
people actually happens, or does not happen. We need to include the communication
tools used in the activity, because the type of tool has an impact on when and how the
hearer receives the speech act. Today, communication is more and more efficient and
certain communication tools are used globally. Phones, voice mail, e-mail, and fax
are communication tools that are more and more taken for granted in the way that we
use them. However, it should not be taken for granted that we all have created our own
practice around the use of these tools in certain situations. We emphasize the point that
collaboration is very much defined by our practice surrounding our communication
tools, and that we, therefore, need to include the use of communication tools in
modeling how people actually coordinate their collaboration in the real world. We
need to include a model of the workings of communication tools (phone, e-mail, etc),
and how they are used in practice.

(Communication) A communication is the activity of directionally transferring
information (in the form of beliefs), held by one individual called the sender, to
one or more individuals called the receivers, using a specific communication
tool (face-to-face, telephone, e-mail, fax, document, etc). After the transfer
activity is complete, and successful, the receivers will hold the same information
(beliefs) as the sender of the information, and can now react to it.

13.4.2.4 Context Work is performed within a three-dimensional geographical en-
vironment. The restaurant we have dinner at, the office we work in, and the Moon
crater Apollo astronauts explored, are all examples of places and spaces that enable,
while at the same time constrain, our work. The artifacts we use in our work, such as
communication- and information tools, are also located in a three-dimensional space.
We are constrained to our three-dimensional world and it defines very much how we
can perform our work. For example, when the phone rings, we cannot hear it if we
are not in the same room as the telephone. We also cannot observe specific changes
in a location when we are not there. For example, if someone turns off the light in a
room and you are not there, you will not observe this and therefore will not be aware
of the fact that the light in this room is now off. To show the effect of the environment
on the practice, we have to include a model of the environment, including the people
and artifacts in it, in a model of work practice.

(Environment) The environment is a description of the physical environment
and the people and artifacts located located within it and performing activities.

People use and/or create artifacts in almost all activities they engage in. When in
the activity of hammering a nail, we use a hammer and a nail, and we end up with a



12 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

nail in whatever artifact we have hammered it in. If we try to understand this activity
in context of performing it in the real world, we cannot leave out the artifacts. The
artifacts constrain the way we perform activities. It is part of our context, and we
have no choice but to interact with the physical world in order to act. We need to
include these artifacts into our model of work practice. Leaving them out would miss
the opportunity to understand the reason for performing activities. In other words,
the artifacts are as important in the work practice as the people are.

(Artifact) An artifact is a physical or digital information object in the world.

Important in modeling work practice is how the artifact is used and conceptually
understood within the activity. George Mead’s social-behaviorist notion of instances
of the universal (23), as well as Heidegger’s notion of break down and readiness-
at-hand, explain the role of objects—artifacts—in an activity. Mead, as well as
Heidegger, use the hammer and the activity of hammering as the example in which
the hammer is the object that turns into a tool—as an extension of the hand. Mead’s
idea is that the concept “hammer” is the universal and the object used in the specific
activity is the instance of the universal. Therefore, for Mead, the role of the hammer
is socially bound to the activity, and is not a property of the object itself. If the
person who is hammering uses a piece of wood to hammer in the nail, that piece of
wood becomes the instance of the universal during its use in the activity, and thus
plays the role of a hammer. In other words, the object is transformed into the tool
used to hammer in the nail. Heidegger, in essence, says the same. Only he speaks
to it through the understanding that objects and their properties are not inherent in
the world, but arise only in an event of break down in which the object becomes
present-at-hand. To the person hammering, the hammer as such does not exist. It is
part of the readiness-at-hand, and it is taken for granted in the activity. Without the
user’s identification as an object It is only in the break down, for example when the
person cannot find the hammer when he wants to hammer in the nail, that the object
is present for the user. Whichever notion speaks to you, the issue that is important in
modeling work practice is how artifacts are used, created and conceptually understood
by people within an activity. Figure 13.2 shows this relationship.

It is the use of the artifact in the activity—its role—that transforms the artifact
into a tool or resource in, or a product of the activity, used or created by the subject.
Outside the activity the artifact is just an object in the world. To the observer, and to
the modeler, the object is necessary for the activity to be performed.

(Tool/Resource) When an artifact is being used in an activity, it becomes a
tool or resource in the performance of the activity.

(Product) When an artifact is created or changed in an activity, it becomes a
product of the activity.



THE BRAHMS LANGUAGE 13

Fig. 13.2 Mediated relationship of artifacts in activities

13.5 THE BRAHMS LANGUAGE

The name Brahms refers to the agent-oriented language (AOL), the multiagent mod-
eling and simulation environment and the MAS development and execution envi-
ronment. The Brahms language was developed to incorporate and operationalize
the theory of modeling work practice described in the previous section. A Brahms
model or program can be written using a standard text editor, or using one of the
two available interactive development environments for the Brahms language; the
Composer (see Figure 13.11 or the Brahms Eclipse plugin. We refer the reader also
to chapter 12, section 5 for a comparative description of Brahms with other agent
simulation languages. Here we give some more detailed of the Brahms language and
its syntax. For a more detailed description of the Brahms language we refer the user
to (33).

13.5.1 Simulation or execution with Brahms

A Brahms model or program is executed by the Brahms virtual machine (BVM).
All components of Brahms, including the compiler, the BVM and both IDEs are
developed in Java, and thus run on most systems that run Java. The BVM can be run
in one of three modes:

1. Simulation mode: In this mode the BVM is a multi-agent discrete-event simula-
tor. Each agent and behavioral object are independent processes (Java threads)
that process events using their own belief-based inference and activity sub-
sumption engine (2). A Brahms agent is a belief-desire-intention (BDI) agent
(32). Each agent has a private set of beliefs that are used to infer new beliefs (in
thoughtframes and workframes) and perform activities (in workframes). All
creation of new beliefs and facts, as well as the start and end of activities are
new events for the agent that need to be scheduled on the agent’s local event



14 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

queue. There is a centralized scheduler that schedules the distribution of events
to and from agents (in case of agent-to-agent communication and world fact
creation), based on a discrete simulation clock. Although the grain-size of the
simulation clock can be set by the user, by default one clock-tick is assumed to
be one second of simulated time. The centralized scheduler makes sure that all
events generated by all agents are processed in the right order, making sure that
each agent processes the correct events in each event-cycle. See Figure 12.6 in
section 12.5.2 for a depiction of the central event scheduler and its interaction
with a Brahms agent and the central world state.

2. Real-Time or RT mode: In this mode the BVM’s central scheduler is bypassed
and the simulation clock is turned off. Each agent and behavioral object are
now executing in real-time. Since they are all independent Java-threads, they
are all independently executed parallel processes. All incoming events are
processed as fast as the CPU schedules the priority of each agent Java-thread in
the Java VM. Since there is no centralized event scheduler, and no simulation
clock, activity execution time is managed by the system clock.

3. Distributed RT mode: This mode is equal to the RT mode, with the additional
capability of allowing multiple BVMs to connect to each other over a network.
Agents and behavioral objects running in different BVMs can find each other
using a distributed directory service. Communication between agents is man-
aged using a hidden communication layer. Different communication protocols
are supported; TCP/IP, UDP, SSL, SOAP, Corba, etc. This allows a Brahms
program to be distributed over a network. For a more detailed description of
the DRT model we refer the reader to (33).

To explain the Brahms language concepts, in the next subsections we use the
example of a student whom gets hungry while studying and needs to go to an ATM
machine to get cash to pay for lunch.

13.5.2 Modeling people and organization

Modeling of people and organizations is done with the language concepts agent and
group. Imagine that all students, while they are studying, monitor how hungry they
are. The level of “hungriness” is measured by a belief about a real-valued attribute.
Let’s assume that all students will study until their hungriness level rises to 21. At
that moment, the student determines that he or she needs cash to go to lunch. This
will make the student stop the “study” activity.

The program source code in Table 13.1 shows the Brahms code for a model of
the above description. First, we see the group Student declared. The group has
two attributes, howHungry and needCash; the first one being of type double and the
second of type boolean. Then, there is one relation called hasCash defined. This
relation makes it possible for a student to have cash on him or her. Cash is represented
by a class-type Cash (see next subsection).



THE BRAHMS LANGUAGE 15

Next in Table 13.1, is the definition of every student’s initial beliefs. For each
agent that is a member of the group Student, initial beliefs are inherited from the
group and are created at initialization time and added to the agent its local belief-set.
In the source code below agent Alex Agent is a member of the group Student and the
belief (Alex Agent.needCash = false) is created at initialization (i.e. sim time = 0).
This means that at initialization time agent Alex Agent will believe that it does not
need any cash.

Next is the definition of the activity study. In Table 13.1 you can see that activity
study is defined as a primitive activity with a max duration of 3000 clock ticks, or by
default, five minutes of simulated time. This means that when an agent executes this
activity, the simulation engine makes sure that the activity takes five minutes. How
long the activity actually takes during a simulation is undefined, and is dependent on
the priority of other active activities (see Chapter 12.5 for a more detailed discussion
on activity scheduling and execution). Important to note is that a primitive activity
only takes an amount of time. What happens while the agent is in a primitive activity
is not further specified. In this case, the agent is simply studying for five minutes at
a time.

The last, but most important piece of code in Table 13.1 is the definition of the
workframe (WFR). WFR wf study defines when the agent starts and stops executing
the study activity. The when-clause defines the preconditions for the start of the
WFR. In the example in Table 13.1 the preconditions state that the agent must belief
that the time of the Campanile clock is less than 20, that it does not need any cash, and
that the hungriness level is below 21. Only then will the WFR wf study be executed
and the body or do-part of the WFR performed. Here only the study activity will
be performed. After the activity is complete the WFR is done. However, since the
WFR repeat variable equals true, as long as the agent’s beliefs will match that of
the preconditions the agent will keep executing an instance of the WFR. Thus, the
agent will repeatedly keep studying for five minutes, until at any moment in time the
agent detects the fact that it needs cash. The dt veryHungry detectable is active while
the WFR is active, and at any moment the agent detects the fact that it needs cash,
or gets the belief that it needs cash through some other means (e.g. reasoning, or
communication with another agent), it will abort the current study activity. Because
one of the preconditions is then also false—the agent now beliefs it needs cash—no
new wf study will get executed. This is shown in Figure 13.3 where one can see other
WFRs interrupting the WFR wf study.

The last line in Table 13.1 defines agent Alex Agent as a member of the group
Student, which means it inherits all concepts defined in that group. It should be
noted that an agent can be a member of any number of groups, as well as that groups
can be members of parent groups. In this way, we can model any organization by
modeling the organizational-, functional- and social groups and what people do when
they are a member of these groups. By using group inheritance, the practice in an
organization can be modeled by modeling the community of practice as groups with
attributes, beliefs, activities, workframes and thoughtframes. People that belong to a
community of practice are modeled as agents that are a member of the corresponding
group.



16 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.3 AgentViewer screenshot of agent Alex Agent execution

Figure 13.3 shows the execution of multiple study activities by agent Alex Agent.

13.5.3 Modeling artifacts and data objects

As described in section 13.4.2.4 a model of work practice includes the artifacts and
data objects used in the context of an activity. In the student model described in
Table 13.1 we can see a number of artifacts being used; The object Campanile Clock,
which is the representation of the Campanile bell tower on the UC Berkley campus
and the Cash object of the student, representing the money the student has in his or
her pocket. In the complete model there are other objects well, such as the ATM
machines of the bank, the student’s ATM card as artifacts, as well as the student’s
bank account as a data object with a pin code, etc. Table 13.2 shows the source code
of the classes for the ATM machines and and bank account, as well as some of the
object instances. It shows that the Brahms language includes the concepts of classes
and objects, besides that of agents and groups. Brahms is thus not only agent-based,
but also object-oriented.

Important to note are the initial facts defined for the Alex Account object in
Table 13.2. This object is a data object and the initial facts are created at object
creation time. These represent the facts in the world that exist about student Alex’
bank account. Agents can have beliefs about those attributes that differ from the facts
in the world. This is how agent Alex Agent can have a wrong belief about his bank
account’s pin code, and can lose his ATM card after typing in a wrong pin code three
times at the ATM.

In Brahms, the world facts are separate from the agent’s beliefs about those facts.
There is only one world fact set. Agents can detect these facts using detectables, as
the one shown in the WFR in Table 13.1.

13.5.4 Modeling communication

Communication in Brahms is modeled as speech act or communicative act activities
(29; 16). The Brahms language includes default communication and broadcast



THE BRAHMS LANGUAGE 17

group Student {
attributes:

public double howHungry;
public boolean needCash;

relations:
public Cash hasCash;

initial_beliefs:
(current.needCash = false);

activities:
primitive_activity study() {

//equals 5 mins of simulated time
max_duration: 3000;

}//end study

workframes:
workframe wf_study {

repeat: true;
detectables:

detectable dt_veryHungry {
when(whenever)
detect((current.needCash = true), dc:100)

then abort;
}//end dt_veryHungry

when (knownval(Campanile_Clock.time < 20) and
knownval(current.needCash = false) and
knownval(current.howHungry < 21))

do {
study();

}//end do
}//end wf_study

}//end Student

agent Alex_Agent memberof Student { }

Table 13.1 Partial source code for Student group and agents



18 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

class Atm {
display: ’’Atm’’;
cost: 0.0;
resource: true;
attributes:

public int currentAccountPin;
public boolean pinChecked;
public boolean pinIsWrong;
public boolean pinAsked;
...

relations:
public Bank ownedbyBank;

...
}//end Atm

object Boa_Atm instanceof Atm {
location: Telegraph_Av_113;
initial_facts:

(current ownedbyBank Boa_Bank);
}//end Boa_Atm

class Account {
display: ’’Account’’;
cost: 0.0;
resource: true;
attributes:

public double balance;
public string typeof;
public int code;
public int pin;

relations:
public Bank openedWithBank;

}//end Account

object Alex_Account instanceof Account {
display: "Alex_Account";
initial_facts:

(current.balance = 20.00);
(current.typeof = checking);
(current.code = 1212);
(current.pin = 1111);
(current openedWithBank Boa_Bank);

}//end Alex_Account

Table 13.2 Partial source code for classes and objects



THE BRAHMS LANGUAGE 19

activities. In a communication activity, the performing agent specifies to which
agents or objects it is communicating. In a broadcast activity, the performing agent
does not have to specify the receivers of the communication. In that case all agents
in the same location (see section 13.5.5) as the performing agent will receive the
communication. What is being communicated is the beliefs specified in the, what is
called, transfer definitions defined in the activity. It should be noted that an agent
needs to have the beliefs in its belief-set for it to be able to communicate them to
another agent or object. This is to represent that we, as people, cannot communicate
that what we don’t know.

Table 13.3 shows the definition of communication activity communicatePIN and
use of this activity in the WFR wf communicatePIN, all part of the composite activity
called useATM. In this composite activity we model how the student uses an ATM.
Figure 13.3 shows the communication of student Alex Agent with the object Boa Atm,
showing the communication as lines from the agent to the object on the right in the
figure. For a more detailed description of communications using the Brahms FIPA-
based Communicator library, we refer the reader to Sierhuis, et al (33).

13.5.5 Modeling location and movement

In Brahms agents and objects can be situated in a model of the physical world. The
world is represented independent of the capability of agents. An areadefinition is used
for defining a class of area instances, used for representing geographical locations.
Area definitions are similar to classes in their use. Examples of area definitions
are “Building”, and “City”. An example of an area is “Berkeley”. Areas can be
decomposed into sub-areas. For example, a building can be decomposed into one
or more floors. A floor can be decomposed into offices. The decomposition can be
modeled using the PART-OF relationship. A path connects two areas and represents
a route that can be taken by an agent or object to travel from one area to another. The
modeler may specify distance as the time it takes to move from area1 to area2 via
the path. The BVM automatically generates location facts and beliefs for agents and
objects moving from one area to another.

Agents and objects can be located in an initial location (i.e. an area). Agents and
objects can move to and from areas using a move activity. For example, Figure 13.3
shows the movement of agent Alex Agent from the areas SouthHall to the areas of
the restaurant and bank branch on Telegraph Avenue, and back to SouthHall. When
agents and/or objects come into a location, the BVM automatically creates a location
fact (agent.location = <current-area>). Agents always know where they are and
they notice other agents and objects. When agents come into a location, the BVM
automatically gives the agent a belief about its new location (same as the location
fact), and also gives the agent a location belief for all other agents and objects
currently in that location. When an agent or object leaves a location, the location fact
and beliefs are retracted from all agents that are in that location the moment the agent
or object leaves. Agents and objects can carry (through the containment relation)
other agents and objects. Contained agents and objects are not “noticed” until they
are put into the area by the containing agent or object.



20 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

group Student {
...
activities:
...

composite_activity useATM() {
activities:

...
communicate communicatePIN(Atm at3, Account bka) {

max_duration: 20;
with: at3;
about: send(bka.pin = unknown);
when: end;

}//end communicatePIN
...

workframes:
...
workframe wf_communicatePIN {

repeat: true;
variables:

forone(Account) bka;
forone(BankCard) bkc3;
forone(Atm) at3;
forone(Bank) ba3;
forone(Building) bd3;

when(knownval(current hasBankCard bkc3) and
not(current contains bkc3) and
knownval(current hasAccount bka) and
knownval(current.chosenBank = ba3) and
knownval(at3 ownedbyBank ba3) and
knownval(current.pinCommunicated = false) and
knownval(current.location = at3.location) and
knownval(at3 contains bkc3))

do {
communicatePIN(at3, bka);
conclude((current.pinCommunicated = true),
bc:100, fc:0);

}//end do
}//end wf_communicatePIN
...

}//end communicatePIN
...

}//end useATM
...

}//end Student

Table 13.3 Partial source code for communication of beliefs



THE BRAHMS LANGUAGE 21

// Area defintions
areadef University extends BaseAreaDef { }
areadef UniversityHall extends Building { }
areadef BankBranch extends Building { }
areadef Restaurant extends Building { }

// ATM World
area AtmGeography instanceof World { }

// Berkeley
area Berkeley instanceof City partof AtmGeography { }

// inside Berkeley
area UCB instanceof University partof Berkeley { }
area SouthHall instanceof UniversityHall partof UCB { }
area Telegraph_Av_113 instanceof BankBranch partof Berkeley { }
area Telegraph_Av_2405 instanceof Restaurant partof Berkeley { }

// initial location
agent Alex_Agent memberof Student {

location: SouthHall;
}//end Alex_Agent

Table 13.4 Brahms Geography Model

The geography model is a conceptual model—it does not represent the geography
as a graphical three-dimentional model—representing geography as a hierarchical
model of areas, with attributes representing facts about these areas and agents and
objects as inhabitants of these areas. Areas can have attributes and relations, and
define initial facts. Facts about areas can represent the state of a location, e.g. the
temperature in an area. The BVM automatically generates facts about the ’partof’
relationships in the geography. Agents can detect these facts and thus learn (i.e. get
beliefs) about the areas in their environment.

The example geography model in Table 13.4, defines a simple geography for the
University of Berkeley in Berkeley, CA. This model defines the university building
SouthHall, where student Alex is initially located. Furthermore, the model defines a
bank branch and a restaurant in the city of Berkeley.

13.5.6 Java Integration

Brahms currently has two ways of interfacing with Java using the Brahms JAPI:

• Java activities are primitive activities written in Java. To write a Java activ-
ity the modeler needs to define the Java activity in the Brahms model, and



22 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

implement the activity by writing the activity using the Brahms JAPI. To do
this you need to create a Java class that extends from the AbstractExternalAc-
tivity abstract class in the JAPI. The AbstractExternalActivity is an interface
for external activities implemented in Java, called by Brahms Java activities.
The external activity can perform any Java action. This abstract class provides
access to parameters passed to Brahms Java activities, and allows for adding
bindings to unbound variables passed to Brahms java activities through param-
eters. Most importantly, you need to define the doActivity method to execute
the Java activity.

• External agents are Brahms agents written in the Java programming language.
To write an external agent you will need to define the agent as an external
agent in the Brahms model and then write the external agent in Java using the
Brahms JAPI. To do this you need to create a Java class that extends from the
AbstractExternalAgent abstract class in the JAPI. The AbstractExternalAgent
is an interface for external agents implemented in Java, loaded into the virtual
machine to participate in a Brahms simulation or real-time agent execution.
The external agent can perform any Java action. This abstract implementation
provides access to the concepts loaded in the virtual machine and the world
state to allow for communications with these concepts and to allow for world
state changes to be triggered by this agent.

• Java objects can be referenced using Java class types as Brahms attribute
types. This allows referencing Java objects from within the Brahms language.

13.6 SYSTEMS ENGINEERING: FROM SIMULATION TO
IMPLEMENTATION

As we gained experience with applying our theory of modeling work practice using
the Brahms environment, we developed a world view and a set of practices for the
development of software systems. We collectively named these set of practices
human-centered computing, in the sense that the golden rule is that people in a work
system should always be at the center in the development of new technology. Over
the years, we have developed a set of practices that we are now starting to formulate
as a MAS software development methodology. At the center of this methodology is
our work practice modeling and simulation approach outlined in this chapter. The
development of software is rooted in the analysis, modeling and simulation of the
work system in which the new software system is to be introduced. Due to the nature
of the Brahms environment, an agent-based simulation model can be relatively easy
converted to a real-time MAS. This fact has made it possible for us to first design a
MAS as an agent-based simulation in Brahms, and subsequently convert this model
to a MAS that can be executed in by the BVM in real-time. Hence, we are speaking
of a methodology that allows us to go from simulation to implementation of a MAS.
In this section we describe this methodology in more detail.



SYSTEMS ENGINEERING: FROM SIMULATION TO IMPLEMENTATION 23

Fig. 13.4 The methodology pyramid

A methodology consists of a number of elements that build on each other like a
pyramid (see Figure 13.4). Below we describe how each of these elements are filled
in in our approach. As we apply our methodology to more software engineering
projects, new experiences will surely make us revisit each of these elements and
make changes to the approach. It is thus important to note that the description we
provide here will not be the final version of our approach. One should see this as
but the first attempt to formalize a set of practices we have developed over time, and
applied with success at NASA. In section 13.7 we provide our recent experience with
applying our own methodology in a project for NASA’s Mission Control. Here we
first provide a more formal description of our methodology, as applied.

• World view: Our world view is our human-centered slogan that people should
alway be at the center of any technology development project. This sounds
trivial, but is not the rule in most software development methodologies, or in
any systems engineering approach for that matter. This human-centered slogan
is the view on which our theory is based.

• Theory: The theory of our methodology is the combination of theories on
which our theory is based, such as activity theory, situated cognition and
participatory design, and of course our theory of modeling and simulating
work practice described in this chapter.

• Methods: The methods we apply are those that come from anthropology and
knowledge engineering (e.g. participant observation, video and photography,
interviews and knowledge acquisition), as well as those coming from participa-
tory design and cognitive psychology (e.g. story boarding and task analysis).
Our main method is that of work practice modeling and simulation using the
Brahms agent-based activity approach, and the way we develop different mod-
els over the course of the project. We start with a model of the current work
system, then move to a participatory design of the MAS in Brahms and in-
corporated this in a model of the future work system. The future work system
model is then turned into the MAS.



24 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

• Tools: Besides the obvious tools of digital photo and video cameras, recorders,
etc, our main tool is the Brahms environment for developing agent-based
models of the work practice and the MAS.

• Use: Our methodology has been used in different ways over the last ten years
at NASA. Every time we use the methodology on a project, we gain new
understanding and experiences which we use to update our theories, methods
and tools.

13.6.1 A cyclic approach

The from simulation to implementation methodology uses a cyclic approach, as shown
in Figure 13.5. The project starts with doing participatory observation of the current
work system. This activity can take up to a couple of months, depending on the
objective of the project. The next step is to model and computationally simulate
the current work system in a descriptive Brahms agent-based model. Even though
Figure 13.5 shows these two activities to be sequential, it should be understood that
in reality these activities happen in parallel. It is the agent-based modeling of the
work system that drives what parts of the work practice needs more observation.

After the simulation of the current work system is completed, the next activity is
to design the work system change. This design activity needs to be participatory with
the workers from the organizations in the work system. Together the MAS system
is designed given the constraints of the possible changes. The new design is then
implemented in a Brahms MAS model and simulated. This MAS is incorporated in
a simulation of the future work system that is changed from the current work system
model. This way the impact of the newly designed MAS on the future work system
can be analyzed. Also, changes to the current work system can be identified and
analyzed, and the same metrics as the ones generated by the current simulation can
be compared with those of the future simulation.

After the future work system simulation is completed, the next activity is to
implement the MAS in a real-time environment. Using the Brahms environment, the
Brahms model of the designed MAS can be easily changed to a real-time executable
MAS. It is in this activity that the “from simulation to implementation” transition
takes place. Ethnographers, system designers and Brahms modelers, are replaced by
Brahms and Java programmers.

13.6.1.1 What to include and when to stop The cycle is complete after implemen-
tation of the MAS in the work system. Continuous improvement to the work system
is obtained by starting the next version of the cycle. The model of the future work
system in the previous cycle now becomes the model of the current work system in
the next cycle. However, because in the previous cycle the model was a prescriptive
model of the future work system, new work practice observations and changes to the
future model will result in a descriptive model of the current work system in the next
cycle.



SYSTEMS ENGINEERING: FROM SIMULATION TO IMPLEMENTATION 25

Fig. 13.5 Simulation to Implementation Cycle

13.6.2 Modeling current operations

As for any modeling and simulation project, it is very important to define the ob-
jectives of the modeling effort up front. This should be done in collaboration with
management and end users. The end product of modeling and simulation of the Cur-
rent Work System is an agent-based model of a “day in the life” of the people in the
work system. The output of the simulation should be a detailed activity timeline of
all relevant roles and people in the organization, as well as the generation of metrics
and statistics that answer the specific questions that are being asked.

13.6.2.1 Developing a day-in-the-life model A day-in-the-life (DITL) model is a
model of the chronological activities of people. It is developed based on observation
in the workplace where one can see what is happening minute to minute as the
workday progresses. The trick is to observe without making immediate assumptions.
The only form of interpretation the observer does is to abstract moment by moment
action into high-level activities that can be identified to have a defined beginning and
end. For example, leaving home to go to work (the “going to work” activity), coming
in to work and leaving work to go home (this is the highest level “working” activity),
the start and end of a meeting, the reading of email, the answering of a telephone
call, etc.

Once the observer has identified an abstract model of the chronological activities
of the day of a person that plays a particular role, the next step is to model these
activities as an activity model for the agent representing that person. It is important
to observe not just one person playing that role, but observe a number of different
people playing the same role, as to develop not a person specific model, but an
activity model for that role in the organization. Once a role is modeled as one or
more groups in Brahms, as many agents being members of these groups can be



26 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.6 Current operations modeling process

created in the simulation. Figure 13.6 shows the observation-analyze-model cycle of
the development of a DITL model for the current operations of a work system.

Other important aspects to observe, analyze and model are communications be-
tween people and how this communication takes place, be it fact-to-face, using phone,
e-mail, paper or electronic documents, etc. The use of space and artifacts in the work-
place and the movement within the environment—e.g. using a USB stick to transfer
files from a computer on ones desk to another computer in another place. All these
objects, information creation and transfer need to be modeled in the DITL model, as
well as movement of agents within geography model.

13.6.2.2 Simulating a day-in-the-life-model After a version of the DITL is cre-
ated in Brahms, it is important to make sure the model can be simulated and results
can be shown to the end-user. Statistics and metrics generation need to be incorpo-
rated in the model from the beginning, such that the why- and how- questions can
be answered with the simulation. What statistics to keep track off is an important
decision in any effort.

The bottom of Figure 13.6 shows this model-simulate-generate cycle. The top-
and bottom cycles are working in concert, and the development of a current operations
model is based on cyclical phases of more and more detail in the DITL. The issue
of when to stop going through this cycle is an important one. At the start of any
modeling and simulation effort the objective of the effort needs to be clearly defined.
The objective should be formulated in terms of what needs to be learned from the
output of the simulation, e.g. “What we are interested in is understanding how task
X is performed by the workers in group Y in terms of who is doing what, when, what
knowledge is used and how long it takes. From this we need to design an automated
system that can do this task.”



SYSTEMS ENGINEERING: FROM SIMULATION TO IMPLEMENTATION 27

Fig. 13.7 Future operations modeling process

13.6.3 Modeling future operations

After the current operations modeling phase is finished, and the decision is made to
change the current work system and/or create some automation that will be imple-
mented in the current work system—thereby also changing the work system—the
next phase in the simulation to implementation cycle is the modeling and simulation
of the future operations.

Figure 13.7 depicts the future operations modeling process. We start with a
participatory design task, where the new automation is designed in close participation
with the end-users of the system. It cannot be stressed enough how important the
participatory approach is to this effort. Participatory design in this context means that
the design team includes workers from the organization in which the system is going
to be used. Together system and user interface requirements should be developed.

When this is done, the design of the new system is implemented as a MAS in
Brahms. This implementation is at first a simulation of the behavior of the system.
The simulation of this future MAS system should use as input the same input as
was used in the current operations simulation, and generate the same output. This is
accomplished by developing a DITL simulation of the future operations that includes
a simulation of the MAS, based on the simulation of the current system. Especially,
the people—end users—in the future work system need to be included as agents in
the future DITL simulation model. Those aspects of the practice that needs to change
need to be modeled in this future model. Similar statistics as in the current operations
simulation model will need to be generated by this future operations simulation
model. This will allow later on for the comparison between the current and future
operations model.



28 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.8 Moving from simulation to implementation of the MAS

The trick in this phase is to model the future MAS as close to complete as possible.
This will not only help in the transition from simulation to implementation of MAS
in the next phase, it also helps in prototyping the system in the participatory design
process. Using the capability in the Brahms language to develop Java agents, designed
user interface agents can already be implemented as part of the future simulation.
This will allows for a close to realistic simulation. The simulation needs to be verified
and validated participatory with the workers form the organization.

13.6.4 MAS implementation

The last step in the from simulation to implementation cycle is the transformation of
the MAS as a simulation in Brahms, to a distributed real-time MAS that implements
the designed automation for the future work system. This transition process is
depicted in Figure 13.8.

Depending on the needed interfaces of the system, this transition can be easy and
fairly fast as long as the MAS simulation was done in detail. However, most of the
time the MAS needs to be integrated with existing legacy systems and networks in
the organization. The integration with existing external systems and networks will
have been abstracted and simulated in the future operations model that includes a
simulation of the MAS. The main effort of the transition from a MAS simulation to
an actual executable MAS in the work system is the development of external system
and network interfaces. For example in the future simulation of the OCAMS system,
described in the next section, the FTP-ing of files performed by an FTP agent was
modeled as a simulation of the FTP of file objects on a simulated file system. In
the MAS simulation model the file system was modeled as Brahms areas where file
objects were inhabitants of that area. File FTP was simulated as a movement of file
objects from one area to another. When the MAS system was implemented, this FTP
agent became a Java agent that implemented the actual FTP transfer of files on over
the network system.

When using appropriate agent communication protocols in the simulation, a sim-
ulated agent can easily be replaced by a real-time agent, making the transition from
simulation to implementation rather seamless. When done correctly, the simulation



A CASE STUDY: THE OCA MIRRORING SYSTEM 29

of the MAS will have allowed for unit and some integration testing depending on the
number of simulated agents, leaving a more complete integration testing and final
system testing. Thus, the simulation of the MAS and the future operations simulation
not only help in the design validation of the system and determining the impact on the
current work system, it also cuts down in the development and testing of the actual
MAS.

The Brahms environment makes this easy transition from simulation to implemen-
tation possible, because of its ability to both run the BVM in simulation mode and in
(distributed) real time mode. Besides this, the Brahms language is closely related to
Java and it is very easy to implement agents or activities with the existing Java API.
As far as we know this is an unique feature that no other agent simulation language
or agent-oriented language possesses.

13.7 A CASE STUDY: THE OCA MIRRORING SYSTEM

The Lyndon B. Johnson Space Center (“JSC”) near Houston, Texas, is the National
Aeronautics and Space Administrations (NASA) center for human spaceflight ac-
tivities. JSC houses the Shuttle and ISS Mission Control Centers (MCC), one of
the most complex and best-known organizations for command and control of human
space flight. The ISS MCC is charged with managing, commanding and controlling
every aspect of the ISS, from docking with the Space Shuttle and Soyuz spacecrafts
to uplinking and downlinking all information to and from the ISS. The ISS MCC,
as most MCCs, is divided into a “front room”—the room where the main flight
controllers are located—and a “back room”—where the support flight controllers are
located. Each flight controller in the front room has several support flight controllers
in the back room. Together the people in the front- and back room are organized
in flight control groups for the different subsystems for the ISS, overall named the
Flight Control Team (FCT).

Over a six-month period, computer scientists and ethnographers in the Work
Systems Design & Evaluation Group of the Intelligent Systems Division at NASA
Ames observed, studied and simulated the work practices of the Orbital Commu-
nications Adapter (OCA) Officer group to identify possible process improvements.
Using statistics generated from a Brahms agent-based current operations model, the
team, over the next three-month period, designed and simulated a Brahms agent-
based workflow system that now automates the process of creating a ground-based
replica of the ISS file system (the Mirror LAN). Future operations simulation statis-
tics predicted a reduction in mirroring time from 6% to 0.4% of the OCA Officer’s
shift—a more than ten time reduction. Using the above described simulation to
implementation methodology, agents were then converted, in a one-month period,
into a distributed MAS tool called OCAMS. Using three distributed Brahms BVMs,
these agents manage the workflow on multiple computers and servers using secure
communications provided by the Brahms collaborative infrastructure (CI). The tool
automatically writes large parts of the OCA Handover Log.



30 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

13.7.1 Mission Control as a socio-technical work system

The main task of the MCC is to manage human space flight, from liftoff to landing at
the end of a mission. The different groups of flight controllers manage all aspects of
the mission. In case of the ISS this means monitoring and commanding all aspects
of the ISS, as well as planning, scheduling and managing the daily activities of the
astronauts onboard the ISS. Besides the ISS MCC, the Shuttle MCC is housed by
the same JSC organization (the Mission Operations Directored) in the same building
complex. This large organization is divided into divisions, branches and groups
with a total of around 3200 people. Most systems and subsystems of the ISS and
Shuttle are managed by separate flight control groups. These groups consists of both
front room and back room positions for a specific subsystem, such as “Guidance
& Control.” Besides having general MCC software tools available that every flight
controller group uses, each group is responsible for developing their own software
tools to manage their subsystem and training each other to use these tools. Each group
is thus a separate organization of flight controllers, trainers and software developers.
Most senior flight controllers do it all; they help train their younger colleagues, set
requirements for tools and tool improvements, as well as “sit on console”—are in the
flight control room working a shift as a flight controller.

There is a big difference between the Shuttle MCC and the ISS MCC; Whereas
the Shuttle only flies a couple of times a year for a mission of around 14 days, the
ISS is manned 24x7, continuously 12 months a year. To do this there are three
shifts—called orbits—in the ISS MCC. Certified flight controllers are the only ones
that can sit on console, and most who are certified will be on console one week for a
particular shift. Then they are “off console” for a week, which means that they are
in their offices working on their next certification level (i.e. training), or are working
on developing their next generation tools and procedures.

While on console, the flight controller is solely responsible for his or her task for
which he or she is certified. Depending on the stage of a mission—an ISS mission,
called an Expedition, takes about six months—the work on console can be highly
stressful, or very quiet. Besides the upfront known stage of a mission, a “day in life
of a flight controller” can never be predicted with certainty, because at any moment
in time something can happen that requires their utmost attention, flexibility, and
inventiveness. It is this excitement that most flight controllers like. Because of this
high-stress environment, most flight controllers are young engineers.

The MCC is both a work system that manages and controls two of the most
complex systems in the world (both the ISS and the Shuttle), as well as a work
system that deals with both the most advanced software- and computer systems
(dedicated AI tools running on Linux systems) and the most old fashioned software-
and computer systems (old mail servers running on Windows 2000 machines with
512KB memory). Indeed, the MCC is a hodgepodge of software- and computer
systems. Flight controllers need to be able to live within this socio-technical work
system, which often means that the young flight controllers are very inventive and
flexible, seemingly working miracles with the tools and system that exist within their
work environment.



A CASE STUDY: THE OCA MIRRORING SYSTEM 31

13.7.2 The OCA officer’s work system

The Orbital Communications Adapter (OCA) Officer is a back room flight controller
and a member of the Operations Planner (OPSPLAN) group. The ISS OCA Officer
is responsible for manually uplinking and downlinking all files to and from the ISS.
These files include schedules, procedures, commands, email, photographs, health
data, newspapers, etc.

13.7.3 Simulating the current OCA work system

As part of the current OCA work process, the OCA officer spends time after each
file uplink/downlink activity mirroring the same files to the Mirror LAN. This cum-
bersome activity is both error prone, because of the manual “sneaker net” being used
and time consuming, because many uplink/downlink activities have to be duplicated
on the Mirror LAN using a laborious manual process. Figure 13.9 is a process flow
depiction of the current mirroring process.

13.7.3.1 The mirroring process After the OCA Officer has uplinked to or down-
linked files from the ISS he or she needs to create a mirror of the files on what is
called the Mirror LAN. The Mirror LAN network is a ground-based duplicate of the
network onboard the ISS. This mirroring activity starts with the OCA Officer—after
the files have been FTP-ed from the machine on which the files are downlinked or
uplinked to the archive server—deciding which of the files need to be mirrored. Not
every file uplinked or downlinked needs to be mirrored to the Mirror LAN. After
FTP-ing the file from the uplink/downlnk computer, the OCA Officer moves in his or
her chair back to the MAS computer from which they copy the files from the archive
server via their workstation to a USB stick. After the files are copied to the USB
stick the OCA Officer moves in his or her chair to a space station computer (an IBM
laptop) connected to the Mirror LAN. The OCA Officer copies the files from the
USB stick to folders on the MIrror LAN. Some of the files are processed by special
batch files that run on the Mirror LAN. For these files the OCA Officer monitors
the batch process, which can take up to 15 minutes, to watch for possible errors
that can occur. In case there are errors the error files need to be send to the flight
controller responsible. This is done via e-mail on the MAS PC. After all files have
been mirrored the OCA Officer logs all actions and problems in a Word document
called the handover log.

13.7.3.2 Simulating the mirroring process The current OCA Mirroring work
process was modeled in Brahms, based on our three month observation with two
OCA work practice observers. We took pictures, videos and written notes. Our
modeling data was based on timing of OCA Officer activities during their actual
work.

Figure 13.10 shows the UML Class diagram generated from the Brahms model
(the Brahms compiler can generate standard UML interface—umi—format from
Brahms source code). The Brahms group inheritance in Figure 13.10 shows the



32 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.9 Current OCA Mirroring Work Process

organizational model of the MOD organization of the OCA Officers group. You can
see that the OCA Officers group is part of the DO4 Flight Planning Branch, which in
turn falls under the DO Operations Division.

Figure 13.10 also shows the activity-based groups that the OCA Officer group is
a member of. Activity groups are abstract groups the modeler creates to define the
common activities in the model. You can see the three activity groups in Figure 13.10
that are all members of the highest-level Schedule group. The OCA Mirroring group
is the group in which the Mirroring Activity is modeled. Figure 13.10 shows the
activities and attributes inherited from each group.

Figure 13.11 shows the sub-activities of the composite Mirroring Activity in the
Agent Model. The OCA agents inherit this activity from the OCAMirroringGroup
also shown in the UML Class diagram of Figure 13.10 . This activity describes what
the OCA does to mirror a file. On the right side of Figure 13.12 one can see part of
the Geography Model, while one the left hand side the Object Model. The Geography
Model shows the ISS OCA room areas in the Planning MPSR room, where the OCA
Officer and computers are located. The OCA Officer agents can move between room
and room areas according to the paths specified. The Object Model on the left shows
only a part of the object model. Together these three parts of the Brahms model
constitute the OCA current operations model.

Figure 13.13 shows a part of the simulated OCA Officer activities timeline for
Orbit 3 (3rd shift). On the right top (1) you can see agent OCA Orbit 3 executing the
Mirroring activity with its subactivities. Below that (2), the timeline also shows the
actual file object being moved (due to agent OCA Orbit 3’s copying subactivities)
from folder “V:” to a folder on the Mirror LAN, via a USB “stick” (the colored bars
above the black timeline shows location movements of the OCA Officer agent (1)
and file object (2)).



A CASE STUDY: THE OCA MIRRORING SYSTEM 33

Fig. 13.10 Current operations sim statistics generated for each OCA Officer on every shift
over a simulated month of work (time in minutes)



34 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.11 Agent Model of Current OCA operations Brahms Model



A CASE STUDY: THE OCA MIRRORING SYSTEM 35

Fig. 13.12 Object and Geography Model of Current OCA operations Brahms Model

Fig. 13.13 Simulation timeline of OCA Officer’s Mirroring Activity during the 3rd shift
(Orbit 3)



36 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.14 Current operations sim statistics generated for each OCA Officer on every shift
over a simulated month of work (time in minutes)

In the logging activity the OCA Officer writes the particulars of files uplinked,
downlinked and mirrored in a Word document (not shown in Figure 13.13). This
document provides the log of what happened during the shift, and is used for the
next OCA shift to get a grasp of what happened in the previous shift. The verifying
activity is where the OCA Officer verifies the processing of specific types of files
(e.g. the ISS astronaut activity timeline updates files) by the Mirror LAN. As part of
the copying processes, the Mirror LAN server executes and processes the “dropped”
files. The OCA Officers have to verify that these batch processes execute correctly
and the files are “absorbed” without errors. In case of errors, the OCA Officer needs
to deliver the error files to the responsible flight controller in the MCC. Of course,
all this needs to be logged in the handover log.

Figure 13.14 shows, as part of the output of the OCA current operations simulation,
the amount of time the OCA Officer spends on mirroring files in a month. The table
above the bar-graph shows the percent time each shift (orbit) spends on mirroring
files of the total shift time. The actual numbers differ slightly each month, depending
on how many files are being uplinked and downlinked. The statistics generated
in Figure 13.14 are from actual uplink and downlink data from November 2006.
Striking in these results is the fact that the highest time-cost for the OCA Officer are
the (handover) logging and mirroring verification (verifying) subactivities.

13.7.4 Designing the future OCA work system

After the Current OCA simulation phase, a participatory design phase with a design
team from the OCA Flight Officers group was started. The Future OCA Operations
Work Process from Figure 13.14 was designed as a MAS that includes both the OCA



A CASE STUDY: THE OCA MIRRORING SYSTEM 37

Fig. 13.15 Future OCA Mirroring Work Process

Officer and the OCAMS system. All of the Mirroring activity that in the current
work process is done by the OCA Officer is now replaced by the OCA Personal and
OCA Mirroring agents. Part of the design was the design of a graphical user interface
(GUI) through which the OCA Officer interacts with the OCA Personal agent.

The OCAMS agents perform all the mirroring and logging activities. The OCA
Officer agent only has to select uplinked and downlinked files in the GUI, and review
the OCAMS activity when complete. The GUI agent displays the mirroring status
back to the OCA Officer who verifies the mirroring by OCAMS. All OCAMS activity
is also reported in the handover log, which the OCA Officer uses to verify mirroring
was completed correctly.

13.7.5 Simulating the future OCA work system

The future operations simulation model was then implemented as a Brahms MAS
simulation, including a simplified work practice model for the OCA Officer agent
and the GUI agent (see Figure 13.16).

This Future OCAMS MAS Simulation Model was simulated with Brahms using the
same November 2006 data. This allowed us to generate the same statistics as were
generated in the Current OCA model. Comparing Figure 13.17 with Figure 13.14
there is more than ten-fold decrease in mirroring time for the OCA Officer. Especially,
the logging and verifying activities have decreased significantly giving the OCA
Officer time to work on other tasks. Based on these results the decision was made to
develop and implement the OCAMS MAS.



38 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

Fig. 13.16 Future OCAMS MAS Simulation Model

Fig. 13.17 Future operations with OCAMS: sim statistics generated for each OCA Officer
on evert shift over a simulated month of work (time in minutes)



A CASE STUDY: THE OCA MIRRORING SYSTEM 39

Fig. 13.18 OCAMS MAS Architecture

13.7.6 Implementing OCAMS

In the last phase we moved from simulation to implementation of the OCAMS MAS.
This step was accomplished within one month with three developers. Architec-
turally, the OCAMS system is divided into three separate distributed agent systems,
each of which are running in a separate Brahms Hosting Environment (BHE) (see
Figure 13.18). These BHEs can run on any desired computer and network config-
uration, making the architecture easily adaptable to the computer architecture and
network safety concerns of the ISS MCC.

The OCAMS Release 1 MAS consists of nine individual software agents (see Fig-
ure 13.18). Three agents are rule-based BDI agents written in the Brahms language,
while six are Java-based agents written using the Brahms Java application interface.
These Java agents are referred to as a “communication agent,” because their purpose
is to communicate with external systems or files outside of the OCAMS system.

The agents are currently divided over three agent subsystems (BHEs), but could
easily be loaded in a different number of BHEs. The OCA BHE consists of the
central OCA Personal Agent that coordinates all work with the other agents in the
system, and four human interface agents, one GUI agent and three Microsoft Office
agents. The Mirroring BHE consists of the agents that interface with the KFX file
uplink and downlink software currently used by the flight controllers and decides
which file to mirror on the Mirror LAN. The Monitoring BHE is the workhorse of
OCAMS. It has agents that monitor FTP and copy files to the Mirror LAN, and



40 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

monitor for errors that might occur in the FTP and copying between file systems on
the network, as well as problems with monitoring the specific file processing that
needs to occur on the Mirror LAN depending on the mirrored file type. Brahms
agents (the solid circles in Figure 13.18) are used there where belief- and rule-based
decision-making is needed. From our experience in developing BDI-based MAS, we
developed some basic rules-of-thumb for deciding whether an agent should be a BDI
agent (i.e. written in the Brahms language), or an imperative agent (i.e. written in
the Java language).

13.8 CONCLUSION

In this chapter we presented an agent-based engineering methodology for analyzing
and designing work systems. The methodology is based on a theory for modeling and
simulating work practice. This theory is founded in social science and informatics
research in mainly Europe, as well as psychological theories of activities and situated
action. The theory is operationalized in the Brahms multiagent environment. Brahms
has been developed with the idea that an agent-based simulation based on BDI and
Java agents can easily be transformed into a real-time MAS. This approach has led to
the creation of our human-centered Work Systems Design methodology, in which we
use work practice observations and participatory design to develop a simulation of
the organization’s work practice and model the designed software system as a MAS
in Brahms, first as a simulation which later is transformed to a distributed MAS.

This methodology has been developed over almost ten years of research at NASA
Ames Research Center. The approach has been successfully applied in NASA’s
Mission Control Center in Houston, Texas. The OCAMS system, described as a case
study in this chapter, has been in operations for more than six months at the time of
this writing. Currently, release two of OCAMS has been delivered to our customer.
In addition to automating the mirroring activity, Release 2 automates the archiving
activity as well. There are in total five releases planned for OCAMS in the next two
years.

Not only is the OCAMS MAS the first MAS deployed in the ISS MCC, the system
was delivered within budget, on time and without any serious problems the moment
it was turned on. The system enjoys a 100% use by all OCA Officers. The success
of OCAMS and the ease with which it was deployed within mission control is due to
the from simulation to implementation methodology.

Acknowledgments

This work was supported by the National Aeronautics and Space Administration, in partic-
ular by the Mission Operations Directored (MOD) of NASA Johnson Space Center and the
Intelligent Sciences Division at NASA Ames Research Center. We would like to thank the
OCA team at NASA JSC for their support and acceptance of our approach and of the OCAMS
system. Brahms has been funded by NASA, the former NYNEX corporation (now Verizon),



CONCLUSION 41

and the former Institute of Research on Learning. Last, but not least, we thank all those who
have been part of the Brahms development team over the last 16 years.

REFERENCES

1. H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-Centered
Systems. Morgan Kaufmann Publishers, San Francisco, CA, 1998.

2. R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14–23, 1986.

3. B. G. Buchanan and E. H. Shortliffe. Rule-based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley,
1984.

4. G. Button and R. Harper. The relevance of ’work-practice’ for design. Computer
Supported Cooperative Work, 1996(4):263–280, 1996.

5. J. M. Carroll. HCI Models, Theories, and Frameworks: Toward a Multidisci-
plinary Science. Morgan Kaufmann, 2003.

6. P. Checkland and J. Scholes. Soft Systems Methodology in Action. John Wiley
& Sons Ltd., Chicester, England., 1990.

7. W. Clancey, P. Sachs, M. Sierhuis, and R. v. Hoof. Brahms: Simulating practice
for work systems design. International Journal on Human-Computer Studies,
49:831–865, 1998.

8. W. J. Clancey. Simulating activities: Relating motives, deliberation, and attentive
coordination. Cognitive Systems Research, 3(3):471–499, 2002.

9. W. J. Clancey. Observation of work practices in natural settings. In K. A. Eric-
sson, N. Charness, P. J. Feltovich, and R. R. Hoffman, editors, The Cambridge
handbook of expertise and expert performance, pages 127–146. Cambridge
University Press, 2006.

10. T. H. Davenport. Process Innovation: Reengineering Work Through Information
Technology. Harvard Business Press, 1993.

11. T. H. Davenport. The fad that forgot people. Fast Company, 1995(1), November
1995 1995.

12. P. Ehn. Work-Oriented Design of Computer Artifacts (2nd Edition). Lawrence
Erlbaum Associates, Hillsdale, NJ., 1989.

13. F. E. Emery and E. Trist. Socio-technical systems. In C. Churchman, editor,
Management Sciences, Models and Techniques. Pergamon, London, 1960.



42 ORGANIZATION AND WORK SYSTEMS DESIGN AND ENGINEERING

14. Y. Engeström. Expansive visibilization of work: An activity-theoretical perspec-
tive. Computer Supported Cooperative Work, 8:63–93, 1999.

15. Y. Engeström. Activity theory as a framework for analyzing and redesigning
work. Ergonomics, 43(7):960–974, 2000.

16. FIPA. Fipa communicative act library specification, 2002.

17. J. Greenbaum and M. Kyng, editors. Design at Work: Cooperative design of
computer systems. Lawrence Erlbaum, Hillsdale, NJ., 1991.

18. P. Ehn. Work-Oriented Design of Computer Artifacts (2nd Edition). Lawrence
Erlbaum Associates, Hillsdale, NJ., 1989.

19. R. Kling and S. L. Star. Human centered systems in the perspective of organiza-
tional and social informatics. Computers and Society, 28(1):22–29, 1998.

20. J. Lave. Cognition in Practice. Cambridge University Press, Cambridge, UK,
1988.

21. A. N. Leont’ev. Activity, Consciousness and Personality. Prentice-Hall, Engle-
wood Cliffs, NJ, 1978.

22. M. Luck and L. Padgham, editors. Agent-Oriented Software Engineering VIII:
8th International Workshop, AOSE 2007. Springer, Honolulu, HI, 2008.

23. G. H. Mead. Mind, Self, and Society; From the standpoint of a social behaviorist.
University of Chicago Press, Chicago, IL., 1934.

24. B. A. Nardi, editor. Context and Consciousness: Activity Theory and Human-
Computer Interaction. The MIT Press, Cambridge, MA, 1996.

25. M. Polanyi. The Tacit Dimension. Peter Smith, Magnolia, MA, 1983.

26. J. Rasmussen, A. M. Pejtersen, and L. P. Goodstein. Cognitive Systems Engi-
neering. 1994.

31. D. Schön. The Reflective Practitioner: How Professionals Think in Action.
Basic Books, 1982.

28. R. Searle, John. Speech Acts. Cambridge University Press, Cambridge, UK,
1969.

29. R. Searle, John. A taxonomy of illocutionary acts. In K. Gunderson, editor,
Language, Mind, and Knowledge, volume 1-29, pages 344–369. University of
Minnesota, Minneapolis, 1975.

30. P. M. Senge. The Fifth Discipline: The Art and Practice of the Learning
Organization. Random House, Inc., 2006.



43

31. D. Schön. The Reflective Practitioner: How Professionals Think in Action.
Basic Books, 1982.

32. M. Sierhuis. “it’s not just goals all the way down” – “it’s activities all the way
down”. In G. M. P. O’Hare, A. Ricci, M. J. O’Grady, and O. Dikenelli, editors,
Engineering Societies in the Agents World VII, 7th International, Workshop,
ESAW 2006, Dublin, Ireland, September 6-8, 2006, Revised Selected and Invited
Papers, volume LNCS 4457/2007 of Lecture Notes in Computer Science, pages
1–24. Springer, Dublin, Ireland, 2007.

33. M. Sierhuis, W. J. Clancey, and R. J. v. Hoof. Brahms: An agent-oriented
language for work practice simulation and multi-agent systems development. In
Rafael H. Bordini, Mehdi Dastani, J. Dix, Amal El Fallah-Seghrouchni editors,
Multi-Agent Programming, 2nd Edition. Springer, To Appear.

34. J. D. Sterman. Business dynamics: systems thinking and modeling for a complex
world. Irwin/McGraw-Hill, 2000.

35. L. A. Suchman. Plans and Situated Action: The Problem of Human Machine
Communication. Cambridge University Press, Cambridge, MA, 1987.

36. K. J. Vicente. Cognitive Work Analysis: Toward Safe, Productive, and Healthy
Computer-based Work. Lawrence Erlbaum Associates, 1999.

37. L. S. Vygotsky. Mind in Society: The Development of Higher Psychological
Processes. Harvard University Press, Cambridge, MA, 1978.

38. E. Wenger. Communities of Practice; Learning, meaning, and identity. Learn-
ing in doing: Social, cognitive and computational perspectives. Cambridge
University Press, Cambridge, MA, 1999.


