
Formal Verification of Human-Robot Teamwork

Richard Stockera, Louise A. Dennisa, Clare Dixona,∗, Michael Fishera

aDepartment of Computer Science, University of Liverpool, UK

Abstract

Close collaboration between humans and robots is likely to become increasingly im-
portant in scientific, industrial and domestic settings; for example, pilots and autopilots
that collaborate together to fly a plane, teams of robot and human builders working
on construction projects, and the introduction of autonomous vehicles on public roads.
However, before robots can be fully utilised in such situations, a comprehensive anal-
ysis of their safety is necessary. The focus of our work is on developing formal verifi-
cation techniques to analyse key aspects, such as safety, of collaborative activities be-
tween humans and robots. We use Brahms, a human-agent-robot teamwork modelling
language, to describe such teamwork and develop a formal operational semantics al-
lowing us to translate this into the input language of a standard model checker in order
to formally verify these Brahms models. To illustrate our approach we define, translate
and verify a hospital scenario in which multiple personal digital assistant agents and
robotic helpers assist human doctors and human nurses.

Keywords: teamwork, human-robot interaction, formal verification

1. Introduction

Autonomous systems will soon be used in many areas of everyday life such as in indus-
try, in the home, and in scientific settings. Consequently, there is an increasing need for
such systems to interact and cooperate with humans. These systems are now expanding
away from simple sensors and embedded hardware to more pervasive machines such
as the automated vacuum cleaners commonly available. More sophisticated examples
we can expect in the future include manufacturing robots developed to assist humans
in the construction of complex artifacts [21], and robot ‘helpers’ to assist the elderly
and disabled in their homes [24, 25]. This cooperation and interaction between humans
and robots always raises questions over whether the teamwork between the humans and
robots can achieve the desired goals, while ensuring that no bad outcome ever occurs,
for example, the human’s safety is never compromised. Therefore it is vital to evaluate

∗Corresponding author, Tel: +44 151 795 4280, Fax: +44 151 795 4235
Email addresses: R.S.Stocker@liverpool.ac.uk (Richard Stocker),

L.A.Dennis@liverpool.ac.uk (Louise A. Dennis), CLDixon@liverpool.ac.uk (Clare
Dixon), MFisher@liverpool.ac.uk (Michael Fisher)

Preprint submitted to Elsevier April 20, 2015

and analyse such scenarios to ensure that the desired goals are indeed achievable and
that safety is maintained. The challenges involved with such analyses are:

• to accurately describe high-level human and robot behaviours;

• to exhaustively assess all possible interactions within the team;

• and to carry this analysis out in a correct and (at least partly) effective way.

In this paper, we describe our approach which aims to match a set of requirements
(possibly involving safety, capabilities, or interactions) against scenarios involving col-
laborations between humans, robots, and software agents.

To address the first challenge above we need a way of representing human and
robot behaviours and look to existing representations to do this. Our aim is to analyse
high level behaviours rather than low level interactions. Many programming languages
have been developed to describe the interactions of multiple agents including many
that describe agents in terms of mental states and attitudes, the so-called Belief-Desire-
Intention (BDI) style of programming language, for example [18, 36, 6]. However,
we preferred to focus on a framework that had been explicitly developed and used for
human-robot teamwork. This led us to the Brahms framework [28]. Brahms is a sim-
ulation/modelling language (rather than a programming language) in which complex
human-agent work patterns can be described and is based on the concept of rational
agents. The system has been extensively and successfully used within NASA for the
modelling of astronaut-robot planetary exploration teams [9, 30, 29]. Thus, we utilise
Brahms to capture the key interactions and behaviours of any human-robot-agent sce-
nario and assume that informal requirements (or required properties of the scenario)
have been provided through previous analysis/modelling.

We will employ formal verification, in particular model checking, to ensure that
high-level requirements are satisfied by the Brahms scenarios in question. Model
checking [11, 19] is an automated, algorithmic technique that takes as input a model of
the system together with the formal requirements and checks that these requirements
are satisfied on all paths through the model. We provide a formal semantics for Brahms
and, using this, develop a tool that translates Brahms models into an intermediate rep-
resentation that can be translated into input to a number of model checkers. Our tool
currently translates this intermediate representation into Promela, the input language
of the model checker Spin [19].

Figure 1 demonstrates our process for translating and verifying a Brahms model of
a human-agent-robot scenario. Here, the Brahms model is interpreted using the for-
mal semantics we developed in [34] to generate a Java representation of the semantic
structures relevant to this scenario. These Java data structures can then be used to
generate Promela processes for each human, robot, and agent in the scenario which
are suitable for input into the Spin model checker [19]. We also translate our require-
ments into Promela properties, and then are able to apply the Spin model checker
to verify that the required properties hold. This tool thus provides us with a mechanism
for formally verifying properties of human-agent-robot teamwork scenarios modelled
using Brahms.

The contribution of the work is to provide a viable tool for verifying human agent
teamwork via the Brahms language. Specifically our contribution involves:

2

Figure 1: The overall translation and verification process for Brahms.

• the first formal semantics for Brahms;

• the first formal verification tool for the Brahms simulation framework;

• the first formal verification tool specifically for human-agent teamwork;

• a case study demonstrating the system involving the formal verification team-
work between humans, robots and agents in a hospital scenario.

A subset of the formal semantics rules and their operation was illustrated using a sim-
ple scenario in [34]. Here we provide the complete set of rules for the formal semantics
(Appendix A). In [33] we provided a case study relating to a robot assistant in a smart
house and used it to verify some simple examples. Here we provide, and formally ver-
ify, a larger, more complex, health-care scenario set in a hospital, demonstrating more
features of Brahms, involving more agents, and requiring more teamwork. Full details
of the approach can be found in [32]. The significance of the work is that we are now
able to formally analyse and assess key high-level requirements of autonomous sys-
tems such as robotic assistants that are being developed to work in teams with humans
in the workplace or at home.

The rest of this paper describes our framework and demonstrates its use on a spe-
cific hospital scenario, where a helper robot and digital agent assistants work together
with a number of nurses and a doctor to care for patients. In Section 2 we provide
background to Brahms and the model checker Spin. In Section 3 we describe the
Digital Nurse Scenario we use to demonstrate the approach. Section 4 describes the
Brahms Formal Semantics used as a basis for the formal verification and Section 5 pro-
vides details of the tool that translates from Brahms models to the input to the Spin
model checker via an intermediate representation. Section 6 discusses the correctness
of the system and Section 7 gives details of the verification performed on the Digital
Nurse scenario. Related work is presented in Section 8 and conclusions are provided
in Section 9.

3

2. Background

We first provide some background concerning the variety of teamwork we consider,
the Brahms modelling language and then the Spin model checker.

2.1. Human-Robot Teamwork

Teamwork is a research topic in itself, see for example [15, 27], with differing
views about what constitutes teamwork. The need for human-agent or human-robot
teamwork occurs in many applications, for example, pervasive systems operating to-
gether with humans in health care and at home; collaborative manufacturing; simu-
lation based training; evacuation during emergencies; gamebots and players in video
games and space related scenarios with astronauts collaborating with robots or agents.
In such scenarios humans and agents/robots need to work together to form a team in
order to effectively complete their tasks, but there are many challenges in achieving
this. Techniques for overcoming theses challenges include the notions of joint activity
[7] and joint intentions [12] (plans or actions to achieve goals), and team plans [8]. We
could consider the views of teamwork on a sliding scale; one extreme being a multi-
agent system where agents’ individual goals are closely linked (such as two individuals
sweeping floors in two separate branches of a company), and the opposite end of the
spectrum where the agents are involved in joint actions and with joint intentions. Our
work, determined by the representation of teamwork in Brahms, lies between these
two extremes. We model teamwork that involves communication and interactions to
achieve goals of mutual interest, such as robotic helpers where the robots’ goals are to
help the humans, and the humans’ goals are to complete a task. Here we consider a
health care scenario where a robot assists humans with tasks such as turning patients
and digital assistants help with scheduling tasks and sending reminders.

2.2. Brahms

Brahms is a multi-agent modelling, simulation and development environment de-
vised by Sierhuis [28] and subsequently developed at NASA Ames Research Center.
Brahms is designed to model both human and robotic activity using rational agents.
Rational agents characterise autonomous entities, able to make their own choices and
carry out actions in a rational and explainable way [37]. As Brahms was developed in
order to represent human activities in real-world contexts, it also allows the represen-
tation of artifacts, data, and concepts in the form of classes and objects. Both agents,
representing autonomous entities, and objects can be located in a model of the world
giving agents the ability to detect both objects and other agents, to have beliefs about
the objects/agents, and to move between locations. When Brahms executes, it produces
a simulation of the humans and agents interacting within some model. Among other
things it tracks the time taken over tasks.

For a more detailed description of the Brahms language we refer the reader to [28,
29], but here we highlight the key aspects of the language. We provide examples taken
from our Digital Nurse scenario (see Section 3) which models aspects of a hospital
situation where nurses are equipped with digital assistants.

4

Agents and Objects. Agents and objects are at the core of every Brahms simulation.
Agents model autonomous entities and objects model inanimate objects and sensors,
etc. Objects are similar to agents, however they react to external factors while agents
react based on their internal beliefs. In the Digital Nurse scenario, examples of agents
are particular doctors, nurses and digital nurses for example Doctor one, Nurse one,
Digital Nurse one and Patient one, while examples of objects are Monitor (a
patient monitor) and Campanile Clock (a clock).

Groups and Classes. Groups in Brahms form the hierarchical structure for agents,
where agents can be members of groups and groups can also be members of other
groups. Groups also provide a template for an agent, so if an agent is a member of a
group then it will inherit all the beliefs of the group. It also inherits the group work-
frames and thoughtframes which govern the behaviour of an agent based on its beliefs.
In the Digital Nurse scenario examples of groups are Doctors, Nurse, Digital Nurse

and Patient.

Attributes, Relations, Beliefs and Facts. Agents and objects can have their own at-
tributes, relations and beliefs. Attributes are characteristics of the agent such as
a nurse agent having Boolean attributes turnDuty, foodDuty and break to de-
note that the nurse is assigned to turn the patients, to feed patients, and is hav-
ing a break, respectively. Relations define links between agents and objects, for
example “Digital Nurse hasDN” states that the current agent has a relationship
called ‘hasDN’ with a Digital Nurse agent (in this case, the current agent has
a particular digital organiser to assist with nursing duties). Beliefs and facts are
tied to attributes and relations, and every belief or fact has to contain either an at-
tribute or a relation, for example an agent could have the belief “current hasDN

Digital Nurse One” which represents that the current agent has a digital nurse as-
sistant called ‘Digital Nurse One’. Beliefs and facts differ in that facts represent the
real value the attribute or relation has in the simulation, while beliefs represent what
the agent believes this value to be.

Geography. In Brahms the agent’s world is described using a ‘geography’ model. Here
the world is organised hierarchically, where an area can be conceptual (an areaDef, for
example hospital, room or bed) or a physical location (area, for example wardOne,
staffRoom, bedTwo etc). These area and areaDef descriptions are used to form a
hierarchy where: an area can be an instanceof an areaDef ; an areaDef can extend
another areaDef ; and an area can be partof another area (and the distance between
two areas is described using a path). For example area bedTwo instanceof bed

partof wardOne denotes that bedTwo is a bed that is in wardOne. Agents are as-
signed an initial location within the geography, for example, location:staffRoom
denotes that the agent is initially located in the staffRoom.

Workframes and Thoughtframes. Workframes and Thoughtframes govern how agents,
objects and the world vary over time. A workframe contains a sequence of activities/ac-
tions and belief updates which the agent/object will perform, whereas a thoughtframe
only contains sequences of belief updates; a thoughtframe is therefore a restricted

5

workframe which is unable to undertake activities. Workframes can detect (using de-
tectables) changes in the environment, update an agent’s beliefs accordingly and then
decide whether or not to continue executing. Workframes represent the work processes
involved in completing a task and thoughtframes represent the reasoning process car-
ried out on the current beliefs. Example workframes are provided in Figures 2 and 3.

Executing Workframes and Thoughtframes: Activities and Concludes. Agents are able
to perform activities and concludes (belief/fact updates). These are executed via work-
frames and thoughtframes. Workframes and thoughtframes are very similar. Crucially
thoughtframes can only update beliefs. They do not update facts nor perform activities.
There are three main types of activity: primitive, move, and communication.

Primitive activities These describe basic actions. Since Brahms is a simulation rather
than execution framework, primitive activities have no effect beyond progressing
the simulation time. The name assigned to the activity explains what the agent
was doing, e.g., the primitive activity haveBreak() has a duration of 1800 time
units and the name implies that the agent was having a break. Representing the
effect of the activity would require a ‘conclude’ to update the agent’s beliefs and
overall facts (e.g., by setting the attribute break to true just before the activity
starts and false after it completes).

Move activities Move activities are performed to change an agent’s location. As
with primitive activities they are assigned a duration, which is calculated from
the Brahms geography model. When a move activity is performed, several
things occur: the clock that tracks how much time has elapsed is advanced; the
agent’s location is changed appropriately; all other agents in the previous loca-
tion have their beliefs about the agent’s location deleted; and the all the agents
in the new location recognise this agent has joined them. An example is move
moveToBed(bed b) as part of the Nurse agent which results in the location of
the nurse being updated to b.

Communication activities These are used for passing messages between agents. For
example communicate requestBreakfastChoice(Patient pat) in the
Nurse agent involves a communication between the nurse and a patient about
their breakfast food choice. Again, these communications are assigned a dura-
tion and, once this duration is over, the beliefs of the other agents are updated
corresponding to this communication. However, an agent can only communicate
beliefs it already holds.

Detectables. Detectables occur within workframes and can only be executed if their
workframe is currently active. When a detectable is executed it imports the fact it
“detected” into the agent’s belief base and then undertakes one of:

1. abort - deletes all elements from the workframe’s remaining stack of deeds (ac-
tivities and belief or fact updates to be carried out);

2. continue - carries on executing the workframe;
3. complete - deletes only activities from the workframe’s remaining stack of deeds

(leaving belief or fact updates to be carried out); or

6

4. impasse - suspends the workframe until the detectable’s guard is no longer satis-
fied.

Variables. These allow varieties of quantification within Brahms. If there are multiple
objects or agents which can match the specifications in a guard condition, then the
variable can either perform: forone — select one of them to work on; foreach — work
on all, one after another; or collectall — work on all at once. An example from our
scenario is collectall(Patient) pat; where the variable pat is used to range
over all the Patient agents.

A Brahms simulation contains a set of agents (representing robots, humans or actual
agents) and a scheduling system which manages a clock recording global time in the
simulation. Since agent actions have durations, the scheduler will examine each agent
to see how much longer any action the agent is performing will take and then advance
the clock to the next significant point in time, typically when the agent with the shortest
duration action finishes. By doing this the scheduler maintains synchronicity through-
out a simulation, ensuring that the order in which the agents execute does not affect the
outcome of the simulation.

Finally, we note that Brahms has now moved to the industrial arena and is able
to describe complex human-agent-robot teamwork. In particular, it has been used by
NASA in describing and analysing prospective astronaut-robot teamwork on Mars [9].

2.3. Formal Verification, Promela and Spin

Formal verification represents a family of techniques aimed at assessing whether a
system satisfies its specification. We particularly use a fully automated, algorithmic
technique known as model checking [11]. A model checker takes a description of the
system together with some requirement expressed in a formal logic. The model checker
exhaustively checks the formal requirement against all paths through the system. If a
path is found in which the property does not hold then a trace of that path is provided.

In this paper we use the Spin model checker [19]. Promela (Process/Protocol
Meta Language), the input language for Spin, was designed to be a simple, high-level,
multi-process language. Processes are a key part of Promela, being asynchronous
by default. Promela provides three basic control flow constructs: case selection;
repetition; and unconditional jump.

Spin itself is an on-the-fly reachability analysis system [19]. It accepts specifica-
tions in the form of linear temporal logic properties, which are translated into Büchi
automata — finite automata over infinite input sequences [16]. Spin then examines all
possible runs through the Promela program, running the Büchi automaton in parallel
in order to assess whether the temporal requirements are satisfied [17].

3. Digital Nurses: An Example of Brahms Model

This scenario was developed to demonstrate and verify increasingly complex human-
agent teamwork. Additional non-determinism is represented through the event of a
heart attack so the protocols in the case study could be tested in an emergency

7

3.1. Overview of Scenario

The Digital Nurse scenario was created to have multiple agents (some virtual) and
humans working together as part of a team. The scenario involves two nurses, one
doctor, three digital nurses, one robot and a patient monitor. The goal of the scenario is
to take care of five patients who need to be given food, water, medicine and be turned
in their beds. Additionally, certain patients are at risk of a heart attack, which provides
an emergency situation within the scenario. The nurses have the duty of looking after
the patients, however only one nurse at a time looks after the patients. The other nurse
continues duties which are not considered as part of the simulation; this (secondary)
nurse covers the active nurse in the simulation during the (primary) nurse’s break. The
nurse will have a schedule to work to: turning the patients when needed, administering
medication, responding to emergencies and feeding the patients. The digital nurse
partly acts as a scheduler for the nurses, reminding them when to perform their duties
and informing them of emergencies. The doctor in the scenario checks the patients,
prescribes medication and responds to emergencies. The robot assists the doctor and
nurses: it aids the nurses in turning the patients, refills patient’s water jugs, fetches the
patient’s medication, fetches the patient’s food and responds to emergencies.

3.2. Brahms Representation

The scenario is modelled in Brahms using twelve Brahms agents and two Brahms
objects. The agents are: two nurses (modelled as humans), one doctor (modelled as a
human), three digital nurses (one for each nurse, and one for the doctor, all modelled
as software agents), five patients (modelled as humans) and one robot (modelled as a
hardware/robotic agent). The objects are: a monitor to monitor the patients and a clock.

The patients drink water every so often, make a breakfast choice when prompted
and can, unexpectedly, suffer a heart attack. The patient will only recover from a heart
attack if the doctor, robot and a nurse all respond to treat them.

The Monitor object keeps track of all the agents. It can detect when an pa-
tient’s water supply is low and communicates this to the appropriate digital nurse. The
Monitor also checks the patients’ vital signs and so knows when one has a heart at-
tack, dies or is no longer having a heart attack. The Monitor is also used for counting
durations e.g., it notes when a heart attack occurs and increments a counter until the
patient is either dead or has been resuscitated.

One of the nurses (Nurse one) is assigned the responsibility of turning the pa-
tients but cannot do so until the robot is there to assist. We use the implementation
of “turning the patients” as an example of teamwork in this model and illustrate how
this is represented in Brahms. To do this two workframes are used: ‘wf turnOne’
(see Figure 2) and ‘wf turnTwo’ (see Figure 3). Workframe wf turnOne iden-
tifies a patient and prepares them for turning by assembling the appropriate re-
sources. Once this has happened then wf turnTwo is executed to actually turn the
patient. The workframe‘wf turnOne’ has two quantifiers, forone(Patient) pat

and forone(bed) b, and these variables find a patient and a bed that match the
guard conditions and assign them to the variables pat and b. The guard conditions
are specified using the when token, which ensures that the nurse must believe the
time is 8 (current.perceivedTime = 8) and that the nurse in question is on turn

8

duty (current.turnDuty = true). We refer to the other guard conditions as “bind-
ing conditions”, i.e., they are used to bind objects/agents to this workframe. These
specify that the agent selected requires turning (pat.needTurning = true), has
not already been turned (pat.turned = false), has not been prepared for turning
(pat.readyToBeTurned = false), or that the bed is in the location of the patient
selected (pat.location = b). If there are no agents that meet all these conditions
then the workframe is not flagged as ‘active’. If the workframe is selected for execution
then the execution is performed through the activities and concludes in the do section.
Here the nurse:

• performs a move location to the location of bed b first (moveToBed(b));

• concludes that the patient is ready to be turned
(conclude((pat.readyToBeTurned = true)));

• informs the robot which patient is to be turned (patientToTurn(pat));

• waits for the robot to arrive (waitToTurn()); and

• if the robot doesn’t arrive then the nurse concludes that the patient is not ready to
be turned (pat.readyToBeTurned = false), this will then leave the work-
frame open for execution again since the repeat variable is set to true (repeat:
true).

If the robot arrives at the bed while the nurse is waiting then the detectable
waitForRobot will ‘fire’; this is fired when the nurse ‘detects’ the robot’s location is
the same as the patient’s (detect((pat.location = Robot.location))). When
this detectable condition is true the action that is performed is abort, meaning the
workframe will terminate and the conclude (conclude((pat.readyToBeTurned))
= false which indicates that the patient is not actually ready for turning) will not fire.

If workframe wf turnOne is aborted then the workframe wf turnTwo can become
active. Workframe wf turnTwo will be bound to the patient used in wf turnOne by
the readyToBeTurned flag which was set to true in wf turnOne and which appears
in the workframe guard. When executing this workframe a turnPatient() primitive
activity is called to model the nurse turning the patient, a ‘conclude’ is performed so
the nurse believes the patient has been turned, and two other ‘concludes’ are used to
reset the patient’s state.

As well as turning patients, described in detail above, Nurse one responds to re-
suscitate patients when they have had a heart attack, asks patients what they want for
breakfast and places their orders.

The doctor visits patients and decides what medication the patient will have (for
simplicity the medication is just a number, e.g., medication 1, 2 and 3, etc). The doctor
also resuscitates a patient when having a heart attack.

The digital nurse is responsible for informing the nurses and doctor of events and
passing on messages, and so has workframes:

1. reminding the nurse when it is time for breakfast;
2. sending breakfast orders to the robot;

9

workframe wf_turnOne {
repeat: true;
priority: 1;
variables:
forone(Patient) pat; /* Variable bound to patient that needs turning */
forone(bed) b; /* Variable bound to patient’s location */

detectables: /* Detect if robot is at patient’s location */
detectable waitForRobot {
when(whenever)
detect((pat.location = Robot.location), dc:100)
/*if robot at patient location then abort the workframe*/

then abort; }

/* Following guards represent:
at time point 8
patient has not been turned
flag to determine if wf_turnOne or wf_turnTwo should be executed
patient is one which needs turning
this nurse is responsible for turning patients
identify the location of the patient */

when(
knownval(current.perceivedTime = 8) and
knownval(pat.turned = false) and
knownval(pat.readyToBeTurned = false) and
knownval(pat.needTurning = true) and
knownval(current.turnDuty = true) and
knownval(pat.location = b))

do {
moveToBed(b); /* Move to location identified */
conclude((pat.readyToBeTurned = true)); /* Flag for wf_turnTwo to true */
patientToTurn(pat); /* Inform robot which patient to turn */
waitToTurn(); /* Wait for the robot to arrive */
conclude((pat.readyToBeTurned = false)); }

} /* Robot has not arrived so set wf_turnTwo flag to false */

Figure 2: wf turnOne

workframe wf_turnTwo {
repeat: true;
priority: 1;
variables:

forone(Patient) pat;

/* Guards check that both wf_turnTwo flag is true and
this nurse is responsible for turning patients */

when(knownval(pat.readyToBeTurned = true) and knownval(current.turnDuty = true))
do {

turnPatient(); /* Turn the patients */
conclude((pat.turned = true)); /* Reset all values and flags */
conclude((pat.readyToBeTurned = false));
conclude((pat.timeSinceTurned = 0)); } }

Figure 3: wf turnTwo

10

3. informing the robot of medication that the doctor has prescribed;
4. informing the nurse when it is break time;
5. arranging another nurse to cover a nurse’s break; and
6. informing the nurses and doctor of when a patient has a heart attack.

All the agents have thoughtframes for managing time. The clock object uses a
collectall variable to send the current time to all the agents. Each agent is a member of
a TimeKeepers group which means they will all receive messages from the clock. An
emergency event is provided in the form of a “heart attack”. This is encoded using a
Boolean attribute heartAttackRisk and associated workframe and thoughtframe as
part of the group Patient.

4. Brahms Formal Semantics

Next we describe a formal operational semantics for Brahms which provides the
theoretical basis for our verification. (A summary of this was provided in [34].) The full
formal semantics is set out in Appendix A. A Brahms semantic model is represented
as a 5-tuple:

〈Ags, agi, Bξ, F, Tξ〉

Where Ags is the set of all agents, agi is the agent currently under consideration, Bξ is
the belief base of the system (used to synchronise the agents, e.g. agent i’s next event
finishes in 1000 seconds), F is the set of facts in the environment (e.g. this nurse is
using Digital Nurse One) and Tξ is the current time of the system.

The agents (Ags, and agi), in turn, have a 9-tuple representation:

〈agi, T ,W, stage,B, F, T,TF ,WF 〉

Here agi is the identification of the agent; T , the current thoughtframe;W , the current
workframe; stage, the current stage of the agent’s reasoning cycle; B, the agent’s
beliefs; F , the set of facts about the world; T , the agent’s internal time; TF the agent’s
set of thoughtframes; and WF , the agent’s set of workframes. Here stage controls
which rules in the operational semantics are currently applicable to the agent or if the
agent is in a ‘finish’ (fin) or ‘idle’ (idle) stage.

The (operational) semantics is then represented as a set of transition rules of the
form

〈StartingTuple〉 ActionsPerformed−−−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Here, ‘ConditionsRequiredForActions’ refers to conditions which must hold before
this rule can be applied, while ‘ActionsPerformed ’ represents changes to the agent,
object or system state which, for presentational reasons, can not be easily represented
in the resulting tuple. Finally, it is assumed that all agents and objects can see, and
access, everything in the overall system’s tuple, e.g. Tξ.

The semantics is split into two groups of rules: the first group concerns the global
system and represents the functioning of the scheduler; the other group acts upon in-
dividual agents. Rules for the scheduler act as global arbiters, instructing agents when
to start, suspend, or terminate. Rules for the individual agents choose activities and

11

update beliefs, etc. An agent first processes thoughtframes, then detectables (both of
which may update the beliefs), and then workframes which may initiate activities. For
example, there are rules informing an agent how to select a thoughtframe based on
whether its beliefs match the thoughtframe guard conditions and whether the thought-
frame’s priority is sufficiently high. The rules governing activities communicate with
the system to inform it of the activity’s duration. When no agent can apply any more
operational rules, control returns to the scheduler which examines all the agents’ activi-
ties to determine which will conclude first and at what time it will finish. The scheduler
then moves the global (simulation) clock forward accordingly, and hands control to the
rules governing the behaviour of the individual agents once more.

Figure 4 shows a simplified flow of control for the semantic rules for the scheduler
while Figure 5 shows a simplified flow of the semantics for an agent. In Figure 5 the
rectangles labelled A6, A11, A14 and A15 are shaded to represent the non-determinism
in the system. The scheduler, in Figure 4, starts off by initialising everything, for
example, agents, objects, etc., in state S1. During this initialisation the scheduler tells
the agents to begin execution. In S2 the scheduler waits for a response from all the
agents about the duration of their activity.

The agents, in Figure 5, start off by moving into A1 where they initialise them-
selves, then move on to A2 where they then wait for the scheduler. Once the agents
have received the command from the scheduler to start executing they move into state
A4 where they generate a set containing all active thoughtframes. The agent then cycles
through states A4, A5 and A6 where it executes all thoughtframes in the set and checks
for more thoughtframes to become active until no more thoughtframes are active. In
box A6 a thoughtframe is chosen with the highest priority. If several thoughtframes
share the highest priority then one is chosen at random. In A7 a set of all active work-
frames is selected. If this set is empty then the agent moves to A9 and flags itself as idle.
If there are active workframes then the agent moves to state A11 where it randomly se-
lects one of these workframes. In A10 if the workframe deed stack is empty then the
agent is directed back to state A4 to process its thoughtframes. If the workframe deed
stack is not empty then it pops the top element off the stack in A12. A13 then checks
if the event is an ‘activity’ or a ‘conclude’. If the event is a ‘conclude’ then the agent
moves to state A14. Because belief and fact updates are associated with certainty values
two random numbers are generated. A14A compares the first random number against
the conclude’s fact certainty. If the fact certainty is less than the random number then
the fact is updated in A14B; if it is greater the fact is not updated. The agent then moves
to A14C where the second random number is compared to the conclude’s belief cer-
tainty and the relevant belief may be updated. The agent then returns to A10 to check
if there are more elements left on the workframe deed stack. If the event is an activity
then the agent moves to state A15 where it selects a duration for this activity between
the minimum and maximum value The agent then sends this value to the scheduler in
state A16 and waits for a response from the scheduler. Once the scheduler receives all
durations from all the agents it moves to state S3 and calculates the shortest duration.
If all the agents had found no active workframes in state A8 and moved to state A9
then they would all have sent the scheduler a duration of -1, if this is the case then the
scheduler will be directed to states S6 and S7 from state S4 to terminate the simulation.
If the scheduler did find a duration greater than -1 in S4 then it moves its clock forward

12

Figure 4: Overview of the Scheduler’s Semantics

13

Figure 5: Overview of a Brahms Agent’s Semantics

14

by this duration calculated in state S3 and moves back to waiting for a response from
all the agents in state S2. The agents will now have received a duration from the sched-
uler and will move from A16 into A18, if the scheduler had sent a -1 for the duration
then they will move to A19 and terminate. When the scheduler sends a duration greater
than -1 the agents move into states A20 and then A21 to update their clocks and deduct
time from their activities, they are then directed back to state A10 to continue popping
events off the deed stack. Once the deed stack becomes empty they will be directed
from state A10 to A4 to start processing thoughtframes and eventually move onto the
next workframe.

5. Brahms Verification

Here we show how the formal semantics of Brahms can be used to generate input to
a model checker. In particular, we develop an intermediate representation from which
we can potentially generate input to a variety of different model checkers.

5.1. Our Approach

We decided to use Java to create an intermediate model of the Brahms program
prior to translation into the input language of any model checker. An intermediate
representation of the formal model in Java opens up the option of creating a number
of translators into the input languages of a variety of model checkers. This would
allow different model checking formalisms to be used; potentially allowing us to check
probabilistic and epistemic properties as well as purely temporal ones.

The initial target chosen was the Spin model checker as this is a widely used,
effective and stable system. In addition, Spin’s input language, Promela, is a higher
level language than most other model checker input languages, making it easier to
represent the Brahms agents/objects. Spin also has the ability to run Promela code
as a simulation, making it possible to compare the output of the Promela version with
the output of the Brahms simulation.

Figure 1 describes our process for verifying Brahms scenarios and highlights the
potential for flexible translation to many different model checkers.

5.2. Java Representation

The Java classes developed capture the structural aspects of the Brahms mod-
els required by the operational semantics of Brahms. This is a syntactic transfor-
mation of the Brahms model and its underlying elements into Java data structures.
The Brahms syntax is stored in the following classes representing different aspects of
Brahms: MultiAgentSystem; agents; groups; classes; objects; workframes; thought-
frames; attributes; relations; beliefs; facts; activities; events; concludes; communica-
tion messages; detectables; guard conditions; variables; geography: areas; geogra-
phy: locations; geography: paths; and geography: path lengths. The Java class
MultiAgentSystem is used to represent the 5-tuple from the operational semantics
for Brahms models. The structure and relationship between the Java classes repre-
sents the Brahms syntax as required by the operational syntax. For example the agent
class represents the 9-tuple from the operational semantics for agents contains instance

15

variables relating to (sets of) beliefs, facts workframes and thoughtframes etc. A parser
was created to read Brahms code and export the data from the simulation into the Java
data structures. The main class reads in the Brahms code and then executes the parser.
The parser uses the MultiAgentSystem class as the base class which instantiates all
the other classes and begins the translation process.

The dynamic aspects of the operational semantics, for example, the current beliefs
and facts of an agent, the current agent under consideration, or the time cannot be
modelled at this stage as these issues depend on the execution. The code for parser and
the twenty-two developed classes can be found in [32].

5.3. Promela Representation

Although Promela is an appropriate input language for model checking it has
more restrictive data types and control structures than a general purpose programming
language such as Java. As such, providing a one to one correspondence between the
Java data structures and associated rules in the operational semantics and Promela
was not possible. Arrays are the main data structure available in Promela and so
an array-based representation was required for most of the Java data structures. The
intermediate representation was static and so did not implement the transitions in our
semantics, however these did need to be implemented in the translation to Promela.
These were implemented using if statements and loops. We provide an example of the
translation the agent data structures into Promela processes below.

The Promela translation has a separate process (termed proctype in Promela)
for each agent named proc followed by the agent’s name (e.g.,proc Nurse one).
The components of the 9-tuple in the Brahms semantics that represent an agent are
primarily represented by arrays. For instance, the agent’s current workframe is rep-
resented as a one-dimensional array and treated as a stack. The array is labelled
wf stack followed by the agent’s name, e.g., wf stackNurse one.

Index Description
0 Workframe ID number
1 Boolean guard condition, e.g.,1 = workframe is active
2 Priority of the workframe
3 Repeat, e.g.,0 = delete, 3 = always
4 Boolean to flag a communication or move activity
5 Boolean to flag the workframe is in impasse
6 Last deed on stack

.

.
i Top deed on stack

Figure 6: Array structure for workframes

For an example, see Figure 6. The first six indices of the array (elements 0-5) are
used to store the workframe header data. Below the header information are a stack of
deeds which may represent either belief updates or activities; see Figure 6. The current
thoughtframe is represented in a similar fashion.

16

Beliefs and facts in Brahms are tied to the attributes and relations of an agent, e.g.,
the agent Nurse one believes Patient one needs turning (needTuring = true).
To model this in Promela every agent is assigned a belief about every attribute, even
if it does not own that attribute. This is modelled in Promela using a one dimensional
array for each attribute. Facts are modelled in a similar way.

Sets of thoughtframes or workframes for an agent are two dimensional arrays. One
dimension captures the details of a workframe (or thoughtframe) as shown in Figure 6
and the other dimension shows the workframes for that agent. Relationships between
agents or objects are also modelled using two dimensional arrays.

6. Correctness Issues

We claim to verify Brahms program, however we are not using the actual Brahms
interpreter as part of our verification but are instead converting Brahms programs first
into an intermediate Java representation and then into Promela code. This naturally
raises the question of whether a program that has been declared correct by our system
would actually behave correctly if executed in the existing Brahms simulation engine.

There are several aspects to this question: the correctness of our Brahms semantics;
the correctness of our translation from the Brahms semantics into Java data structures;
and the correctness of the translation into Promela. These are considered below.

6.1. Correctness of the Brahms Semantics

As mentioned previously we first had to develop a (first) formal semantics for
Brahms. For confidentiality reasons, we had no access to the Brahms implementation
code, so the development of the formal semantics was carried out by a combination of
reading existing Brahms documentation, and experimentation using Brahms to observe
the behaviour of various Brahms constructs in the simulator. This was carried out in in
collaboration with the designer of Brahms and the accuracy of the resulting semantics
was confirmed by NASA engineers who used Brahms regularly. Additionally the se-
mantics we developed were used by NASA in their own work [20], further confirming
their accuracy. Given that it was impossible to access the actual implemented seman-
tics of the Brahms language this approach brings us as close as feasibly possible to an
accurate semantics. We note that, as we consulted with NASA engineers, our formal
semantics at least corresponds to the intended semantics for Brahms. Furthermore,
given that the primary purpose of Brahms is to model situations in order to assess their
correctness we have, at the very least, provided a semantics for an agent-based mod-
elling language which serves the same purpose.

To summarise, the semantics have been seen and closely examined by those who
know the framework the best and know what it was designed to do. They have studied
the rules and also used them in the development of their own verification techniques,
thus confirming that they accurately represent Brahms’ intended purpose.

6.2. Correctness of the Translation into Java Data Structures and then into Promela

As mentioned in Section 5.2 the translation takes the components of the formal
semantics and translates them into Java data structures. The Java classes closely

17

model the key aspects of the Brahms language capturing the elements of the Brahms se-
mantics. The two main parts are the translation of the 5-tuple representing Brahms se-
mantics into the MultiAgentSystem class and the translation of the 9-tuple represent-
ing agents into the agent class. These classes were then translated into a Promela
model. No formal validation was performed at these points. However the code was
reviewed in order to provide an informal justification of correctness.

6.3. Correctness of the Final System
In order to assess the overall correctness of our system, we performed a direct

comparison between the outputs of the Promela model against the existing Brahms
framework. The Spin model checker can execute Promela code in simulation as
using it to create a model for model checking. This simulation mode was used to view
the updates of beliefs and facts so a comparison could be made when the same Brahms
simulation was run in the Brahms framework. As each transition rule in the opera-
tional semantics was implemented, several tests were run using Brahms programs that
required the additional functionality supplied by the rule. The observable behaviour of
these programs (updates and activities) was compared to their behaviour in the Brahms
framework and the rule and/or system code adjusted if necessary to ensure identical
behaviour.

Second, although we intend the system to verify the construction of Brahms mod-
els, the model-checking process can also be used to validate the implementation of
the system. If a property that is expected to hold can not be verified using Spin (or
conversely if a property that is not expected to hold can be verified) then this result
can be examined and an explanation sought for the discrepancy. In the early stages of
the system development, this process revealed issues with the system implementation
rather than with the Brahms model itself. As the implementation progressed and new
Brahms models were investigated, discrepancies were more frequently attributable to
errors in the model until, with the final few models investigated, no discrepancies arose
because of errors in the underlying system implementation.

7. Digital Nurse Scenario:Verification

The Promela representation of the scenario was automatically generated using
our tool, which took a Brahms description of this scenario and parsed it into Java
data structures, identifying the agents, objects, workframes, thoughtframes, activities,
etc. From these data structures Promela code was automatically generated. The
Promela code has separate processes for the scheduler and for each agent and object
in the simulation, e.g., a process for every nurse, doctor, patients, digital assistant and
robot. The Promela code can then be run in simulation mode, which is useful for
comparing the output against a Brahms simulation, or in verification mode.

Once we had Promela code representing the scenario, we performed verification
using the Spin model checker. We proved both safety and liveness properties where
we ensure something will always happen (or always not happen) or that something will
eventually happen (or eventually not happen). In a scenario such as in a hospital, time
is crucial so many requirements involve time bounds e.g., if someone has a heart attack
then they will receive assistance within a certain time.

18

7.1. Sample Properties to Prove

We used a range of logical properties for the scenario; note that in temporal logic,
3φ means that “φ will be true at some moment in the future”, while 2φ means that
“φ will be true at all future moments”. We describe the properties verified and classify
these just by the core aspect they represent, i.e., properties labelled Pn relate to the
patient; Nn relate to the nurses; Rn relate to the robot; and DNn relate to the digital
nurses. The properties are all based on the beliefs of the agents or facts in the system.

Example Patient Properties.

P1: This property was designed to evaluate if an emergency will actually occur in the
scenario, i.e., a patient has a heart attack. The property, explained in English, is:
eventually a patient will have a heart attack. The property, as a temporal logic
formula is: 3a where a means “patient one has a heart attack”.

P2: When a patient has a heart attack they can only be revived if all members of the
team arrive to perform their job, and when they do so we consider the resuscita-
tion rate to be 100%. If some members do not arrive within a certain time frame
then the patient dies. We construct the scenario this way for simplicity, so we
can easily evaluate whether or not all the agents perform their required task. The
property, explained in English, is: the patients are always alive. The temporal
logic formula is 2(a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5) where ai means “patient i is alive”.

P3: One of the roles of the nurse is to turn those patients that need turning. This task
requires the joint effort of the robot and the nurse, where the nurse must wait
for the assistance of the robot before turning the patient. The team aspect of this
task means it is possible that a patient ends up waiting too long to be turned.
To evaluate this we assign each patient a counter, where they start to count-up
when they are due to be turned. This is not considered to be part of the scenario
but more of an addition to aid verification. The property, explained in English,
is: the patients do not wait more than 1 hour when they need to be turned. The
property, as a temporal logic formula is: 2(a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5) where ai
means “the time patient i waits to be turned is less than 1 hour”.

Example NURSE Properties.

N1: A requirement of the scenario is that when the nurse on duty (i.e., Nurse one)
takes a break, this break needs to then be covered by the nurse not on duty
(Nurse two). The digital nurse is used to notify the nurse of when to take a
break. When the nurse is on a break a simple flag is used to indicate this. The
property, explained in English, is: eventually the nurse will have a break. The
property, as a temporal logic formula is: 3a where a represents “nurse one has
a break”.

N2: In the scenario there is only one nurse performing the duties relevant to the sce-
nario, the other performs ‘other duties’. However, when the primary nurse in
the simulation takes a break the other nurse must cover this nurse’s duties. This
relies on the communication between the digital nurses and the nurses, so that

19

the secondary nurse takes over before the primary nurse takes a break. The prop-
erty, explained in English, is: there is always a nurse on duty. The property, as a
temporal logic formula is: 2(a1 ∨ a2) where ai represents “nurse i is on duty”.

N3: When the patient has a heart attack all members of the medical team are called
to resuscitate the patient. We have already specified the property that the patient
does not die in the simulation but, as a sanity check, we wish to ensure this is be-
cause the team perform their resuscitation duties within the required time frame.
Again the patient is given a counter to count simulation time to aid verification;
this counter counts the duration since the patient has had a heart attack. Note
that in the simulation it was only patient one that was put at risk of a heart attack.
The property, explained in English, is: if a heart attack occurs then the nurse, the
doctor and the robot will resuscitate the patient within 4 minutes. The property,
as a temporal logic formula is: 2(a⇒ 3(n ∧ d ∧ r ∧ e)) where

a = “patient one has a heart attack”
n/d/r = “the nurse/doctor/robot performs resuscitation workframe”

e = “the time since heart attack is less than 4 minutes”

Example Robot Properties.

R1: One of the robot’s duties is to ensure the patient’s water jug always contains
water. In the scenario we have a sensor attached to the object monitoring the
patient which informs the robot of when a patient’s water is low and the robot
should then refill this patient’s water jug. This is a low priority task but it is
still important so we need to ensure this task is still performed, and in a timely
fashion. To verify this property the sensor counts the duration since it flagged
the water as low, if this duration exceeds an hour then an alarm is sounded. The
property, explained in English, is: the low water alarm is never sounded. The
property, as a temporal logic formula is: 2(¬a) where a represents “the low
water alarm is sounded”.

R2: The doctor’s only duty in the simulation is to examine each patient and prescribe
medication. Once a patient is prescribed a medication then the robot has the job
of retrieving this medication for the nurse to administer. The doctor will visit
each patient in turn, tell the digital nurse the prescription who in turn notifies the
robot. The requirement we wish to verify is that at no point does the robot have
the wrong prescription for the patient. The property, explained in English, is: the
robot either has no belief of the patient’s medication requirement or it matches
what the doctor has prescribed. The property, as a temporal logic formula is:
2((a1 ∨ b1) ∧ (a2 ∨ b2) ∧ (a3 ∨ b3) ∧ (a4 ∨ b4) ∧ (a5 ∨ b5))

ai = “the robot has no belief about patient i’s medication”
bi = “the robot’s belief about patient i’s medication matches the doctor’s be-

lief”

Example Digital Nurse Properties.

20

DN1: The digital nurse has the job of informing the nurse of their duties and when
to perform them. When the clock announces that 8 hours have passed in the
simulation the digital nurse then has the responsibility to inform the nurse that
it is breakfast time. The property, explained in English, is: the digital nurse will
notify the nurse it is breakfast time within 1 hour. The property, as a temporal
logic formula is: 3(a ∧ b) where a represents “breakfast has been announced”
and b represents “the time is at least 8 but less than 9”.

DN2: This property is to check the reaction time of the digital nurses, ensuring that
when an emergency occurs then the digital nurses inform the doctors, etc. in
a timely fashion. The emergency in this case is a heart attack, again a counter
is started by the patient to measure the duration since the heart attack occurred,
which is used for verification purposes. For this property we use the beliefs of the
agents to test whether the communications have been sent by the digital nurses.
The property, explained in English, is: the digital nurse will notify the doctor,
nurse and robot of a heart attack in less than 2 minutes of when the heart attack
occurred. The temporal logic property is: 2(a⇒ 3(n ∧ r ∧ d ∧ e)) where

a = “the patient has a heart attack”
n/r/d = “the nurse/robot/doctor believes the patient has had a heart attack”

e = “the time since heart attack is less than 2 minutes”

DN3: This property again checks the communication of the digital nurses, this time
ensuring the nurse is informed to take a break. In the scenario the nurse is due
for a break 10 hours into the simulation, so the property needs to check at the
time is at least 10 but does not become 11. The property, explained in English,
is: the digital nurse will send a notification to nurse one to take a break within 1
hour of when it is due. The property, as a temporal logic formula is is: 3(a ∧ b)
where a represents “the digital nurse believes the nurse has gone on a break” and
b represents “the time is at least 10 but not 11”.

7.2. Verification Results

All the properties above were verified using our tool, in tandem with Spin. The
verification results for these properties can be found in Figure 7 which shows the veri-
fication time and number of states stored for each property specified in Section 7.1.

7.3. Digital Nurse Scenario Discussion

This Digital Nurse Scenario was created to show a simulation of robots and digital
assistants aiding nurses and doctors in their daily duties. Although simple by com-
parison to a normal day in a hospital, is aimed at demonstrating how we intend our
tool to be used for verifying human-agent-robot team work. The Digital Nurse Sce-
nario took some small key aspects of day-to-day activities in a hospital, with a robot to
fetch and assist, and digital assistants to remind and inform doctors and nurses. Exam-
ples of activities simulated are turning patients, administering medication, and feeding
the patients. A non-deterministic, emergency element was a patient having a heart at-
tack, which could happen at a set number of intervals. The aim of the verification was

21

Property Time (seconds) States
P1 63.6 103,618
P2 148 103,618
P3 150 230,864
N1 64.8 101,594
N2 154 230,864
R1 148 230,864
R2 146 230,864

DN1 76.8 114,534
DN2 149 230,864
DN3 72.6 101,184

Figure 7: Digital Nurse scenario’s verification performance

to prove that the critical requirements would be met no matter when the emergency
occurred. Requirements, such as patients receiving medication at the correct times,
patients not waiting too long to be turned, and an emergency are resolved in a timely
fashion. The Digital Nurse Scenario was first implemented in Brahms and manually
analysed for correctness, and a translation to equivalent Promela code was produced
using our tool. The properties specified in Section 7.1 were implemented in Spin and
verified. All properties were successfully verified and the performance results can be
found in Figure 7.

8. Related Work

Next we consider related work. This is split into three main areas: other applica-
tions of Brahms; the application of the research developed in this paper to other areas;
and verification of multi-agent systems.

Brahms has been used at NASA for modelling astronaut-robot planetary explo-
ration teams [9] and for developing a human-behavioural agent model for communica-
tions between Mission Control and the International Space Station [10, 31]. The latter
has been used to develop a multi-agent software system that has taken over all the rou-
tine tasks from a human (about 80% of the workload). Brahms has also been used
to describe a possible scenario of human-agent teamwork during a Mars exploration
mission in [4].

The Brahms to Promela tool described in this paper has also been used to verify
an autonomous robotic assistant in [35]. The robot (a Care-O-botr) is located in the
University of Hertfordshire’s Robot House, a suburban three bedroom house. The
house is equipped with sensors to detect the location of the occupants, open doors,
door bell rings etc. The robot can perform tasks such as checking and answering the
doorbell, carrying drinks, providing reminders about medication etc. The high level
robot behaviour is programmed using a set of if-then rules. As these rules are similar
to the constructs in the Brahms language the scenario was modelled using Brahms and
the Brahms to Promela tool applied. Several properties were checked relating to the
robot following instructions from the person and reminders to take medication.

22

[20] develops an alternative tool for verifying Brahms models. This tools uses the
Brahms semantics presented here implemented in full (i.e., including the transitions)
in Java. A Brahms model for a multi-agent system is translated into Java and then
executed in the Java Pathfinder (JPF) model checker to produce a state model of the
Brahms program. This process of converting a Brahms model into state model is re-
ferred to as a MAS connector. Extensible plugins in JPF, such as customised choice
points, allowed the efficient reduction of the state space. This state model represents
all the possible states and actions of the MAS. Additionally the MAS connector can
gather and stores information such as transition probabilities, temporal and epistemic
relations between states. This allows for additional search and exploration strategies
for verification purposes which are reusable for different verifiers such as probabilistic
and on-the-fly safety properties. The state model can then be converted into the input
format of mainstream verification tools such as Spin, NuSMV and Prism, allowing
verification of linear time temporal logic or branching-time temporal logic properties,
probabilities, time bounds and cost. This work converts our static intermediate repre-
sentation into an executable form and then uses JPF to produce a generic state model
where we export the static representation to Promela code which then produces a
state model specifically for Spin. As far as we are aware the tool developed in [20]
is not publicly available for the verification of Human-Agent Teamwork models, hence
why it was not used in work such as that reported in [35].

The verification of agents and multi-agent systems is an on-going research area,
with papers such as [5, 2, 26, 14, 1, 38] developing methods for verification of various
agent programming languages. We next discuss some examples model checking agent-
based systems.

An approach to verifying multi-agent systems represented using one of a number of
agent programming languages is via the Agent Infrastructure Layer (AIL) toolkit [14].
The AIL is a collection of Java classes developed to unify a variety of modelling for-
malisms, particularly agent programming languages. The collection of Java classes
within the AIL contain clear and adaptable semantics and are able to implement in-
terpreters for various agent languages. Programs interpreted by the AIL can then be
model checked by Agent Java Pathfinder (AJPF); an extension of the Java Pathfinder
model checker customised to support AIL-based interpreters. AJPF has been extended,
based on [20] the so that it can be used to generate models for input to other (non-agent)
model checkers such as Spin and Prism [13]. Thus AJPF can be used as a link be-
tween BDI-type programming languages and standard model checking tools. We did
not use AIL in this work since it was not well developed when the work started, but
our formalisation and implementation were guided by concepts using in the AIL. At
present the AIL continues to focus on BDI-based programming languages rather than
Human-agent teamwork modelling formalisms such as Brahms.

Bordini et al. [14] use the AIL toolkit and the MCAPL (Model Checking Agent
Programming Languages) interface to model check a range of agent programming lan-
guages. They use the AIL toolkit as an interpretation tool (as it encompasses the main
concepts of agent based languages) and the MCAPL interface to perform model check-
ing via AJPF (Agent Java Pathfinder). Using this approach they verified properties of
programs programmed in agent languages such as GOAL [18] and SAAPL (Simple
Abstract Agent Programming Language) [36].

23

De Boer et al. [2] produced a verification framework for goal orientated agents,
specifically for agents programmed in the language GOAL. In [2] Boer et al. describe
a formal operational semantics for GOAL and construct a temporal logic specifically
to prove properties of GOAL agents, which incorporates the belief and goal modalities
used in GOAL agents.

In [3] Bordini et al. produce a variation of the AgentSpeak(L) language called
AgentSpeak(F) and show how they transform programs written in AgentSpeak(F) into
Promela for Spin verification.

McCallum et al. [23] produce a flexible and expressive framework for the verifi-
cation and analysis of agents taking part in multiple organisations with distinct roles
and disparate obligations. Rather than using an existing agent programming language
McCallum et al. [23] produce their own system for modelling agents using organisa-
tions, roles, actions, and obligations using Sicstus Prolog. To verify such models they
assess the model with a constraint solver [22] which determines whether all the agents’
obligations can be fulfilled.

9. Concluding Remarks

The work in this paper is directed towards the verification of human-agent team-
work using the Spinmodel checker and the Brahms multi-agent environment. Brahms
enables the description of human-agent teamwork scenarios where the defining factors
are the actions taken, their timing, duration and results. It has proven useful in the
analysis of such scenarios via simulation. By adding verification to Brahms we aim to
extend its usefulness by allowing all possible routes to be explored, thus ensuring that
undesirable outcomes cannot arise within the model.

In this work we have developed the first formal operational semantics for Brahms
and the first tool for the formal verification of Brahms models involving human-agent
teamwork. The formal semantics we produced provides us with a route towards the
formal verification of Brahms applications. Using these operational semantics we can
devise model checking procedures and can either invoke standard model checkers, such
as Spin [19] or agent model checkers such as AJPF [14]. Using the operational se-
mantics we were able to identify the core data structures of Brahms and develop a
parser to parse a model into Java data structures. Parsing a Brahms model into Java
data structures allowed for easier implementation of the Brahms semantics in the input
languages of various model checkers. We implemented the Brahms semantics in the
input language for the Spin model checker, Promela, for Spin verification.

A scenario was used to demonstrate and analyse the verification produced by our
tool. This scenario relates to a hospital example involving: two nurses, five patients,
a doctor, a robot to monitor the patient’s, a helper robot and digital assistants for the
nurses and doctor. One nurse has the role of looking after the patients, turning them,
etc. The other nurse performs ‘other duties’ not relevant to the simulation but is there
to cover the nurse looking after the patients during that nurse’s break. The doctor is
there for emergencies and the prescription of medication. The helper robot is there
to aid the nurse; fetching medication and turning patients, etc. The digital assistants
are for reminding/informing the nurses and the doctor of their most current duties and
also act as autonomous communication devices to keep everyone up to date on the

24

patients. This scenario was more complex than the home helper scenario presented
in [33] demonstrating the same key features of the Brahms semantics but also requiring
the use of Brahms variables. The main difference is that this scenario uses more agents
and requires more teamwork as agents and humans must perform tasks together.

9.1. Performance
The aim of this paper was to produce the first tool for the formal verification of

human-agent-robot teamwork modelled in Brahms. However an important part of the
evaluation of such a tool is the performance. Since this is the prototype, and was the
first such tool, we have identified some aspects of the implementation which could be
modified to reduce the size of the models and improve the verification speed. One such
modification would be to re-implement the Promela translation so that all the agents
and objects are represented in a single process. This modification would remove code
which halts an agent while another executes. This halting of agents affects how code
can be compressed into a smaller number of states using the Promela function called
d step which compresses multiple lines of code into a single state. Additionally,
unnecessary states are created to implement the operational semantics as well as states
for the scenario. For example, our tool will generate many states to check the guard
conditions of a workframe, where new states are only needed if the workframe is active.

Despite some inefficiency, the tool we developed was still able to successfully
verify all the properties in the Digital Nurse scenario and the Home Helper scenario
in [33]. A performance comparison was made between our tool and the tool developed
in [20], where the times taken to verify all the properties for the Home Helper scenario
were compared. The latter utilised the Brahms semantics we developed and had the
benefit of our experience when developing their tool. The implementation from [20]
took 1 minute to verify all the properties, whereas our implementation took 5 min-
utes. The implementation in [20] uses Java Pathfinder which allows the user to define
points of non-determinism in the code (such as selecting a workframe) and variables
of interest (such as beliefs and facts). Java Pathfinder then generates a finite state ma-
chine creating states only when a defined point of non-determinism is encountered or a
variable of interest changes value, which is then passed to a model checker to analyse.
The generation of the finite state machine creates an overhead when using an on the
fly model checker, such as Spin, meaning the model will need to be created and then
explored, where an on the fly model checker explores a model as it is being created.

We believe the future improvements to our tool suggested earlier to reduce the state
space as well as this disadvantage of the JPF tool would make our tool comparable if
not better than the JPF based tool.

9.2. Wider Application
In this paper we used our tool to formally verify properties of a Digital Nurse

scenario. The tool was also used in [33] to verify properties of a Home Helper scenario.
Although our tool was developed to verify properties of human-agent-robot teamwork
models, it is not restricted to these scenarios. Our tool can translate the majority of the
functions implemented in the Brahms language, including all the key functions such as
workframes, throughtframes, variables, detectables, locations etc. allowing, our tool to
be used to verify most Brahms simulations.

25

There are limitations to the size of programs that our tool can practically verify.
Large models and models with multiple highly active agents tend to contain too many
states for feasible model checking. It is difficult to define the limit on the scenarios we
can verify, because multiple factors can combine to cause state space explosion during
verification. The main contributors are the number of agents, the number of attributes
the agents have, the duration of activities, the length of the simulation, and the number
of non-deterministic events. The Digital Nurse scenario we produced was at the limit
of the size of model we can currently verify.

9.3. Further Development

The tool created in this work for the verification of Brahms models was the first of
its kind, a prototype. As with all prototypes there are always areas for improvement,
such as increased efficiency and functionality. Some ways of increasing efficiency
includes:

1. identifying a communication issue which results in an exponential rise in states
when performing multiple communications; and

2. structuring the Brahms translation for efficient use of deterministic wrappers to
limit the number of surplus states, particularly by reducing the number of pro-
cesses.

Where functionality is concerned, the translation to Brahms could be expanded to in-
clude Brahms functions such as group activities and possibly to handle activities with
durations within a minimum and maximum range (where currently only a single value
is allowed).

The functionality of the tool’s user interface could also be improved as currently
it is only executable from the command line. Spin never-claims (used to express
specifications) need to be created manually requiring expertise and knowledge of the
translation. The implementation of a graphical interface which can aid the user in gen-
erating the never-claims of the user’s specification would make the system much easier
to use. The graphical interface could also be integrated into the Brahms Composer
(the Brahms graphical interface) giving the user the option to either generate a single
Brahms simulation or verify whether a property holds or not. By adding verification to
the Brahms Composer we would provide easy access to verification, which will allow
all possible simulations (with fixed time granularities) to be explored, thus ensuring
that undesirable outcomes cannot arise within the model.

Finally, a more formalised justification of the correctness argument sketched in
Section 6 might be possible, though this would certainly take considerable work and
would still require appeal to unformalised elements throughout.

Acknowledgements

The research reported in this paper was partially funded by EPSRC grants EP/K006193
(Trustworthy Robotic Assistants), EP/J011770 (Reconfigurable Autonomy), and EP/F033567
(Verifying Interoperability Requirements in Pervasive Systems). We would like to thank
researchers at NASA who have commented on the developed Brahms semantics and
researchers at PARC who provided input to the Digital Nurse Scenario.

26

References

[1] G. Ali, S. Khan, N. Zafar, and F. Ahmad. Formal Modeling Towards a Dynamic
Organization of Multi-agent Systems using Communicating X-machine and Z-
notation. Indian Journal of Science and Technology, 5(7):2972–2977, 2012.

[2] F. de Boer, K. Hindriks, W. van der Hoek, and J-J. Meyer. A Verification Frame-
work for Agent Programming with Declarative Goals. Journal of Applied Logic,
5(2):277–302, 2007.

[3] R. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model Checking Agents-
peak. In Proc. 2nd Int. Conf. Autonomous Agents and Multiagent Systems (AA-
MAS), pp409–416. ACM, 2003.

[4] R. Bordini, M. Fisher, and M. Sierhuis. Analysing Human-agent Teamwork.
In Proc. 10th ESA Workshop on Advanced Space Technologies for Robotics and
Automation (ASTRA), Noordwijk, The Netherlands, 2008.

[5] R. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Model Checking Rational
Agents. In IEEE Intelligent Systems, volume 19, pp46–52. IEEE, 2004.

[6] R. Bordini, J. Hübner, and M. Wooldridge. Programming Multi-agent Systems in
AgentSpeak Using Jason. Wiley, 2007.

[7] J. Bradshaw, P. Feltovich, M. Johnson, M. Breedy, L. Bunch, T. Eskridge,
H. Jung, J. Lott, A. Uszok, and J. van Diggelen. From Tools to Teammates:
Joint Activity in Human-Agent-Robot Teams. In Proc. HCI (10), volume 5619 of
LNCS, pp935–944. Springer, 2009.

[8] L. Cavedon, A. Rao, L. Sonenberg, and G. Tidhar. Teamwork via Team Plans
in Intelligent Autonomous Agent Systems. In World Wide Computing and its
Applications, volume 1274 of LNCS, pp106–121. Springer, 1997.

[9] W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. Advantages of Brahms
for Specifying and Implementing a Multiagent Human-Robotic Exploration Sys-
tem. In Proc. 16th Florida Artificial Intelligence Research Society Conference
(FLAIRS), pp7–11. AAAI Press, 2003.

[10] W. Clancey, M. Sierhuis, C. Seah, C. Buckley, F. Reynolds, T. Hall, and M. Scott.
Multi-agent Simulation to Implementation: A Practical Engineering Methodol-
ogy for Designing Space Flight Operations. In Engineering Societies in the
Agents World VIII, pages 108–123. Springer, 2008.

[11] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[12] P. Cohen and H. Levesque. Teamwork. In Noús, 25(4):487–512. Special Issue on

Cognitive Science and Artificial Intelligence. Blackwell Publishing, 1991.
[13] L. Dennis, M. Fisher, and M. Webster. Two-Stage Agent Program Verification.

To appear in Journal of Logic and Computation, 2015.
[14] L. Dennis, M. Fisher, M. Webster, and R. H. Bordini. Model Checking Agent

Programming Languages. Automated Software Engineering, 19(1):5–63, 2012.
[15] J. Dyer. Team Research and Team Training: A State-of-the-Art Review. In Hu-

man factors review, volume 1983, pp285–3. Human Factors Society, 1984.
[16] E. Emerson. The Role of Buchi’s Automata in Computing Science. In The Col-

lected Works of J. Richard Büchi. Springer, 1990.
[17] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly Automatic Verifi-

27

cation of Linear Temporal Logic. In Proc. 15th IFIP WG6.1 International Sym-
posium on Protocol Specification, Testing and Verification. IFIP, 1995.

[18] GOAL — Website. http://mmi.tudelft.nl/trac/goal.
[19] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-

Wesley, 2003.
[20] J. Hunter, F. Raimondi, N. Rungta, and R. Stocker. A Synergistic and Extensible

Framework for Multi-Agent System Verification. In Proc. Int. Conf. Autonomous
Agents and Multi-Agent Systems (AAMAS), pp869–876. IFAAMAS, 2013.

[21] C. Lenz, S. Nair, M. Rickert, A. Knoll, W. Rosel, J. Gast, and A. Bannat. Joint-
action for Humans and Industrial Robots for Assembly Tasks. In Proc. 17th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN), pp130–135. IEEE Robotic and Automation Society, 2008.

[22] K. Marriott and P. Stuckey. Programming with Constraints: An Introduction.
MIT Press, 1998.

[23] M. McCallum., W. Vasconcelos, and T. Norman. Verification and Analysis of
Organisational Change. In Coordination, Organizations, Institutions, and Norms
in Multi-Agent Systems, pp48–63. Springer, 2006.

[24] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma. Experiences with
a Mobile Robotic Guide for the Elderly. In Proc. 18th National Conference on
Artificial Intelligence (AAAI), pp587–592. AAAI Press, 2002.

[25] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards Robotic
Assistants in Nursing Homes: Challenges and Results. Robotics and Autonomous
Systems, 42(3-4):271–281, 2003.

[26] M. van Riemsdijk, F. de Boer, M. Dastani, and J-J. Meyer. Prototyping 3APL
in the Maude Term Rewriting Language. In Proc. Workshop on Computational
Logic in Multi-Agent Systems, pp95–114. Springer, 2007.

[27] E. Salas, D. Sims, and C. Burke. Is there a “Big Five” in Teamwork? Small
Group Research, 36(5):555–599, 2005.

[28] M. Sierhuis. Modeling and Simulating Work Practice. BRAHMS: a multiagent
modeling and simulation language for work system analysis and design. PhD
thesis, Social Science and Informatics (SWI), University of Amsterdam, SIKS
Dissertation Series No. 2001-10, Amsterdam, The Netherlands, 2001.

[29] M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Op-
erations. (http://ti.arc.nasa.gov/pub-archive/2006), 2006.

[30] M. Sierhuis, J. Bradshaw, J. Acquisti, R. van Hoof, R. Jeffers, and A. Uszok.
Human-agent Teamwork and Adjustable Autonomy in Practice. In Proc. 7th Int.
Symp. Artificial Intelligence, Robotics and Automation in Space, 2003.

[31] M. Sierhuis, W. Clancey, R. van Hoof, C. Seah, M. Scott, R. Nado, S. Blumen-
berg, M. Shafto, B. Anderson, A. Bruins, C. Buckley, T. Diegelman, T. Hall,
D. Hood, F. Reynolds, J. Toschlog, and T. Tucker. NASA’s OCA Mirroring Sys-
tem — An Application of Multiagent Systems in Mission Control. In Proc. Int.
Conf. Autonomous Agents and Multi Agent Systems (AAMAS), 2009.

[32] R. Stocker. Towards the Formal Verification of Human-Agent-Robot Teamwork.
PhD thesis, Department of Computer Science, University of Liverpool, 2013.

[33] R. Stocker, L. Dennis, C. Dixon, and M. Fisher. Verifying Brahms Human-Robot
Teamwork Models. In Proc. European Conf. Logics in Artificial Intelligence

28

(JELIA), volume 7519 of LNCS, pp385–397. Springer, 2012.
[34] R. Stocker, M. Sierhuis, L. Dennis, C. Dixon, and M. Fisher. A Formal Semantics

for Brahms. In Proc. 12th Workshop on Computational Logic in Multi-Agent
Systems (CLIMA), volume 6814 of LNCS, pp259–274. Springer, 2011.

[35] M. Webster, C. Dixon, M. Fisher, M. Salem, J. Saunders, K. Koay, and K. Daut-
enhahn. Formal Verification of Robotic Assistants for Home-Healthcare Envi-
ronments. In Proc. Workshop on Formal Verification in Human Machine Systems
(FVHMS). AAAI, 2014.

[36] M. Winikoff. Implementing Commitment-based Interactions. In Proc. Int. Conf.
Autonomous Agents and Multiagent Systems, pp868–875. ACM, 2007.

[37] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2009.
[38] W. Yeung. Behavioral Modeling and Verification of Multi-agent Systems for

Manufacturing Control. Expert Systems with Applications, 38(11), 2011.

Appendix A. Semantic Rules

Appendix A.1. Timing
The timing in Brahms works by the use of a global system clock coupled with

agents having their own internal clocks. The system scheduler asks each agent how
long each of their activities are, finds the time of the shortest activity and then tells
each agent to move their clock forward by this time. However it should be noted that
during a simulation agents are not aware of their internal clocks, the clocks are used
behind the scenes to keep all agents synchronised. Traditionally Brahms simulations
are modelled with a ‘Clock’ agent to broadcast a simulation time to all the agents to
give them an awareness of time. Workframes that the agents are currently working on
can be interrupted if a new higher priority thought/workframe becomes active, or if a
fact change in the system causes an impasse via a detectable. The following structure
shows how agents are moved forward in time by the scheduler. It shows every agent
from Ag0 to Agn being moved forward in time, once an agent moves forward in time
it reaches an intermediary point X where it will then make a Choice on its next set of
actions. ξ represents the scheduler, showing that all the agents and the scheduler move
as one from time point to time point.

Ag0
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′0
.
.
.

Agn
LocalClock+t−−−−−−−−→ X,X

Choice−−−−→ Ag′n

ξ
LocalClock+t−−−−−−−−→ ξ′

Appendix A.2. Scheduler Semantics
The scheduler is the central system of Brahms, it decides when and what value the

global clock will take and it starts and terminates the execution of the system. For the
scheduler to start/continue execution all agents must be in a ‘fin’ (finished) or ‘idle’
(idle) state and the global clock must not be less than zero. For Brahms to terminate

29

all the agents need to be in an idle state where they have no workframes/thoughtframes
which have their guard condition met.
Sch run. Start agents running for the new clock tick. This rule states that if all agents
in the system are either in a finished or idle state and the global clock is not minus one
then all agents are directed to the ‘Set Act’ semantic rule.
RULE: Sch run

〈Ags, agi, Bξ, F, Tξ〉

ag
i
′ =agi[ag

stage
i ∈{fin,idle}/agstage

i ∈{Set Act}]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∀agi∈Ags|ag

stage
i ∈{fin,idle}∧(Tξ 6=−1)

〈Ags, agi′ , Bξ, F, Tξ〉

the notation agi′ = agi[ag
stage
i ∈ {fin, idle}/agstage

i ∈ {Set Act}] indicates that the
stage value of agi has been replaced by Set Act .
Sch rcvd. Receives the activity durations from all agents. This rule identifies when
the Scheduler has received all the durations from all agents. It states that if all agents
are in a waiting or idle state then the Scheduler will check all the agents end activity
times, calculate the smallest value and set its time to this. For this rule to activate all
the agents need to be considering the rules Pop PA∗, Pop MA∗ or Pop CA∗ where
* represents a wild card for any suffix of the word.
RULE: Sch rcvd

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ+MinTime(∀agi|Ti∈Bξ)]−−→

∀agi∈Ags|stage∈{Pop PA∗,Pop MA∗,Pop CA∗)}∨idle,(Tξ 6=−1)

〈Ags, agi, Bξ, F, Tξ′〉

Sch term. This termination condition happens when all agents are in an idle state, to
signal the termination it sets the global clock to minus one.
RULE: Sch Term

〈Ags, agi, Bξ, F, Tξ〉
Tξ′=Tξ[Tξ/Tξ=−1]

−−−−−−−−−−−−−−−→
∀agi∈Ags|stage∈{idle}

〈Ags, agi, Bξ, F, Tξ′〉

Appendix A.3. Agent Semantics
The Brahms system operates on a simple cycle of handling:

Thoughtframes → Detectables →Workframes

In the following we present groups of rules relating to Set * rules thoughtframes (Tf *
rules) workframes (Wf * rules) detectables (Det * rules) variables (Var * rules) pop-
stack (Pop * rules)

30

Set * rules. Rules with the prefix of ‘Set *’ are used at the start of every cycle. These
are used to determine whether or not the agent/object will be idle (no active workframe
or thoughtframe) for the duration of this cycle. Those that are idle will do nothing until
this rule is next invoked by the system, those that are not idle are directed to checking
thoughtframes.

Set Act. If the agent is currently checking ‘Set *’ rules, has no current thoughtframe
and the agent has a workframe or a thoughtframe with its guard condition met then
this rule directs the agent to the ‘Tf *’ rules. Whether or not the agent has an active
workframe or not is not an issue.

RULE: Set Act
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Set ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧(∃T ∈TFi |Bi|=T g∨∃W∈WFi |Bi|=Wg)

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Set Idle. If the agent has no current thoughtframes or workframes with their precon-
ditions met then place the agent in an idle state. Additionally the agent can not have an
active thoughtframe but can possibly have an active workframe.

RULE: Set Idle
〈agi, α, β,Set ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Set ∗}/agstagei ∈{idle}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α∈{∅}∧β∈{∅}∧¬∃T ∈TFi |Bi|=T g∧¬∃W∈WFi |Bi|=Wg

〈agi, α, β, idle, Bi, F, Ti,TF i,WF i〉

Tf * rules (Thoughtframes). The agent is now in a state where it is selecting a thought-
frame to run. The agent will not have any thoughtframes currently active. When select-
ing the thoughtframe to run it will choose the thoughtframe with the highest priority,
but if there is more than one then a random selection will be made.

Tf Select. If there are any thoughtframes with preconditions met then one is selected
based on the thoughtframe’s priority using the Max pri method. The agent can not
have a current thoughtframe but might have an active workframe. The agent is then
passed onto rules to execute the thoughtframe. The chosen rule depends on the repeat
variable of the thoughtframe(true, false or once).

RULE: Tf Select
〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉

α′=α[α/Max Pri(∀T ∈TFi|Bi|=T g)]∧agi[ag
stage
i ∈{Set ∗}/agstagei ∈{Tf true,Tf false,Tf once}]

−−−→
α∈{∅}∧∃T ∈TFi|Bi|=T g

〈agi, α′, β, {Tf true,Tf false,Tf once}, Bi, F, Ti,TF i,WF i〉

Tf true (Repeat = true). If the repeat variable on the thoughtframe is true then the
agent is just directed to ‘Pop Tf*’ rules.

RULE: Tf true
〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉

31

agi[ag
stage
i ∈{Tf true}/agstagei ∈{Pop Tf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
αr=true∧β∈{∅}

〈agi, α, β, Pop Tf∗, Bi, F, Ti,TF i,WF i〉

Tf once (Repeat = once). If repeat variable is set to once, change to false then move
to ‘Pop Tf*’ rules.

RULE: Tf once
〈agi, α, β,Tf once, Bi, F, Ti,TF i,WF i〉

α′=α[αr=once/αr=false]∧TF ′
i=TFi[α/α

′]∧agi[ag
stage
i ∈{Tf once}/agstagei ∈{Pop Tf∗}]

−−−→
αr=once∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF i,WF i〉

Tf false(Repeat = false). If repeat variable is set to false, then delete thoughtframe
from the set of thoughtframes.
RULE: Tf false

〈agi, α, β,Tf false, Bi, F, Ti,TF i,WF i〉
TF ′

i=TFi[TFi−α]∧agi[ag
stage
i ∈{Tf false}/agstagei ∈{Pop Tf∗}]

−−→
αr=false∧β∈{∅}

〈agi, α, β,Pop Tf ∗, Bi, F, Ti,TF ′i,WF i〉

Tf exit. If there are no thoughtframes to be executed then the agent is directed towards
checking all the detectables.
RULE: Tf exit

〈agi, α, β, Tf ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Tf ∗}/agstagei ∈{Det ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃T ∈TFi|B|=T g∧α∈{∅}

〈agi, α, β,Det ∗, Bi, F, TiTF i,WF i〉

Wf * rules (Workframes). The agent is now in a state where it is selecting a work-
frame to run. When selecting the workframe to run it will choose the workframe with
the highest priority, if there is more than one workframe with the highest priority then
a random selection is made between these workframes.

Wf select. If there is no current workframe then a simple selection process occurs
taking the workframe with the highest priority. The agent must have no workframes or
thoughtframes assigned to it.
RULE: Wf Select

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[β/Max Pri(∀W∈WFi|Bi|=Wg)]∧agi[ag

stage
i ∈{Set ∗}/agstagei ∈{Wf true,Wf false,Wf once}]

−−−→
α∈{∅}∧β∈{∅}∧∃W∈WFi|Bi|=Wg

〈agi, α, β′, {Wf true,Wf false,Wf once}, Bi, F, Ti,TF i,WF i〉

Wf suspend. If an agent is currently working on a workframe, but there exists a work-
frame with its guard condition met that has higher priority then the current workframe

32

is suspended and the progress the agent has made through this workframe is recorded.
The priority of the suspended workframe is increased by 0.2, priorities are usually in-
tegers but this gives suspended workframes higher priority over those which normally
would have the same priority. Note βd represents the workframe’s deed stack and βins
refers to the workframe’s instructions, such as the workframe’s repeat values, etc.
RULE: Wf Suspend

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.2)]∧WF ′

i=WF ′
i[WFi∪β′]∧β′′∈{∅}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

α∈{∅}∧β/∈{∅}∧∃W∈WFi|Bi|=Wg∧Wpri>(βpri+0.3)

〈agi, α, β′′,Wf ∗, Bi, F, Ti,TF i,WF i′〉

Wf true (Repeat = true). If there does not exist such a workframe with a greater
priority then execute the currently selected workframe. 0.3 is added to the current
workframes priority when checking whether to suspend, so that the current workframe
is not suspended for another suspended workframe of priority only 0.2 higher. The
agent is then passed onto rules for processing variables, rules with prefix ‘Var *’
RULE: Wf true

〈agi, α, β,Tf true, Bi, F, Ti,WF i,TF i〉
agi[ag

stage
i ∈{Wf true}/agstagei ∈{Pop Wf∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
βr=true∧α∈{∅}∧¬∃W∈WFi|Bi|=Wg∧Wpri>βpri+0.3)

〈agi, α, β, Pop Wf∗, Bi, F, Ti,TF i,WF i〉

Wf once (Repeat = once). If the current workframe has the repeat value once then the
repeat value of this workframe is changed to false and the agent is passed onto rules
for processing variables.

RULE: Wf once
〈agi, α, β,Wf once,Bi, F, Ti,TF i,WF i〉

βr=once∧α∈{∅}∧β′=β[βr=once/(βr=false]∧WF ′
i=WFi[β/β

′]∧agi[ag
stage
i ∈{Wf once}/agstagei ∈{V ar ∗}]

−−−→
¬∃W∈WFi|Bi|=Wg∧Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

Wf false(Repeat = false). If the current workframe has the repeat value false then it is
deleted from the set of workframes and the agent is passed onto processing variables.

RULE: Wf false
〈agi, α, β,Wf (false), Bi, F, Ti,TF i,WF i〉

WF ′
i=WFi[WFi−β]∧agi[ag

stage
i ∈{Wf false}/agstagei ∈{V ar ∗}]

−−→
βr=false∧¬∃W∈WFi|Bi|=Wg&Wpri>βpri+0.3

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF ′i〉

33

Det * rules (Detectables). Detectables are additional guards contained within a work-
frame which when activated (though facts not beliefs) will trigger a belief update from
the facts and will then decide how the rest of the workframe will be executed. The
possible executions are Continue, Complete, Impasse and Abort.

Det cont. When a detectable’s guard condition is met and the detectable is of type
Continue then the workframe updates its beliefs from the facts detected and continues.

RULE: Det cont
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉

B′
i=Bi∪d

g∧agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−→
∃d∈βD|dg|=F∧dtype=continue∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort∨d′type=complete))

〈agi, α, β,Wf ∗, B′i, F, Ti,TF i,WF i〉

Here d is used to represent a detectable, βD is the workframe β’s set of detectables.
Notation to express parts of the detectables: dg represents the detectables guard condi-
tion and dtype refers to the detectables type whether it is continue, complete or abort.

Det comp. When a detectable’s guard condition is met and the detectable is of type
complete then the workframe updates its beliefs from the facts detected and deletes all
activities from the workframe leaving only concludes.
RULE: Det comp

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βins/β

Concludes]∧B′
i=Bi∪d

g∧agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−→
∃d∈βD|dg|=F∧dtype=complete∧(¬∃d′inβD|d′g|=F∧(d′type=impasse∨d′type=abort))

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

βConcludes is used to refer to conclude events within the workframe β.

Det impasse. When the detectable is of type impasse the beliefs are updated from
the facts detected but the workframe is suspended. To suspend the workframe a new
workframe is created out of this workframe instance and added to the set of workframes
with repeat set to false. The priority of this new workframe is fractionally larger than
the previous (but smaller than a suspended).

RULE: Det impasse

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′=β[βpri/(βpri+0.1)∧βg∪¬dg)]∧B′

i=Bi∪d
g∧WF ′

i=WFi∪β′∧agi[ag
stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−→
∃d∈βD|dg|=F∧dtype=impasse∧(¬∃d′inβD|d′g|=F∧d′type=abort)

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det abort. If the detectable is of type abort then the belief base is updated and the
agent’s assignment to the workframe is removed.

34

RULE: Det abort

〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
β′∈{∅}∧B′

i=Bi∪d
g∧agi[ag

stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∃d∈βD|dg|=F∧dtype=abort

〈agi, α, β′,Wf ∗, B′i, F, Ti,TF i,WF i〉

Det empty. If there are no active detectables found then the agent is moved to the
‘workframes’ rule set denoted ‘Wf *’.

RULE: Det empty
〈agi, α, β,Det ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Det ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−→
¬∃d∈βD|dg|=F

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

Var * rules (Variables). Variables are used to represent quantification in Brahms.
Variables operate on both workframes and thoughtframes, however for simplicity only
workframes have been modelled to handle variables. Thoughtframes would operate
variables in exactly the same way.

RULE: Var empty
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−→
β/∈{∅}∧βV ∈{∅}

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Here βV represents the variables contained within workframe β.

Var set. Workframes with variables have an additional stack. This additional stack
stores instances of the workframe with the differing instantiations that can be created
with the variables. If the set of options is empty then a selection process called ‘select-
Var()’ is called. ‘selectVar()’ will match all agents/objects which match the name and
conditions, assign each to an instance of the workframe then places the instances onto
the stack. Note. 〈βd, [∅], [βins]〉 represents a workframe β with a deed stack d, a set of
empty workframe instances and the workframe’s set of instructions βins
RULE: Var set

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
β′=〈βd,[∅∪selectVar()],βins〉−−−−−−−−−−−−−−−−−−→

β=〈βd,∅,βins〉

〈agi, α, β′,Var ∗, Bi, F, Ti,TF i,WF i〉

Var one. When the variable is of type ‘forone’ and a set of workframe instances has
been generated then the first workframe instance is selected and set as the current work-
frame. The subset of variables in the workframe are then deleted. This is how Brahms
performs unification.

35

RULE: Var one
〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉

β′=〈βd,Random(W0 ...Wn),βins〉∧agi[ag
stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forone

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

‘Random’ refers to a random selection of one of the instances and ‘vtype’ represents
the variables type (forone, foreach or collectall).

Var each. When the variable is of type ‘foreach’ and the subset of the workframe is
not empty then the instances of the workframes are added to the set of workframes and
the first instance is set as the current workframe. The instances are given a slightly
increased priority and a repeat value of false so they will never be repeated. This
represents Brahms operating on a multitude of tasks sequentially.
RULE: Var each

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
WF ′

i=WFi∪(W0[W
pri
0 /(βpri+0.1),Wr

0 /W
r
0 =false]...Wn[W

pri
n /(βpri+0.1),Wr

n/W
r
n=false])

−−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=foreach

〈agi, α,W0,Pop ∗, Bi, F, Ti,TF i,WF i〉

Var all. The ‘collectall’ variable operates in a similar fashion to the previous vari-
ables, however when it selects the first workframe from the subset it merges all the
concludes from the other work frames into this workframe. This effectively is how
Brahms handles a job which has multiple consequences, e.g., By completing task A, I
also complete task B.
RULE: Var all

〈agi, α, β,Var ∗, Bi, F, Ti,TF i,WF i〉
β′=concludes(W0...Wn)∧agi[ag

stage
i ∈{Var ∗}/agstagei ∈{Pop ∗}]

−−→
β=〈βd,W0...Wn,βins〉∧∃v∈βV |vtype=forall

〈agi, α, β′,Pop ∗, Bi, F, Ti,TF i,WF i〉

concludes(W1...Wn) is a method which takes all the workframe instances W1...Wn

and extracts the concludes statements.

Pop * rules (Popstack). Thoughtframes and workframes all have their own stack of
instructions. These rules presented demonstrate how the events are “popped” off these
instruction stacks. The events can be activites or concludes, so these rules show how
Brahms treats these different instructions.

Pop Wfconc*. When a conclude action is found it is removed from the top of the
instruction stack. Concludes can update the beliefs, the facts or both. Three different
rules are used for concludes: one for updating beliefs; one for facts; and one for both.
Brahms additionally has probabilities that beliefs will be updated, these probabilities
have not been taken into account in these semantics. Pop Wfconc* is neccessary only

36

for workframes, there is no rule Pop Tfconc* thoughtframes since there are no activi-
ties to interupt execution.

RULE: Pop WfconcB
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop ∗, B′i, F, Ti,TF i,WF i〉

The “belief” superscript on the conclude is to show the conclude is for updating beliefs
only. The statement conclude(b′) represents a conclude statement a belief update b′

and B′i = (Bi/b) ∪ b′ represents removing the old belief where b and replacing it with
the new belief b′.
RULE: Pop WfconcF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F=(F/f)∪f ′−−−−−−−−−−−−−−−−−−−−−→

f∈F∧β=〈βd,conclude(f ′)fact ;βins〉

〈agi, α, β,Pop ∗, Bi, F ′, Ti,TF i,WF i〉

RULE: Pop WfconcBF

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
F ′=(F/b)∪b′∧B′

i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
b∈Bi∧b∈F∧β=〈βd,conclude(b′)belief ∧fact ;βins〉

〈agi, α, β,Pop ∗, B′i, F ′, Ti,TF i,WF i〉

Pop concWf*. When agents have finished performing an activity they need to finalise
belief updates before they can flag themselves as finished for the cycle. This rule here
is for doing exactly this, if a conclude is the next event it will carry out the belief/fact
update. Here only ‘Pop concWfB’ is described, this shows how it is done with just
belief updates. Fact and belief/fact updates will be as previously shown.

RULE: Pop concWfB
〈agi, ∅, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

B′
i=(Bi/b)∪b′−−−−−−−−−−−−−−−−−−−−−−−→

b∈Bi∧β=〈βd,conclude(b′)belief ;βins〉

〈agi, α, β,Pop concWf ∗, B′i, F, Ti,TF i,WF i〉

Pop notConc. This rule is for when the agent is finalising beliefs after an activity but
has not found a conclude event, the event could be an activity or simply empty.

RULE: Pop notConc
〈agi, α, β,Pop concWf ∗, Bi, F, Ti,TF i,WF i〉

agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈βd,(Prim Act∨Move∨Comms);βins〉

37

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA*. When a primitive activity is started the agents send the duration of their
current activity to the scheduler. The scheduler receives all the activity times then
determines which activity time is the smallest and updates its own clock based on
this duration. When an agent’s time is different to the system clock’s it then changes
accordingly and subtracts the time increment from the duration of its activity.

Pop PASend. The agents use this rule send the duration of their next event to the
scheduler.

RULE: Pop PASend
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Pop PA(t>0). This rule is invoked when the agent’s time is no longer the same as the
schedulers time. Additionally this rule checks whether the current activity’s duration
will be greater than zero after updating the times and durations.

RULE: Pop PA(t>0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

t′=(Tξ−Ti)∧Ti=Tξ∧Prim Actt=Prim Actt[t/t′]∧agi[ag
stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop PA(t=0). This rule is for when the agent’s activity is due to finish at the end of
the next clock tick. This rule directs the agent to only executing conclude statements
before finishing for the cycle.

RULE: Pop PA(t=0)
〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Ti=Tξ∧β=〈βd,βins−Prim Actt〉
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Prim Actt;βins〉

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Pop move*. Move activities are very similar to primitive activities, except when the
activity terminates a belief update is performed to change the agents and the envi-
ronments beliefs of the agent’s current location. This belief update occurs when the
agent notices that the duration of the move has reached zero after the clock update.
Pop moveSend. This is the rule the agent’s use to send the duration of their next event
to the scheduler.

RULE: Pop moveSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

38

Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ=Ti∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. ‘Loc = new’ refers to the allocation of the location to the new location.

Pop move(t>0). Like for primitive activities, the move activity needs a rule for when
the activity still has time remaining after the clock tick.

RULE: Pop move(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧move(Loc=new)t=move(Loc=new)t[t/t′]∧agi[ag

stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

Pop move(t=0). The move activity needs a rule for when the activity duration ends.

RULE: Pop move(t=0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−move(Loc=new)t〉∧B′

i=Bi[Loc=old/Loc=new]∧F ′=F [Loc=old/Loc=new]
−−−→

Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,move(Loc=new)t;βins〉

〈agi, α, β,Pop concWF∗, B′i, F ′, Ti,TF i,WF i〉

Note. ‘old’ refers to the previous location of the agent.

Pop comm*. Communication is very similar to a move activity, except the agent
doesn’t update its own beliefs or the environments beliefs but it updates another agents
beliefs.
Pop commSend. Sends the scheduler the time of next event when processing a com-
munication.

RULE: Pop commSend

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Bξ=Bξ∪(Ti=Ti+t)−−−−−−−−−−−−−−−−−−−−−−−→

Tξ=Ti∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

Note. Comms(agj , b′) represents a communication to agent j, sending the belief b′.

Pop comm(t>0). For when the communication has time remaining after the system
clock tick.

RULE: Pop comm(t>0)

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
t′=(Tξ−Ti)∧Ti=Tξ∧Comms(agj ,b

′)t=Comms(agj ,b
′)t[t/t′]∧agi[ag

stage
i ∈{Pop concWf ∗}/agstagei ∈{fin}]

−−−→
Tξ!=Ti∧(Ti+t−Tξ)>0∧β=〈βd,Comms(agj ,b′)t;βins〉

〈agi, α, β,fin, Bi, F, Ti,TF i,WF i〉

39

Pop comm(t=0). Rule for when the communication activity duration ends.

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
Ti=Tξ∧β=〈βd,βins−Comms(agj ,b

′)t〉∧B′
j=Bj [b/b

′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Tξ!=Ti∧(Ti+t−Tξ)=0∧β=〈βd,Comms(agj ,b′)t;βins〉∧b∈Bj

〈agi, α, β,Pop concWF∗, Bi, F, Ti,TF i,WF i〉

Note. Belief exchange via communication is handed directly in Brahms, i.e. when an
agent communicates with another, it directly changes the other agent’s beliefs.

Pop emptyTf. Concludes do not use up any simulation time during execution, since
thoughtframes only contain concludes then an agent will keep executing thoughtframes
until it no longer has any to execute. This rule is for selecting a new thoughtframe when
the current one becomes empty.

RULE: Pop emptyTf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉

α∈{∅}∧agi[ag
stage
i ∈{Pop ∗}/agstagei ∈{Tf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
α=〈αd,∅〉

〈agi, α, β,Tf ∗, Bi, F, Ti,TF i,WF i〉

Pop emptyWf. A workframe which only contains concludes will act like a thought-
frame. This rule is for such workframes so the agent can keep select another work-
frames when the current one becomes empty.

RULE: Pop emptyWf

〈agi, α, β,Pop ∗, Bi, F, Ti,TF i,WF i〉
β∈{∅}∧agi[ag

stage
i ∈{Pop ∗}/agstagei ∈{Wf ∗}]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
β=〈β,∅〉

〈agi, α, β,Wf ∗, Bi, F, Ti,TF i,WF i〉

40

