A Formal Semantics for Brahms*

Richard Stocker!, Maarten Sierhuis?3, Louise Dennis', Clare Dixon', Michael
Fisher!

! Department of Computer Science, University of Liverpool, UK
? PARC, Palo Alto, USA
3 Man-Machine Interaction, Delft University of Technology, Delft, NL
Contact: Richard Stocker (R.S.Stocker@liverpool.ac.uk)

Abstract. The formal analysis of computational processes is by now a well-
established field. However, in practical scenarios, the problem of how we can
formally verify interactions with humans still remains. In this paper we are con-
cerned with addressing this problem. Our overall goal is to provide formal verifi-
cation techniques for human-agent teamwork, particularly astronaut-robot team-
work on future space missions and human-robot interactions in health-care sce-
narios. However, in order to carry out our formal verification, we must first have
some formal basis for this activity. In this paper we provide this by detailing
a formal operational semantics for Brahms, a modelling/simulation framework
for human-agent teamwork that has been developed and extensively used within
NASA. This provides a first, but important, step towards our overall goal by es-
tablishing a formal basis for describing human-agent teamwork, which can then
lead on to verification techniques.

1 Introduction

Computational devices often need to interact with humans. These devices can range
from mobile phones or domestic appliances, all the way to fully autonomous robots. In
many cases all that the users care about is that the device works well most of the time.
However, in mission critical scenarios we clearly require a more formal, and conse-
quently much deeper, analysis. Specifically, as various space agencies plan missions to
the Moon and Mars which involve robots and astronauts collaborating, then we surely
need some form of formal verification for astronaut-robot teamwork. This is needed at
least for astronaut safety (e.g. “the astronaut will never be out of contact with the base”)
but also for mission targets (e.g. “three robots and two astronauts can together build
the shelter within one hour”). But: how are we to go about this? How can we possibly
verify human behaviour? And how can we analyze teamwork?

In [2] a formal approach to the problem of human-agent (and therefore astronaut-
robot) analysis has been proposed, suggesting the model-checking of Brahms mod-
els [10, 18, 14]. Brahms is a simulation/modelling language in which complex human-
agent work patterns can be described. Importantly for our purposes, Brahms is based
on the concept of rational agents and the system continues to be successfully used

* Work partially funded in the UK through EPSRC grants EP/F033567 and EP/F037201.

2 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

within NASA for the sophisticated modelling of astronaut-robot planetary exploration
teams [4, 13, 11].

Thus, it seems natural to want to formally verify Brahms models [2] but, until now,
the Brahms language had no formal semantics (unless you count the implementation
code as this). So, this paper describes the first formal operational semantics [16] for the
Brahms language; in current work we are using the formal semantics to develop and
apply model checking to Brahms.

2 Brahms

Brahms is a multi-agent modelling, simulation and development environment devised
by Sierhuis [10] and subsequently developed at NASA Ames Research Center. Brahms
is a modelling language designed to model human activity using rational agents.

An agent [19] essentially captures the idea of an autonomous entity, being able to
make its own choices and carry out its own actions. Beyond simple autonomy, rational
agents are increasingly used as a high-level abstraction/metaphor for building com-
plex/autonomous space systems [6]. Rational agents can be seen as agents that make
their decisions in a rational and explainable way (rather than, for example, purely ran-
domly). The central aspect of the rational agent metaphor is that such agents are au-
tonomous, but can react to changes in circumstance and can choose what to do based
on their own agenda. In assessing such systems it may not be sufficient to consider what
the agent will do, but we must often also consider why it chooses to do it. The predom-
inant view of rational agents is that provided by the BDI (beliefs-desires-intentions)
model [9, 8] in which we describe the goals the agent has and the choices it makes.
Thus, in modelling a system in terms of rational agents, we typically describe each
agent’s beliefs and goals (desires), which in turn determine the agent’s intentions.

Brahms follows a similar rational agent approach but, because it was developed in
order to represent people’s activities in real-world contexts, it also allows the represen-
tation of artifacts, data, and concepts in the form of classes and objects. Both agents and
objects can be located in a model of the world (the geography model) giving agents the
ability to detect objects and other agents in the world and have beliefs about the objects.
Agents can move from one location in the world to another by executing a move activ-
ity, simulating the movement of people. For a more detailed description of the Brahms
language we refer the reader to [10] and [11]. The key aspects of Brahms are:

activities: actions an agent can perform, which typically consume simulation time;
facts: state of the environment (which every agent/object can observe through the
use of “detectables”);

beliefs: each agent’s own personal perceptions;

detectables: bring facts into the an agent’s belief base and determine how the agent
will react in response;

workframes: sequences of events required to complete a task, together with any
belief updates resulting from the task completion;

thoughtframes: reasoning/thought processes, e.g. ““I believe it is raining therefore I
believe I need an umbrella”;

A Formal Semantics for Brahms 3

— time: central to Brahms as the output is represented in the form of a time-line dis-
playing every belief change and event that occurs.

In summary, the Brahms language was originally devised to model the contextual sit-
uated activity behaviour of groups of people. It has now evolved into a language for
modelling both people and robots/agents. As such it is ideal for describing human-
agent/robot teamwork.

2.1 Brahms Example

Orbital Communications Adaptor (OCA) officer flight controllers in NASA’s Interna-
tional Space Station Mission Control Center use different computer systems to uplink,
downlink, mirror, archive, and deliver files to and from the International Space Station
(ISS) in real time. The OCA Mirroring System (OCAMS) is a multi-agent software
system operational in NASA’s Mission Control Center [15], replacing the OCA officer
flight controller with an agent system that is based on the behavior of the human opera-
tor. NASA researchers developed a detailed human-behavioral agent model of the OCA
officers’ work practice behaviour in Brahms. The agent model was based on work prac-
tice observations of the OCA officers and the observed decision-making involved with
the current way of doing the work. In the system design and implementation phases,
this model of the human work practice behaviour was made part of the OCAMS multi-
agent system, enabling the system to behave and make decisions as if it were an OCA
officer. Here is a short scenario of how the OCAMS system is used in mission control:

The On-board Data File and Procedures Officer (ODF) sends a request to the OCAMS
(personal) agent via their email system. The OCAMS agent parses the request and un-
derstands that the ODF has dropped a zip file to be uplinked to the ISS on the common
server. The OCAMS agent needs to identify the type of file that is being delivered and
decide, based on this, what uplink procedure needs to be executed. Having done so,
the OCAMS agent chooses the procedure and starts executing it, as if it were an OCA
officer. The OCAMS agent first transfers the file and performs a virus scan, and then
continues to uplink the file to the correct folder on-board the ISS. The OCAMS agent
applies the same procedure that an OCA officer would do.

The OCAMS system has been extended over three years [5]. With the latest release
the OCAMS system will have completely taken over all routine tasks from the OCA
officer, about 80% of the workload. Other flight controllers in mission control will in-
teract with the OCAMS agent as if it were an OCA officer. With every new release
(indeed with every increase in functionality) the system developers are required to per-
form complete testing of the system. Increases in functionality mean that there is now
not enough time to test every possible case. The ability to carry out formal verification
and validation of this human-agent system would enable more comprehensive analysis.

3 Overview of Semantics

Rather than presenting the full semantics in detail (see [17]), we consider the core el-
ements of the semantics here and then work through an example Brahms scenario in
Section 4.

4 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

3.1 Time keeping and Scheduling

An important aspect of Brahms is a shared system clock; this creates the simulation
time line and is used as a global arbiter of when activities start and end. Agents are not
explicitly aware of the system clock even though it controls the duration of activities
and can be referred to in the selection of workframes and thoughtframes. As a result,
many applications also involve a clock “object” that agents are explicitly aware of.

The Brahms execution model involves updating the system clock, then examining
each agent in turn to see what internal state changes take place at that time step, and
then updating the system clock once more. The system clock does not update by a fixed
amount in each cycle but makes a judgment about the next time something “interesting”
is going to happen in the system and jumps forward to that point.

3.2 Running Workframes and Thoughtframes

Workframes and thoughtframes represent the plans and thought processes in Brahms. A
workframe contains a sequence of activities and belief/fact updates which the agent/object
will perform and a guard which determines whether the workframe is applicable or not.
A thoughtframe is a restricted version of this which only contains sequences of be-
lief/fact updates. Workframes may take time to complete (depending on the activities
involved) while thoughtframes are assumed to run instantaneously. A workframe can
also detect changes in its environment (facts), bring these changes into the agent’s belief
base and then decide whether or not to continue executing in the light of the changes.
Essentially, workframes represent the work processes involved in completing a task and
thoughtframes represent the reasoning process upon the current beliefs, e.g. “I perform
a workframe to go the shops; on leaving the house I detect it is raining so I suspend my
workframe and update my belief that it is raining, which then triggers a thoughtframe
stating that, since it is raining and I want to go the shops, then I need a raincoat”.

3.3 Priority and Suspension of Workframes and Thoughtframes

Workframes and thoughtframes have a priority (which can be assigned by the program-
mer or derived from their list of activities). Thoughtframe and workframe priorities are
independent, but an agent will execute all thoughtframes first in any given time step
before moving on to examine workframes. At any point in time, the workframe that an
agent is currently working on can be suspended if another, higher priority, workframe
becomes available. Thoughtframes are never suspended because they have no duration
and so always complete before any higher priority thoughtframe becomes available.
When several workframes have the same priority, Brahms considers the currently ex-
ecuting workframe to have the highest priority, any other suspended workframes have
second highest, impassed' workframes will have third highest, and then any other work-
frame will follow. Priorities in Brahms are integers but to model this priority order in
our semantics we assign suspended workframes an increased priority of “0.2” and im-
passed workframes “0.1”. Workframes and thoughtframes of equal status and with joint

! Workframes suspended because of changes in detectable facts.

A Formal Semantics for Brahms 5

highest priority will be selected at random. When a workframe is suspended, everything
is stored, even the duration into its current activity, so the agent can resume exactly from
where it left off.

3.4 Executing plans: Activities and Communication

When an agent is assigned a workframe/thoughtframe all the instructions contained
within it are stored on one of two stacks; one for the current thoughtframe and one for
the current workframe. When an agent executes an instruction it is ‘popped’ off the
top of the stack. Primitive activities and move activities all have time associated with
them — when they are at the top of a stack the duration of the task is decreased by
an appropriate amount each time the system clock updates. If the duration remaining
reaches zero then the activity is finished and popped off the stack. When the activity is
a move activity the belief base of the agent, together with the global facts, are changed
to reflect the new position of the agent/object; this update occurs when the time of the
activity reaches zero.

Communications are also activities and may have a duration. When the communi-
cation ends, a belief update is performed on the target agent’s (the receiver’s) belief
set.

3.5 Detectables

Detectables are contained within workframes and can only be executed if the workframe
is currently active. They detect changes in facts then either: abort, impasse, continue
or complete the workframe. Detected facts are imported into the agent’s belief base
and then either: aborts - deletes all elements from the workframe’s stack; impasses -
suspends the current workframe, continues - carries on regardless; or completes - deletes
only activities from the workframe’s stack but allows it to make all (instantaneous)
belief updates.

3.6 Variables

Variables provide a method of quantification within Brahms. If there are multiple ob-
jects or agents which can match the specifications in a work- or thoughtframe’s guard
condition then the variable can either perform: forone — just select one; foreach —
work on all, one after another; or collectall — work on all simultaneously. This is han-
dled by recursive sets of workframes, e.g.

“Set of Workframes” = {W1,W2,W3:{W3.1,W3.2},W4}

where W3 is a workframe with variables and W3.1 and W3.2 are instantiations of W3
but with objects/agents in the place of the variables. When a workframe with variables
is empty e.g. W3:{} Brahms will invoke a selection function to make instantiations
based on the conditions.

6 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

3.7 Brahms Syntax

Brahms has a complex syntax for creating systems, agents and objects, although there is
no space here to cover the full specification 2. As an example Fig. 1 shows the definition
of an agent’s workframe showing where variables, detectables and the main body of the
workframe are placed. Guards are specified by precondition-decl.

workframe ::= workframe workframe—-name

{

{ display: ID.literal-string 5}

{ type: factframe | dataframe ; }

repeat: ID.truth-value ; }

priority : ID.unsigned ; }

variable-decl }

detectable-decl }

[precondition-decl workframe-body-decl] |
workframe-body-decl }

|~ N e PN

Fig. 1. Example of Brahms Syntax Specification

3.8 Semantics: Notation

In the rest of this paper we use the following conventions to refer to components of the
system, and agent and object states.

Agents: ag represents one agent, while Ag represents the set of all agents.

Beliefs: b represents one belief, while B represents a set of beliefs. In Brahms the
overall system may have beliefs which are represented by Be.

Facts: f represents one fact, while F represents a set of facts.

Workframes: 3 represents the current workframe being executed, WF' represents a
set of workframes, while W is any arbitrary workframe.

Thoughtframes: 7T represents any arbitrary thoughtframe, while TF' represents a set
of thoughtframes.

Activities: Prim_Act! is a primitive activity of duration .

Environment: ¢ represents the environment

Time: T represents the time in general, while a specific duration for an activity is
represented by ¢. The time maintained by the system clock is T¢.

Stage: The semantics are organised into “stages”. Stages refer to the names of the
operational semantic rules that may be applicable at that time, wild cards (x) are
used to refer to multiple rules with identical prefixes. There is also a “fin” stage
which indicates an agent/object is ready for the next cycle, and an “idle” stage
which means it currently has no applicable thoughtframes or workframes.

2 For the full syntax (with an informal semantics) see [12]

A Formal Semantics for Brahms 7

Scripts Superscripts are used in these semantics to extract elements of a structure and
subscripts are used to identify the owner of the component, e.g. ag;**?* would refer

to the “stage” of the agent i.

Since the data structures for workframes are fairly complex we will treat these as a
tuple, (Wy, Wiy,s) where Wy is workframe header data and W, is the workframe
instruction stack. The workframe header data includes

— WT is the workframe’s repeat variable.
— WP is the workframe’s priority.

WV is the variable declaration.

— WP is the workframe’s detectables

— WY is the workframe’s guard.

Here we are considering any possible workframe (W), for the current workframe
we would use 3 (or the name of the workframe). Thoughtframes are structured in a
similar way.

3.9 Semantics: Structure

The system configuration is a 5-tuple description: the first element of the tuple is the set
of all agents; the second is the current agent under consideration; the third is the belief
base of the system, used to synchronise the agents (not used is simulations) e.g. agent
1’s next event finishes in 1000 seconds; the fourth is the set of facts in the environment,
e.g. temperature is 20 degrees celsius; and the fifth is the current time of the system:

System’s tuple = (Ags, ag;, Be, F, T¢)

The agents and objects within a system have a 9-tuple representation: the first is the
identification of the agent; second is the current thoughtframe; third is the current work-
frame; fourth is the stage the agent is at; fifth is the set of beliefs the agent has; sixth is
the set of facts of the world; seventh is the time of the agent; eighth is the set of thought-
frames the agent has; and the ninth is the agent’s set of workframes. The fourth element
of the tuple, the stage, explains which set of rules the agent is currently considering or
if the agent is in a finish (fin) or idle (idle) stage.

Agent’s tuple = {ag;, T, W, stage, B, F, T, TF, WF)
The semantics are represented as a set of transition rules of the form

ActionsPerformed

(Starting Tuple)

— : . (Resulting Tuple)
ConditionsRequiredForActions

Here, ‘ConditionsRequiredForActions’ refers to any conditions which must hold
before the rule can be applied. ‘ActionsPerformed’ is used to represent change to
the agent, object or system state which, for presentational reasons, can not be easily
represented in the tuple.

Finally, it is assumed that all agents and objects can see and access everything in
the environment’s tuple, e.g. T¢.

8 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

4 Running Example of Brahms Semantics

As explained above, rather than giving all the semantics in detail (see [17] for the full se-
mantics), we here work through a small Brahms scenario. Though simple, this scenario
involves many of the aspects available within Brahms and so utilises a wide variety of
semantic rules.

This example scenario is based on that provided in the Brahms tutorial which can be
downloaded from http://www.agentisolutions.com/download. The sce-
nario models two students: Alex, who will sit and study in the library until he becomes
hungry; and Bob who sits idly until the other student suggests going for food. When
Alex becomes hungry he will decide to message Bob and venture out for food. Once
Alex arrives at the restaurant he will wait for Bob to arrive and then he will eat, pay for
the food and return to the library to study. The scenario also contains an explicit hourly
clock object (separate from the system clock) which announces how many hours have
passed, providing Alex with his beliefs about the current time.

Initialisation and parsing of the program code assigns the agents all their initial
beliefs, determines the initial world facts and the geography of the area (distances be-
tween each location etc.). The agent Bob will be ignored in the discussion until his role
becomes active. The initial beliefs of our student (Alex) are:

hungry = 15, Loc = Library, Bob.Loc = Home, 1)
perceivedtime = 0, Clock.time =0, desiredRestaurant = ()

Alex starts in the “fin” (finish) stage. Starting in the finished stage appears counterin-
tuitive, however this “fin” indicates the agents have finished their previous events and
are ready for the next cycle. On system initiaition we assume the agents previous events
have been completed, even though they were empty.

Below is example Brahms code showing one of Alex’s thoughtframes and one of his
workframes. The thoughtframe represents Alex’s thought process for increasing his
hunger as time progresses (Campanile_Clock refers to the clock object) and Alex be-
comes hungrier when he sees that the clock object’s time is later than he believes it is.
He then updates his internal belief about the time and his hunger. The workframe tells
Alex to perform the study activity when both the time and his level of hunger are less
than 20.

agent Alex
{

thoughtframes:
thoughframe tf_FeelHungry
{
when (knownval (Campanile_Clock.time >
current.perceivedtime)
do
{
conclude ((current.perceivedtime =
Campanile_Clock.time), bc: 100);

A Formal Semantics for Brahms 9

conclude ((current.hungry =
current.hungry + 3), bc: 100);

}

workframes:

workframe wf_Study

{
repeat: true;
priority: 1;
when (knownval (Campanile_Clock.time < 20)

and current.hungry < 20)

do

{
study () ;

}
}

Here, “bc: 1007 describes a percentage probability value associated with the belief.
For simplicity we omit further discussion of this in the remainder of the paper.

In later representations of thoughtframes and workframes we will use in the seman-
tics, the above tf_FeelHungry will appear as

(FeelHungry g,
[conclude(perceivedtime = Clock.time); conclude(hungry = hungry + 3)])

where the thoughtframe data FeelHungry,, contains the guard, FeelHungry’ with the
value Clock.time > perceivedtime. Similarly, the wf_Study thoughtframe above
will later appear as (Studyq, [Prim Act3°°]). Note that Study () is a primitive ac-
tivity with duration 3000 seconds and we translate it directly into the primitive activity
representation in the workframe’s instruction stack. Study, includes the repeat variable
Study” = true, the priority Study?™ = 1 and the guard Study? = (Clock.time <
20) A (hungry < 20)

The thoughtframes Alex uses are:
tf -FeelHungry - increases Alex’s hunger;
tf _.ChooseBlakes - tells Alex to choose Blakes restaurant;
tf _ChooseRaleighs - tells Alex to choose Raleighs restaurant.

The workframes Alex uses are:
wf _Study - tells Alex to study;
wf _MoveToRestaurant - tells Alex to move to his desired restaurant;
wf -Wait - tells Alex to do nothing if he is in the restaurant and Bob isn’t present;
wf _Fat - tells Alex to order and eat his food.

The workframes the Clock uses are:
wf _AsTimeGoesBy - increases the clock’s time by 1 hour.

10 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

4.1 System Initiation
Initially the tuples for the Alex agent and the Clock object are

Alex: <agAlezv (Z)a ®7ﬁn7 BAlera Fa 07 TFAleza WFAlez>
Clock: <ObClock7 (2)7 07 ﬁn7 BClock7 F7 07 (2)7 WFC’lock>

where B 4, is as in (1) and

TF ptex = {tf -FeelHungry, tf _ChooseBlakes, tf -ChooseRaleighs}
WPF plex = {wf _Study, wf _MoveToRestaurant, wf - Wait, wf _Eat}
WF ciock = {wf_-AsTimeGoesBy}
Beiock = {time =0}
F = {Alex.Loc = library, Bob.Loc = Home, Clock.time = 0}

4.2 Scheduler Rules

All the semantic rules used by the scheduler have the prefix ‘Sch_’. The scheduler acts
as a mediator between agents keeping them synchronized. It tells all the agents when
the system has started, finished and when to move to the next part of the system cycle.

The scheduler is initiated first in any run of the system. It checks if all agents’ cur-
rent stage is either “active” or “finished”. Since, in our example, it is the beginning of the
system and the default setting for the agents’ stage is finished then the system updates
the stage of each agent to Set_Act. This will cause all the agents to start processing.
This system action is expressed with the Sch_run rule.

RULE: Sch_run

ag;SiagE:Set,Act ’
<Ags,agi,Bg,F,T5> <Agsaagi7B§aFaT§>

Yag; eAgs|a:mge:ﬁnuidle,(T£;&—1)

So, after this rule is executed Alex’s state becomes:
<agAlez7 (Z)v ®7 SethCtv BAlemv Fu 07 TFAZEZ? WFAlez>

While there is an agent in an active (not idle or finished) stage the scheduler waits. If
all the agents are idle the system terminates:

RULE: Sch_Term

<AgsvagivB€7F7T§> <Ags,agi,B§,F,—1>

Vag; €Ags|stage=idle

Agents and objects have their own internal clock but the scheduler manages the global
clock which all agents/objects synchronize with. When agents or objects perform an
activity they inform the scheduler of the time the activity will conclude. Once all agents
are either idle or engaged in an activity (a set of stages marked Pop_CAx, Pop_MAx
and Pop_CAx where “x” is a wild card) the scheduler then finds the smallest of all these

A Formal Semantics for Brahms 11

times and updates the global clock to this time. This is achieved by the ‘Sch_rcvd’ rule:

RULE: Sch_rcvd

T.=Te¢+MinTime(Be (Yag; (T;)))
(Ags, agi, Be, I, T¢) o -

Ags, agi, Be, F, Tt
Vag; EAgs|stage=Pop_-(PAx/MAx/CAx)Uidle,(Te¢#—1) < 9%, a9, e, & £>

4.3 Agents and objects are now invoked

The agents and objects are invoked in order and each processes one rule in turn. In the
Set_Act stage the agents run the Set_Act rule which, in this case, moves them all on
to examining their thoughtframes for applicability. This is the “Tf_** stage which indi-
cates that they will be looking at all the rules beginning with ‘Tf_’. These are rules for
processing thoughtframes. In our simple example there are currently no thoughtframes
available for any objects or agents, so ‘Tf_Exit’ is selected, which moves Alex and the
Clock on to checking for detectables.

In our example, no object or agent has a current workframe which checks detecta-
bles and so ‘Det_Empty’ is invoked which passes them on to checking workframes.
This is the basic cycle of Brahms processing: thoughtframes, followed by detectables,
followed by workframes.

Running workframes. wf_AsTimeGoesBy is the only workframe the Clock can pro-
cess. This contains an activity of 3600 seconds duration and then the Clock increases
its time by 1 hour. The guard on this workframe is that the current value of the Clock’s
time attribute is less than 20, which is currently true so the workframe is put forward
for selection. Since there are no other workframes, the Clock selects this workframe as
current and stores the list of instructions contained within the workframe in a stack.
Meanwhile Alex also selects a workframe for execution using Wf_Select.

RULE: Wf_Select

<agi,®,(2), Wf,*,Bi,F,TZ', TF“ WFZ>

B=Mazp,;(WEWF;|BEWY)

IWEWF;| B, EW9
{agi, 0, B, Wf _(true/false/once), B;, F, T;, TF;, WF;)

This selects Alex’s workframe (wf_Study) and restricts his rule choice to *Wf_true’,
"Wf_false’ or "Wf_once’, depending on the workframe’s repeat variable. The body of
the workframe contains a single primitive activity, Study.

Alex’s state is now

(agaies, 0, (Study,, [Prim act®)) Wf_(true/false/once),
BAl(:‘J;a F7 07 TFAl(:‘J;a WFAlew>

12 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

The next semantic rule selected depends on the repeat variable of the current work-
frame. Here, wf _Study has repeat set to “true” (always repeat) so rule ‘Wf_True’ is
applicable. This does nothing more than pass the agent to the next set of rules used
for handling variables (denoted Var_x). There are two other repeat rules: ‘Wf_False’
(never repeat) means the workframe would be deleted from the set of workframes when
finished; and ‘Wf_Once’ (repeat only one more time) sets the repeat variable in the
workframe to false from this point onward.

Both the Clock and Alex now move to pop elements off the stack associated with
the current workframe. These rules are denoted with ‘Pop_*’.

Popping the stack. Both the Clock object and our Alex agent are now processing the
elements on their current workframe’s stack of activities, using the rules denoted by
‘Pop_’. wf _Study tells Alex to perform a primitive activity (essentially a wait) called
Study with duration 3000 seconds. Meanwhile the Clock has an activity to wait 3600
seconds before updating the time. For convenience we will simply show the current
workframe’s instruction stack in the following tuples, not the full workframe.

The current states of Alex and the Clock are:

<agAlezu (2)7 <StUdyd7 [PrimACt3OOO]>7 POP—* BAlez7 F7 0; TFAlez7 WFAlem>

{ 0bciock, 0, (AsTimeGoesBy,, [Prim Act?%)), Pop_x,
BClock; F>O7 TFC’lock> WFClock>

The Clock and Alex communicate the duration of their current activity to the scheduler
by updating the system’s beliefs about the time they are due to finish their next event.
This is done using the rule ‘Pop_PASend’.

RULE: Pop_PASend

<ag¢7 @, <ﬁ,1, [PrimActt; ﬂms]>, Pop_x,B;, F,T;, TF;, WFZ>
B;=BeU(T;=T;+t)
(agi, 0, (Ba, [Prim_Act®; Bins]), Pop_PAx, B;, F,T;, TF;, WF)

(Recall that individual agents can still act upon the main system state, e.g. Tt and B¢
here.) Once all the agents have communicated their duration (excluding idle agents) the
scheduler compares their durations to find the shortest activity and updates its internal
clock using ‘Sch_rcvd’. In this case it updates the time from 0 to 3000 which is when
Alex’s activity will finish.

Both Alex’s and the Clock’s time remain at 0 but the global clock is now at 3000.
The ‘Pop_PA*’ rules all have a time difference as a guard and act to decrease the
remaining duration of the current activity and update the agent/object’s internal time
keeping.

In this situation the Clock object’s primitive activity duration is decreased to 600.
Alex’s activity will have finished (since it is 3000) and a different rule, ‘Pop_PA(t=0)’
is invoked:

A Formal Semantics for Brahms 13

RULE: Pop_PA(t=0)

(agi, 0, (Ba, [PrimAct’; Bins]), Pop_PAx, B;, F,T;, TF;, WF;)

T{=T¢

~(T¢=T;),T;+t—Te=0

(agi, B, {Ba, Bins), Pop_concWfx, B, F, T, TF;, WF)

Alex has now moved on to a stage where he will only perform ‘conclude’ actions in a
workframe stack (denoted by stage *Pop_concWf*’). There are no conclude actions on
the stack so he is transferred to the workframe rules ‘Wf_** once more.

4.4 The Cycle Continues

The simulation continues to run and the Clock’s time attribute is updated when its
primitive activity finishes. This means Alex’s belief about his perceived time no longer
matches the Clock’s time. Alex’s thoughtframe, tf _FeelHungry, becomes active. This
places two “conclude” instructions on Alex’s current thoughtframe stack. As mentioned
above, thoughtframes act like workframes but only involve belief updates (conclude in-
structions) and so take no time. The rule ’Pop_concTf" updates an agent’s belief using
a thoughtframe.

RULE: Pop_concTf
<agi7 Qv <Bd7 [ConCZUde(b = 1)); BMSD? POp,*, Bi7 F7 Ti7 TFH WFZ)

B}=B;/{b=v"}u{b=v}

b=v'€B;

(agi, 0, (Bd, Bins), Pop_*, Bi, F, T;, TF;, WF})

After applying ‘Pop_concTf” twice to conclude first perceivedtime = Clock.time and
then hungry = hungry + 3 Alex’s beliefs are:

hungry = 18, Loc = Library,
Bob.Loc = Home, percievedtime = 1,
Clock.time = 1, desiredRestaurant = ()

Alex continues to study. The cycle of Alex and the Clock counting time, studying and
increasing hunger continues until the point where Alex’s hunger level is 21 or above
and he decides it is time to find some food.

The situation is as follows: the simulation time is 10800; Alex’s hunger is 21; the
Clock’s time attribute is 2 and it has just completed a primitive activity causing Alex’s
tf _FeelHungry thoughtframe to execute; Alex has an active workframe with 1200 sec-
onds remaining of study time. However, a thoughtframe has now been activated and has
updated Alex’s beliefs to conclude that his intended restaurant is Raleigh’s. In our tuple
representation the states of the Alex agent and the Clock object are:

<agAle;v> wv <StUdyd7 [PrimAc{:lQOO])aPOpf* BAlezan 108003 TFAlex; WFAlex>

14 Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

<ObClock7 (Z); @»ﬁnv BCZoclm F7 10800; TF Clock WFClock>

Alex is now hungry. Although Alex has a currently active workframe, the workframe
wf _MoveToRestaurant is now applicable and has a higher priority. This requires that
the current workframe is suspended. This is achieved by creating a new workframe
which stores wf _Study’s remaining instructions. This is achieved by ‘Wf_Suspend’.

RULE: Wf_Suspend

<agi7®7 </8d76ins>7wff*7Bi7F7Ti7 TFW WFZ)

B'=B[BP™ /(BPT+0.2)], WF = WF,;UB’

IWEWF; | B; |=W9&WPTi > (8PTi1+0.3)
<agi7 @7 Q)a Wf**a B’i7 F7 T’i7 TF’H WF;>

where we use the notation 387" /(37" + 0.2)] to indicate that the priority value of /3
has been replaced by 5P" + 0.2.

After applying this rule Alex’s set of workframes becomes

wf _Study, wf_Wait, wf_Fat

WF { (Studyq, [Primact'™)), wf_MoveToRestaurant, }
Alex —

Alex calls Bob to meet. A simple communication activity is performed by Alex dur-
ing a workframe which sends a message to Bob indicating that he wishes to meet for
food. This communication works like a primitive activity followed by a simple be-
lief update, the primitive activity would represent the duration of the communication.
This communication will change the beliefs Bob has about Alex such that Bob will
now believe (for simplicity) meetAlex = true, Alex.desiredRestaurant
= Raleigh. Bob will then perform actions, similar to Alex’s in the following, in or-
der to get to Raleigh’s restaurant.

Alex goes out for food. Alex has now selected a workframe to move to Raleigh’s
restaurant, wf _Move ToRestaurant. This workframe is different to those we have seen
previously because it has a move activity, which acts like a primitive activity followed
by a conclude. The primitive activity has the duration dependant on journey time (cal-
culated via pre-processing) and the conclude updates beliefs and facts of the our agent’s
location which, in this case, will be Raleigh’s restaurant.

Waiting for Bob. Alex has arrived before Bob, so Alex initiates a workframe to wait
for Bob. This workframe contains a detectable which detects when Bobs location is
Telegraph_Av_2405. When Bob eventually arrives, an external belief (a fact) is
updated which activates the detectable. The detectable on Alex’s workframe which is
of type ‘Abort’. This abortion will cancel the current workframe and any activities Alex

A Formal Semantics for Brahms 15

is working on but will also update his beliefs to match the fact (Bob’s new location).
The abort is is handled by ‘Det_Abort’:

RULE: Det_Abort
<agi7 (2)7 <ﬁd7 ﬁins>, Det,*, Bi7 F, Ti, TF“ WF,L>

Bj;=B;UF’

3deBP|3F' CF|=d9&dtvre=Abort

<0,g“®7@,D€t,*,B:,T1,F, TFL7 WF'L>

where d is the current detectable, 37 is the set of all detectables for workframe 3, d¢
is the guard condition of the detectable d, and d'¥?¢ is the detectable type: Impasse;
Complete; Continue; or Abort.

Scenario Conclusion. Alex’s waiting has now been terminated and guards are satisfied
for him to start the workframe to eat with Bob. The scenario finally terminates when
the Clock object’s time attribute has reached 20 hours, this is an additional condition in
every single workframe/thoughtframe. After 20 hours each entity will no longer have
any frames active so they all enter an idle state prompting the scheduler to use the
‘Sch_Term’ rule.

5 Concluding Remarks and Future Work

In this paper we have outlined the first formal semantics for the Brahms language.
While the full semantics is given in the associated technical report [17], the worked
scenario described above demonstrates much of the semantics of Brahms, including
the most important aspects: selection of workframes and thoughtframes; suspension
of workframes when a more important (higher priority) workframe becomes active;
detection of facts; performance of ‘concludes’, primitive activities, ‘move’ activities
and communication activities; and the use of the scheduler.

This formal semantics provides us with a route towards the formal verification of
Brahms applications. Using these operational semantics we can devise model checking
procedures and can either invoke standard model checkers, such as Spin [7] or agent
model checkers such as AJPF [1]. Currently we are developing a translator for Brahms
which, via the transition rules in our semantics, will then be able to generate input for a
range of model checkers such as Spin, AJPF or NuSMV [3].

As well as developing a model checking tool, we are also currently identifying a
suite of example Brahms scenarios (together with their required properties) for evaluat-
ing this tool. For the small Brahms example developed in Section 4, we might wish to
verify that: “Alex will never starve”; or “Alex will eventually reach Raleigh’s”. Brahms
is an important language. It has been used to model very extensive applications in
agent-human teamwork. While we have emphasized applications in space exploration,
Brahms is equally at home in describing more mundane applications in home health-
care or human-robot interaction. As such the formal verification of this language would
be very useful for assessing human safety; the operational semantics developed here are
a necessary first step towards this.

16

Richard Stocker, Maarten Sierhuis, Louise Dennis, Clare Dixon, Michael Fisher

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18
19

R. H. Bordini, L. A. Dennis, B. Farwer, and M. Fisher. Automated Verification of Multi-
Agent Programs. In Proc. 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 69-78, 2008.

. R. H. Bordini, M. Fisher, and M. Sierhuis. Formal Verification of Human-Robot Teamwork.

In Proc. 4th ACM/IEEE International Conference on Human Robot Interaction (HRI), pages
267-268. ACM Press, 2009.

. A. Cimatti, E. M. Clarke, F. Giunchiglia, M. Roveri. NUSMV: A New Symbolic Model Ver-

ifier, 1999 Computer Aided Verification, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, Springer, 1999.

. W. Clancey, M. Sierhuis, C. Kaskiris, and R. van Hoof. Advantages of Brahms for Specifying

and Implementing a Multiagent Human-Robotic Exploration System. In Proc. 16th Florida
Artificial Intelligence Research Society (FLAIRS), pages 7-11. AAAI Press, 2003.

. W.J. Clancey, M. Sierhuis, C. Seah, F. Reynolds, T. Hall, and M. Scott. Multi-Agent Simu-

lation to Implementation: A Practical Engineering Methodology for Designing Space Flight
Operations. In Proc. 8th Annual International Workshop on Engineering Societies in the

Agents World (ESAW), LNAI, Springer, 2008.

. L. A. Dennis, M. Fisher, A. Lisitsa, N. Lincoln, and S. M. Veres. Satellite Control Using

Rational Agent Programming. IEEE Intelligent Systems, 25(3):92-97, 2010.

. G.J. Holzmann Software model checking with SPIN. Advances in Computers, 2005.
. A.S.Rao and M. Georgeff. BDI Agents: From Theory to Practice. In Proc. Ist International

Conference on Multi-Agent Systems (ICMAS), pages 312-319, San Francisco, USA, 1995.

. A. S. Rao and M. P. Georgeff. Modeling Agents within a BDI-Architecture. In Proc. Con-

ference on Knowledge Representation & Reasoning (KR). Morgan Kaufmann, 1991.

M. Sierhuis. Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling and
simulation language for work system analysis and design. PhD thesis, Social Science and
Informatics (SWI), University of Amsterdam, The Netherlands, 2001.

M. Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations.
(See http://ic.arc.nasa.gov/ic/publications), 2006.

M. Sierhuis. Brahms Language Specification.

(See http://www.agentisolutions.com/documentation/language/
LanguageSpecificationV3.0F.pdf).

M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. V. Hoof, R. Jeffers, and A. Uszok. Human-
Agent Teamwork and Adjustable Autonomy in Practice. In Proc. 7th International Sympo-
sium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2003.

M. Sierhuis and W. J. Clancey. Modeling and Simulating Work Practice: A Human-Centered
Method for Work Systems Design. [EEE Intelligent Systems, 17(5), 2002.

M. Sierhuis, W. J. Clancey, R. J. v. Hoof, C. H. Seah, M. S. Scott, R. A. Nado, S. F. Blumen-
berg, M. G. Shafto, B. L. Anderson, A. C. Bruins, C. B. Buckley, T. E. Diegelman, T. A. Hall,
D. Hood, F. F. Reynolds, J. R. Toschlog, and T. Tucker. NASA’s OCA Mirroring System: An
application of multiagent systems in Mission Control, 2009.

G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Denmark, 1981.

R. Stocker, M. Fisher, L. Dennis, and C. Dixon. A Formal Semantics for the Brahms Lan-
guage. (See http://www.csc.liv.ac.uk/ rss/publications),2011.

R. van Hoof. Brahms website: http://www.agentisolutions. com, 2000.

M. Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

