
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/286810296

Virtual	Environments	for	Computational	and
Analytical	Modeling:	A	Telemedicine
Application

Article		in		Lecture	Notes	in	Business	Information	Processing	·	January	2012

DOI:	10.1007/978-3-642-27612-5_8

CITATIONS

0

READS

19

4	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

A	Neural-Network-Based	Behavioral	Theory	of	Tank	Commanders	View	project

Social	Proof	and	EWOM	View	project

Tung	Bui

University	of	Hawai'i	System

143	PUBLICATIONS			2,314	CITATIONS			

SEE	PROFILE

Alexandre	Gachet

Université	de	Fribourg

25	PUBLICATIONS			190	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Alexandre	Gachet	on	05	April	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/286810296_Virtual_Environments_for_Computational_and_Analytical_Modeling_A_Telemedicine_Application?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/286810296_Virtual_Environments_for_Computational_and_Analytical_Modeling_A_Telemedicine_Application?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/A-Neural-Network-Based-Behavioral-Theory-of-Tank-Commanders?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-Proof-and-EWOM?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tung_Bui2?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tung_Bui2?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Hawaii_System2?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tung_Bui2?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Gachet?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Gachet?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Fribourg?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Gachet?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre_Gachet?enrichId=rgreq-dd38b6b968a698c7f17f01bd5e204123-XXX&enrichSource=Y292ZXJQYWdlOzI4NjgxMDI5NjtBUzozNDc0MzcyOTEwNjUzNDRAMTQ1OTg0NjkxMzgwNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

D. Dolk et al. (Eds.): Decision Support Modeling in Service Networks, LNBIP 42, pp. 169–195, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Virtual Environments for Computational
and Analytical Modeling: A Telemedicine Application*

Tung Bui1, Daniel Dolk2, Alexandre Gachet1, and Hans-Jürgen Sebastian3

1 University of Hawaii
{Tung.Bui,Gachet}@hawaii.edu

2 Naval Postgraduate School

drdolk@nps.edu
3 Deutsche Post Chair of Optimization of Distribution Networks

RWTH Aachen University
Sebastian@or.rwth-aachen.de

Abstract. Virtualization is commonly known in computer science as an
abstraction technique of computer resources – physical platforms and resources
– so that applications or end-users can seamlessly interact with these resources
without the needs to deal with physical requirements. Going beyond the
simulation of computer environments and resources, this paper proposes a
paradigm for designing complex information systems based upon the concept of
virtual modeling. The idea is to allow modelers use a virtual environment that is
composed of real modeling platforms to replicate complex real problems, and
explore new and virtual problems that might have high potential for real–life
applications. Modeling here is not just an effort to find (new) solutions to an
existing problem, rather it is also a discovery process seeking to create new
(problems). We see this approach as vital in addressing the applications
emerging from service science, management and engineering (SSME), which
will rely upon computational modeling approaches as much, if not more, than
traditional supply-chain based analytical modeling. We illustrate our design
methodology with a telemedicine application using Brahms, a multi-agent
programming language developed by the NASA.

Keywords: Information Systems Modeling, simulation and decision support,
service system, SSME, virtual environments, telemedicine.

1 Introduction

With the advent of high performance computing systems, modeling has become both
a process of explanation (e.g., knowledge representation, business process
engineering and re-engineering formally coded in executable code) and a process of
exploration (e.g., action-driven artificial intelligence software, decision support
systems, agent-based simulation). Carley [3] argues that organizational computing has

* The authors would like to thank Stephen Kimbrough, Wharton School, and Murray Turoff,

NJIT, for their inspirational work on virtuality and their suggestions for this paper.

170 T. Bui et al.

evolved toward an inquiry process related to information, knowledge and
computation, and this process has led to a wide range of advanced I.S. applications
(e.g., flight simulators, remotely-controlled robots for task-specific applications, and
virtual classrooms). Within this expanded scope, modeling can be viewed as a process
that not only replicates models of realities but is also capable of creating life-like
situations that appear real, yet have no correspondence in reality [29,37]. For
example, a computerized business game is modeled after the realities of competition.
However, as it becomes a tool for exploring new competitive strategies, the emerging
rules of virtual competition might nevertheless lead to real actions. Another classic
example is SimCity.

In this paper, we discuss the evolution of both virtuality and modeling in the
context of modeling for problem solving with a focus on services science,
management and engineering (SSME). We argue that virtuality has evolved to a state
in which, only under certain modeling objectives and conditions, should reality be
used as a reference. We also contend that modeling under virtual environments
requires a new paradigm that views computation as both an experimentation and
explanation process. We advocate a paradigm shift in developing a computational
model. A negotiated reality – an application environment that situates within the
reality-virtuality continuum – requires both the modeler and the users of the model to:
(i) use a formal language for describing and explaining the functions and behaviors of
a phenomenon and its environment, and (ii) use the power of information
technologies to search and experiment with new environments that would best address
the problem at hand. Negotiated reality may be a particularly relevant context in
which to consider SSME applications since service activities require a much higher
degree of cooperation and coordination between provider and consumer than is
typically the case with commodity-based economic transactions. We will elaborate
this thesis by emphasizing the concepts of computational experimentation and
computational explanation.

The paper is organized as follows. Section 2 discusses the evolution of the concept
of virtuality. It serves as a foundation to explore in Section 3 how computational
modeling and problem solving converge thanks to the joint consideration of reality
and virtuality (Fig. 1). In Section 4, we propose a software modeling methodology
called Virtual Environment for Computational and Analytical Modeling (VECAM)
that applies model management design principles for analytical modeling to generate
requirements desiderata for computational modeling environments. Through the
discussion of a telemedicine service application, we demonstrate how VECAM can be
implemented as a design methodology, one that is particularly relevant to service
science, management and engineering (SSME).

2 Evolution of Virtuality

We examine the concept of virtuality in progressive stages, looking first at the role of
modeling and simulation in scientific inquiry to see how virtual environments are
becoming more integral to that process. We then posit a virtuality spectrum which

 Virtual Environments for Computational and Analytical Modeling 171

includes the key concept of negotiated reality which we see as one of the
distinguishing aspects of services-based applications. We discuss how negotiated
reality in concert with virtual environments support SSME concepts and applications.

Fig. 1. VECAM framework

2.1 Modeling and Simulation in the Scientific Method

We begin by examining the role of modeling and simulation in the scientific method
as characterized by [16]. Fig. 2a shows the traditional interplay between theory and
experiment which has earmarked science since the beginning of the Enlightenment
until the advent of digital computers. Fig. 2b shows the emergence of modeling and
simulation in this process as a result of the use of digital computing. In this scenario, a
Model is a formal representation of reality which implements a Theory, and a
Simulation elicits the behavior of the Model, usually over time, thus corresponding to
an Experiment. Models in this context have largely been what we call analytical
models in that they are primarily mathematical in nature, for example systems of
partial differential equations, mathematical programming, and the like. We use the
term simulation in the larger sense of an experimental design for solving and
analyzing a model using various forms of sensitivity analysis and/or goal-seeking, as
opposed to the more specific context of various simulation technologies such as
discrete or continuous event simulations. Not all models are dynamic, for example, a
mathematical programming model for determining the optimal location of a
warehouse is spatially, rather than temporally, oriented. Nevertheless, it makes sense
to think of an experimental design, or simulation, for testing and analyzing such a
model even though it may be time independent.

172 T. Bui et al.

Fig. 2. Role of modeling and simulation in scientific inquiry [16]

Fig. 2c shows the next stage in the scientific method which moves beyond
analytical modeling and squarely into the arena of virtual environments. In this
scenario, Hamming envisions networks of virtual environments that eventually can be
linked via shared semantics. This is model integration in the large, and relies heavily
upon computational modeling and the methodology of computational experimentation
for the creation and maintenance of virtual environments. We take pains to
emphasize that analytical modeling is not rendered obsolete in this context, but rather
subsumed and integrated under the umbrella of computational modeling. We will
indicate ways in which this can be achieved, specifically through a VECAM
architecture.

2.2 The Virtuality – Reality Continuum

According to the Oxford English Dictionary, “virtual reality” is a state or an object
that is “not physically existing, but made by software to appear to do so from the
point of view of the program or user”. This definition depicts a fundamental
characteristic of virtuality. According to Turoff, it is a process of negotiated reality in
which the artifacts of computer systems are adopted by their users as “agreed-upon”
reality [37]. In this process, the reality becomes simply more and more artificial [10]
while the virtuality becomes more and more real. The virtuality-reality continuum can
be explained as a constant search for truth using analytical, experiential, conflictual,
synthetic and pragmatic approaches [28].

Fig. 3. The evolution of virtuality - from real to virtual environments

 Virtual Environments for Computational and Analytical Modeling 173

Table 1. The Reality-Virtuality continuum with some application examples

REALITY-
VIRTUALITY

CONTINUUM
APPLICATIONS

CHARACTERISTI

CS
OBJECTIVES EXAMPLES

AUGMENTED

REALITY
Simulation Replicate a

business
behavior

Generate
lifelike
behavior in
either cost-
effective or
accelerated
simulated
environment

Queuing
applications;
flight
simulator;
technological
forecasting;
futures
research

AUGMENTED

VIRTUALITY
e-environments Create a task in

an electronic
environment
that is different
than reality

Use agent-
based systems
for complex
applications on
the Internet

e-classroom,
Internet-
supported
distributed
teamwork

VIRTUAL

ENVIRON-
MENTS

Virtual
communities
(e.g., users’
groups)

Social
connectedness
in cyberspace

Create new
communities
(e.g., virtual
cities with
avatars)

MUD (Multi-
User
Dungeons),
MOO (Object-
oriented
MUDs);
Second Life;
Facebook
groups

Yet, negotiated reality implies a number of implicit but fundamental assumptions
about modeling that depend on the way the modeler approaches the “reality-
virtuality” continuum. As evidenced by several recent systems [22], the reality-
virtuality continuum spans from real environments to augmented reality to augmented
virtuality and to virtual environments [27] (see Fig. 3 and Table 1). One contrasting
dimension of this continuum is the unity of space, time and place in a real
environment compared to a dislocation by information and communication
technologies and the omnipresence of the WWW in a virtual environment (for
example, the traditional classroom versus the distributed e-classroom).

There are two notions that may be relevant here in the discussion of real and virtual
environments: coherence and correspondence. Coherence is a measure of how well a
virtual environment holds together internally. Does it exhibit consistent behavior

174 T. Bui et al.

within the boundaries of its environment? Is it believable by the users who interact
with it? Does it conform to its internal “laws”? A computer game such as SimCity or
a combat simulation would have coherence as a desirable property. Correspondence
refers to how well the virtual environment corresponds to a real world counterpart.
This is closely related to the concept of “external validation”. For example, if we
build a synthetic economy, we may want that economy to emulate the real world
economy to a specified degree of verisimilitude.

The same is true for many operations research and management science (OR/MS)
models, including simulations (e.g., business games). Virtual worlds could also be
categorized by the degree of correspondence that is required of them. A recreational
computer game such as SimCity may have a low correspondence requirement. Other
virtual worlds such as flight simulators may have a partial correspondence
requirement that gives the user a sense of the “real world” but not necessarily align
completely. An OR model on the other hand may require as complete a
correspondence as necessary.

This issue arises in the field of artificial life (AL), for example. AL researchers
build elegant virtual environments which mimic the outcomes of evolutionary and
biological processes quite impressively. However, they are continually criticized by
the scientific establishment for having little, or no, correspondence. The coherence-
correspondence relationship has become intertwined and pervasive in the information-
based world in which we live (Table 2), and scientists in a number of fields have
captured it from a variety of perspectives (Tables 3 and 4).

Kimbrough [21] argues that to deal with complex problem solving, we need a
modeling language that is capable of explaining the real world (i.e., extract the basic

Table 2. Characteristics of virtuality

CHARACTERISTICS

OF VIRTUALITY
ATTRIBUTES EXAMPLE

Visual Unreal, but looking real Optics: real and virtual picture of an
object look the same, but the virtual
picture can’t be caught on
photographic paper

Place Immaterial, but provided
by ICT

Virtual library, virtual database,
virtual classrooms

Time Potentially present On-line or offline web services or e-
communities

Evolution Existing, but changing Dynamic reconfiguration of adaptive
systems

 Virtual Environments for Computational and Analytical Modeling 175

characteristics of the reality and explain how it works), and of experimenting with it
(i.e., use the model that is derived from real-life and experiment with it using
conditions that may not (yet) exist in reality). The Delphi method [24] could be
interpreted as an example of such a modeling language. Using a structured approach
to communications, Delphi could be described as a participatory rituals for reflection
and imagination in a highly complex and uncertain scenario [24].

We see the trend towards experimentation as inevitable and it coincides with the
growing complexity of the problems to be solved as well as the exponential progress
in computer processing capacity. Experimentation in the context of negotiated reality
is the iterative search for the virtuality configuration that finds the best interplay
between perceptual-motor, cognitive and social aspects of people and computer
systems. Thus computational experimentation is both a science of discovery and an
engineering design methodology.

Table 3. Computing requirements for virtuality in the Reality-Virtuality continuum

APPLIC-
ATIONS

MODEL DATA INTERFACE
INFO-

STRUCTURE

REAL

ENVIRONMENTS

▼

AUGMENTED

REALITY

AUGMENTED

VIRTUALITY

▲

VIRTUAL

ENVIRONMENTS

Simulation Replicate
a close-to-
real-life
business
behavior

Queuing
applications;
flight
simulator

3D GUI;
robotics

Stand-alone
with
advanced
real-time
sensor or
high-
performance
computing
i l t

e-environ-
ments

Achieve a
task in an
electronic
environment
that is
different
than reality

e-classroom,
Internet-
supported
distributed
teamwork

Distributed
multi-media
platform

High
bandwidth
networks;
cloud
computing
platforms

Virtual
commun-
ities

Social
connected-
ness in
cyberspace

MUD, MOO Instant-
Messenger-
like
technology

Internet;
Virtual-
ization

176 T. Bui et al.

Table 4. Definitions of virtuality – An inter-disciplinary perspective

DISCIPLINE CHARACTERISTICS SOME REFERENCES

Philosophy High technology applications of the
general principle that humans are self-
defining creatures
Inquiring systems and reality
construction

[24]
[36]

Management
Science/ Operations
Research

Conceptualization and abstraction of
real-world via modeling and simulation
Inquiring systems (e.g., Delphi)

[28]
[29]

Computer Science Property of a computer system with the
potential for enabling a virtual system (in
a computer) to become a real system;
create model without coding

[23]
[37]

Sociology Departure from everyday reality to
construct identity in the culture of
simulation, thus eroding boundaries
between the real and the virtual; create
new forms of identities as they work and
play with the new technologies

[34]
[36]

Information
systems

A new way of representing the world that
is proving its value for understanding,
monitoring and controlling natural
processes; Scenario management

[19]

2.3 Modeling of Service Systems: Negotiated Reality and SSME

The relationship of virtual environments to service science, management and
engineering (SSME) is one that has not yet been examined closely, most likely
because the field of SSME is relatively new and still searching for guiding principles
and concepts.

The formal representation and modeling of service systems is nascent, largely
because of the complexity of modeling people, their knowledge, activities, and
intentions. Service system complexity is a function of the number and variety of
people, technologies, and organizations linked in the value creation networks. The
challenge lies not simply in formally modeling the technology or organizational
interactions, but in modeling the people and their roles as knowledge workers in the
system [25].

Modeling requirements for service systems subsume conventional analytical
modeling techniques. Although traditional operations research models, for example,

 Virtual Environments for Computational and Analytical Modeling 177

may still play an important role in service system analysis [11], the organic (versus
hierarchical) perspective implied above suggests that computational experimentation
approaches may be equally, if not more relevant, for capturing the people-based and
knowledge-based dimensions of value creation networks.

Consider, as a very simple example, the well known MIT Beer Game simulation
which demonstrates how local optimization of activities performed by each node in a
beer supply chain (Factory->Distributor->Wholesaler->Retailer) leads to
dysfunctional global system behavior such as the bullwhip effect where demand is
cyclically over- and underestimated. Kimbrough et al. [20] show how an agent-based
representation of the problem leads to a system optimum which is Pareto superior for
all nodes in the chain. Although the optimization model can be formulated and solved
at the overall system level, it is difficult to envision how it may realistically be
implemented. What the Beer Game experiments and the agent-based model suggest
is how a negotiated reality environment, one wherein each of the service providers
plays the role actually corresponding to his/her “real life” role, may reveal improved
service strategies in reality which benefit all players in the supply chain.

One of the salient features of service systems is that participating players must rely
more heavily upon cooperation than competition. Inter-network dynamics may be
competitive but intra-network processes are largely cooperative. This increased need
for cooperation in turn relies heavily upon negotiation (e.g., service level agreements)
as a critical element in service-based processes. We therefore return to the negotiated
reality aspect of virtual environments as playing a key role in the modeling of SSME.

It appears that computational modeling and virtual environments are in the
ascendant as instruments of exploration and analysis of reality, and that this may very
likely be the case as well with service-based applications. However, we do not
believe that this argues in any way for the obsolescence or decreased importance of
the more conventional analytical modeling techniques and environments. As the Beer
Game example demonstrates, there is substantive value to both approaches. What we
would like to achieve is a synthesis in the form of an architecture for virtual
environments which not only supports both analytical and computational modeling,
but facilitates their integration in the spirit of Fig. 2c. In the next section, we outline
guidelines and design principles for such an architecture.

3 Virtual Environments (VE) for Computational and Analytical
Modeling (CAM): An Integrative Approach

This concept paper is an attempt to introduce the reader to the basic notions about
virtual environments for computational and analytical modeling (VECAM). But what
does the “for” really mean? At least two possibilities come to mind: “Virtual
environments in support of computational and analytical modeling (VECAM)” and
“Virtual environments created by computational and analytical modeling
(CAMVE)”. The former in our view emphasizes the Science of Design resulting in
artifacts such as model management systems, collaborative environments, libraries of
meta-heuristic solution procedures and grid arrays for solving systems of large-scale

178 T. Bui et al.

simulation and optimization models. Many other examples could be cited. Broadly
speaking, the purpose of these systems is to help modelers solve a wider array of
more complex problems than they currently can address feasibly, including the
integration of existing models.

The latter is oriented more towards decision-makers, and embodies the traditional
view of DSS as “models in support of decision-making”. By its very nature, any
model comprises a virtual world, by dint of the assumptions it makes about which
details of the “real world” to emphasize and which to ignore. Certainly, the agent-
based phenomenon plays a central role in this category embracing both the real and
virtual worlds. We contend that the essence and potential of virtuality is such that
modeling virtuality and using virtuality to model reality present contemporaneously
rich opportunities and challenges for the scientific community.

In this section, we adopt the VECAM perspective, specifically examining agent-
based modeling and simulation (ABMS) platforms for computational modeling in the
context of model management research. We observe that ABMS environments are
roughly at the same level of software maturity that analytical systems such as
optimization modeling were twenty years ago. We apply design principles learned
about analytical modeling environments from model management to generate
requirements desiderata for computational modeling environments. In this way we
hope to achieve a rapprochement that facilitates development of environments which
support computational and analytical modeling simultaneously. In the Section 4, we
take up the CAMVE perspective and show how such a system can be used to create
a virtual service environment in the telemedicine domain.

3.1 The VECAM Platform

To help bridge the gap between analytical and computational modeling environments,
we advocate the definition of a bi-level, integrative framework inspired by the basic
principles of analog transmission in the field of telecommunications. In analog
transmission, data is transmitted using two components: a carrier wave and a signal.
The carrier wave is a waveform that is modulated by the signal that is to be
transmitted. This carrier wave is of much higher frequency than the modulating signal
(the signal which contains the information). The reason for this is that it is much
easier to transmit a signal of higher frequency, and the signal will travel further.

By analogy, the language that we propose consists of two components (Fig. 4). On
the bottom level, a formal “carrier” middleware supports the modeling of all the
social interactions in the virtual environment and offers the infrastructure needed to
explain behaviors and describe environments. On the upper level, an unbounded set of
formal languages (by analogy, a set of different signals) support the modeling of
cognitive and reasoning operations.

We define this framework as integrative because it unites two families of existing
platforms and languages. On the one hand, analytical modeling languages have been
around for a long time (for example, mathematical, rule-based, heuristic, analog, and
social modeling systems). However, just as an analog signal does not travel far on a

 Virtual Environments for Computational and Analytical Modeling 179

conductive medium without a carrier wave, the knowledge created by such languages
does not travel far in a virtual environment without carrier middleware. On the other
hand, agent-based languages can play the role of the carrier middleware. The next
section focuses on the carrier middleware. Section 3.3 focuses on analytical modeling
languages.

Fig. 4. The VECAM modeling framework

3.2 Carrier Systems to Support Virtual Environments

We use agent-based modeling and simulation (ABMS) platforms as exemplars of
computational modeling environments. Recent years have seen a rapid growth in the
number of multi-agent platforms, with a current total of at least 150 products1.
However, modeling software in the ABMS domain is currently at a relatively
immature level when viewed from a model management perspective. For example,
[Nguyen 2008] conducted a survey of six popular agent toolkits (SWARM, NetLogo,
AnyLogic, Ascape, MASON, REPAST) focusing upon agent structure(s) and the
technique(s) for representing agent behavior which each system employs (e.g., state
transition graphs, programming language procedures, rules, etc.). Without exception,
some level of software coding knowledge is required for the construction and
execution of agent-based models using these systems. Further, there are very limited
higher level agent representation schemas; of the six systems surveyed, only
AnyLogic provides any capability in this realm in the form of state transition graphs
for capturing agent behaviors. All systems, however, do provide libraries of reusable
executable models which can be retrieved and modified.

This situation is similar in many ways to where modeling software for operations
research and management science (OR/MS) applications was two or three decades
ago. Linear programming systems, for example, used to employ matrix generators as
the standard model representation. This required modelers to view and manipulate
models as matrices at a machine level of representation instead of in a more natural
mathematical form. Model representation formalisms such as structured modeling
[14] and modeling languages such as AMPL were eventually developed to overcome
this drawback [12]. As a result, the universe of model builders expanded from the
highly focused specialist who had to know Fortran and mathematical programming in

1 UMBC AgentWeb website, http://agents.umbc.edu, accessed September 20, 2010.

180 T. Bui et al.

order to develop models. We would like to replicate the success of software evolution
in the domain of OR/MS to the area of agent-based modeling environments, and
incorporate some of these design advances into a broad conceptual architecture for a
VECAM platform. In this vein, we see the following requirements as desirable,
although not exhaustive, features of a computational modeling environment:

1. Generalized representations for agent structure and behaviors. The desideratum
here is that model builders be freed from having to be Java programmers in order
to build agent-based virtual environments. This, in turn, requires higher level ways
of representing agent-based models. Static agent structures are relatively simple,
often consisting of little more than attributes one might specify in a normalized
relational table. Dynamic behaviors, however, are considerably more complex to
represent and may require a portfolio of representation formalisms such as state
transition diagrams, workflow diagrams, decision trees, and event diagrams.
Higher level languages with corresponding graphical interfaces for specifying
agents in these formalisms are necessary.

2. Separation of model representations from data. Agent-based models are typically
less data intensive at run time than analytical models. Often the bulk of data
processing in ABMS is at the front end of model building in the form of data
mining to derive agent behaviors. Nevertheless, any data required for model
development and execution should be logically separated from the agent
representation.

3. Separation of model representations from solvers. Existing ABMS platforms are
best viewed as potential solvers for an agent-based model representation, in the
same way that OR algorithms and heuristics are solvers for various mathematical
programming representations. Freeing model representations from any particular
software platform protocols provides a powerful increase in generalization and
flexibility. The cost of this generalization is the need to develop conversion
engines for translating model representations transparently into specific solver
formats (and vice versa for transmitting results).

4. Reusable model libraries. Models that have been developed, tested and used
effectively should be documented and stored for future reuse.

5. Language(s) for experimental design. Specifying agent structure and behavior is
only half the battle with agent-based models. As with any simulation technique, it
is equally critical to set up experimental designs for analyzing the dynamic
behavior of the model.

We re-emphasize that this is not intended to be a complete list of VECAM
requirements but rather desirable features culled from decades of model management
research into analytical modeling environments [Lindstone and Turoff 2002] which
may be transferable to computational modeling systems. However, agent-based
models have unique characteristics above and beyond analytical models that facilitate
the cultivation of virtuality. We look at three more sophisticated and complex multi-
agent ABMS environments: Cougaar, JADE and Brahms (Table 5) in order to extend
our requirements list.

 Virtual Environments for Computational and Analytical Modeling 181

Table 5. Examples of platforms to implement the VECAM carrier

 Cougaar JADE Brahms

Main supporter DARPA Telecom Italia Lab NASA

Implementatio
n language

Java Java Java

Availability Open Source (BSD-like) Open Source
(LGPL)

For research and
non-commercial
purposes. Licensed
to NASA

Real-world use
cases

Logistics DSS, military
maneuver DSS (US
Army);
IT management
software;
Vulnerability analysis
(e.g. Electrical grids)

Supply chain
management;
Holonic
manufacturing;
Rescue
management;
Fleet management;
Auctions;
Tourism

Human-robotic
exploration;
Modeling work
practices onboard
the International
Space Station (ISS)
NASA mission
operations,
planning, and
scheduling

References Helsinger, Thome et al,
2004
http://www.cougaar.org

Bellifemine, Caire
et al, 2003
http://jade.tilab.com
/

Sierhuis, J. et al,
2003
http://www.agentiso
lutions.com/

Cougaar is “an open-source Java-based agent architecture that provides a survivable
base on which to deploy large-scale, robust distributed applications” [17]. Its extreme
reliability makes it a very strong carrier middleware in the augmented virtuality area of
the reality-virtuality spectrum (see Fig. 2). It offers the features required by any carrier
sublanguage. The task manager is based on Cougaar applications. An application
includes a set of domains (application data ontologies), a network of agents, and a
society configuration (assigning agents to hosts and plugins to agents). The virtual
reality architecture builder supports the development of highly resilient distributed
architecture. The market broker relies on white and yellow pages repositories. Finally,
the message transporter relies on a proprietary agent communication language (high
level) and pluggable asynchronous protocols (low level).

With Cougaar, the VECAM interface with the upper layer of our bi-level
framework (the modeling languages) is provided through plugins. “A plugin is a
software component that is added to an agent to contribute a specific piece of
application business logic. Each plugin adds domain-specific behavior to the agent”
[17]. This definition is perfectly in line with our framework and Cougaar plugins
naturally represent the VECAM interface manager shown in Fig. 4.

182 T. Bui et al.

Table 6. Platform features in the context of the VECAM framework

VE Cougaar JADE Brahms

Task Manager Based on Cougaar
applications

Based on
ontologies and
complex
conversation
skeletons

Based on Brahms
workframes

VR Architecture
Builder (with
position on the VR
spectrum)

Highly resilient
distributed
architecture
(Augmented
virtuality)

Peer-to-peer
distributed
architecture
(Augmented
virtuality)

Single VM
simulation engine2

(Augmented reality)

Market Broker White pages,
yellow pages,
service discovery

White pages,
yellow pages

Single VM
namespace

Message
Transporter (low
level protocols)

Pluggable
asynchronous
protocols, including
RMI, CORBA,
HTTP, and UDP,
SSL, SMTP

RMI, JICP (JADE
proprietary
protocol), HTTP,
IIOP

Relies on the KAoS
middleware;
CORBA

Message
Transporter (high-
level agent
communication
languages)

Proprietary agent
communication
languages

FIPA standard
compliance
Interoperability
between J2EE,
J2SE, J2ME, and
.NET platforms

Proprietary agent
communication
language
Open Agent
Architecture (OAA)
messages

VECAM Interface
Manager

Using plugins Opacity of the
underlying
inference engine

Using
communication
agents and/or Java
activities

JADE is “middleware for the development and run-time execution of peer-to-peer
applications which are based on the agents paradigm” [4]. JADE shares many
similarities with Cougaar. However, it focuses more on mobility than on resilience,
and offers better compliance with existing agent standards than Cougaar. The
connectivity with the upper layer of our bi-level framework does not use the same
plugin architecture. According to [4], “JADE is opaque to the underlying inference

2 Even though Brahms is designed to produce a runtime system from a simulation, the publicly

available version of the language is only meant to write simulation models.

 Virtual Environments for Computational and Analytical Modeling 183

engine system, if inferences are needed for a specific application, and it allows
programmers to reuse their preferred system. It has been already integrated and tested
with JESS and Prolog” (two rule-based languages belonging to the “rule-based
modeling” category of Fig. 4). The other elements are described in Table 6.

The third platform, Brahms, is a multi-agent programming language developed by
the NASA Ames Research Center [32]. Brahms relates knowledge-based models of
cognition (e.g., task models) with discrete simulations and the behavior-based
subsumption architecture. Unlike Cougaar and JADE, the publicly available version
of Brahms belongs to the augmented reality area of the reality-virtuality spectrum. It
is more a simulation engine than a runtime execution engine. The connectivity with
the upper layer of our bi-level framework occurs via a specific kind of agent called
communication agents. A communication agent is “a Java-based agent that interfaces
between a Brahms system and other hardware or software components” [9].

Table 6 presents the features of these three platforms in the context of the VECAM
framework shown in Fig. 4.

In the context of the VECAM framework, the carrier middleware must support the
five requirements displayed in Fig. 4:

1. A Task Manager– this manager supports the representation in the virtual
environment of tasks associated with the studied phenomenon. For example this
representation can take the form of application data ontologies (e.g., for workflow-
based planning or logistics), of typical interaction patterns to perform specific tasks
(such as negotiations, auctions and task delegations), or to locate behaviors of
people and their tools in time and space.

2. A Virtual Reality Architecture Builder– this builder supports the development
and implementation of the actual virtual reality architecture adapted to the tasks of
the studied phenomenon, as represented by the task manager.

3. A Market Broker– this broker supports the dynamic matching between entities
that need to interact to solve a task or subtask during the study of the phenomenon.

4. A Message Transporter– this transporter supports the actual exchange of
messages between entities brought together by the market broker. The message
transporter manages both the high-level communication languages and the low-
level network protocols.

5. A VECAM Interface Manager– this manager supports the connectivity between
the carrier middleware and the upper layer of the framework, that is to say the
Analytical modeling languages.

3.3 Analytical Modeling Languages for VECAM

Connected with the appropriate carrier middleware, modeling languages can be taken
out of the often isolated and very domain-specific environments in which they
currently reside. Table 7 groups existing modeling languages in five broad categories
that could be used together on top of a carrier middleware to solve varied real-life
problems. The purpose of this table is to illustrate the broad spectrum of modeling
languages that can be integrated in the proposed framework. For example, rule-based

184 T. Bui et al.

languages, such as JESS or CLIPS, can turn underlying agents into experts, injecting
in their virtual incarnations knowledge traditionally found in isolated expert systems.
Mathematical and heuristics-based languages, such as LPL, GAMS, or AMPL, can
turn agents into number-crunching model solvers. Conversely, analog modeling
languages can turn passive sensors usually considered as artifacts into reactive agents
and group them in sensor networks [ACM 2004]. Finally, social modeling languages,
such as ARBAS or ABEL, can lead agents to engage in negotiation and
argumentation activities going far beyond the simpler communication patterns usually
found in multi-agent platforms.

What we have shown in this section is a conceptual architecture for VECAM
which facilitates a fusion of analytical and computational modeling in the service of
virtual environments. Borrowing design principles from model management has the
potential of liberating agent-based modeling environments from the sole bailiwick of
programmers, and simultaneously putting both modeling paradigms on equal footing
in terms of computer representation and executability. Meanwhile, the signal-carrier
paradigm allows us to differentiate between agent-oriented languages and analytical
modeling languages, while still allowing for the fruitful combination of the two in a
powerful integrative way. Thus, we have taken a step in extending the notion of
virtual environments to accommodate computational models without sacrificing the
power and utility of more conventional analytical models.

Table 7. Modeling languages for VECAM

 Mathematical
Modeling

Rule-
based

Modeling

Heuristic
Modeling

Analog
Modeling

Social
Modeling

Methods Linear and
nonlinear
programming,
differential
equations;
game theory,
queuing
theory, linear
regression,
time series
analysis, path
analysis, and
logistical
regression or
logic analysis

Forward
chaining,
backward
chaining

Simulated
annealing, tabu
search, iterated
local search,
evolutionary
algorithms, ant
colony
optimization,
and other
meta-heuristics

Sensors-
based
techniques
(thermomete
r,
speedometer
,
anemometer
s, barometer,
hygrometer,
accelero-
meter, etc.)

Negotiation,
argument-
ation,
discussion,
articulation

 Virtual Environments for Computational and Analytical Modeling 185

Table 7. (continued)

Languag
es
(exampl
es)

AIMMS,
AMPL,
CPLEX,
GAMS, Lindo,
LPL, MPL,
OPL Studio,
Xpress; Prism,
SPSS, R, S-
Plus

JESS,
CLIPS,
OPS5,
PROLOG

(ad hoc
languages)

(ad hoc
languages
usually
embedded
with the
physical
devices)

ARBAS,
ABEL

Input Data Facts Data Stimuli Positions

Know-
ledge
base

Models Rules Algorithms Symbols Social models

Reasoni
ng

Optimization,
mining,
forecasting

Inference (Sub)optimizat
ion,

Symbolic
representatio
n

Inference;
optimization

Output Data Facts Data Data Propositions

Refer-
ences

Huerlimann,
1999; Fourer,
Gay et al,
2003; Castillo,
2002

Friedman-
Hill, 2003;
Giarratano
and Riley,
1998;
Sterling
and
Shapiro,
1994

Osman and
Kelly, 1996;
Voss, 1999

ACM and
IEEE, 2004

Wooldridge
and Parsons,
2000; Bui,
Bodart et al,
1998; Anrig,
Haenni et al,
1997

In the next section, we show notionally how to apply a limited version of VECAM
architecture to a services-based application. We explore a telemedicine scenario as an
example of negotiated reality and show how, using Brahms, we can create an
appropriate virtual environment for examining and analyzing this situation. We
believe that the computational modeling dimension of VECAM will play an
increasingly important role in SSME applications.

4 Modeling Telemedicine Using VECAM

To illustrate the concepts advanced in this paper, we have modeled the virtual
environment of a simulated telemedicine scenario [Bui 2000]. Telemedicine is not
only a highly services-oriented application but it illustrates well the negotiated reality

186 T. Bui et al.

aspect of SSME environments, and thus the suitability of VECAM for addressing
these phenomena. Fig. 5 describes the workflow model of this scenario. Due to the
simulation nature of this example, we have chosen the Brahms language as a carrier
middleware. We note that Brahms suffers many of the same shortcomings as most
ABMS platforms with respect to model management features, but is nevertheless
sufficiently powerful to demonstrate conceptually the signal-carrier metaphor central
to our VECAM architecture. A real-world implementation, however, would most
likely rely upon Cougaar and its resilient architecture. A Brahms model can be used to
simulate human-machine systems for what-if experiments, for training, for “user
models”, or for driving intelligent assistants and robots.

Fig. 5. The telemedicine workflow model

In a negotiated reality, we look for a model that includes aspects of reasoning
found in an information-processing model, plus aspects of geography, agent
movement, and physical changes to the environment found in a multi-agent
simulation. Brahms makes this kind of model possible. Brahms relates knowledge-
based models of cognition (e.g., task models) with discrete simulations and the
behavior-based subsumption architecture. Brahms is centered on the concept of
“agents.” Agents’ behaviors are organized into activities, inherited from groups to
which agents belong. Brahms differs, however, from other multi-agent systems by
incorporating chronological activities of multiple agents, conversations, as well as
descriptions of how information is represented, transformed, and reinterpreted in
various physical modalities. Activities locate behaviors of people and their tools in
time and space, such that resource availability and informal human participation can
be taken into account. Fig. 6 can be seen as an instantiation of Fig. 4 for the specific
context of this telemedicine scenario.

 Virtual Environments for Computational and Analytical Modeling 187

Fig. 6. The bi-level, integrated language adapted to the telemedicine scenario

The Brahms language is built around constructs which can be related to one
another according to the structure outlined in Table 8 (Acquisti, Sierhuis et al. 2002).
This structure represents the backbone of the simulation engine built by the Brahms
virtual reality architecture builder. With this structure, it is possible to accurately
model complex man-machine, machine-machine, and man-man social interactions in
a virtual environment.

Let’s consider the telemedicine example. A specific patient (an agent belonging to
the group “Patient”) feeling sick (that is to say, having certain beliefs about his
current health) can engage in a communication activity with a device monitoring
vital signs (man-machine interaction). Beliefs about the patient’s health condition are
exchanged during this communication activity. The device in turn connects to the
computer of the field nursing station (machine-machine communication), which will
alert a nurse on duty (machine-man). In Brahms, the agent group Patient is modeled
as in Table 9.

Table 8. An example of VR architecture builder

Groups of groups containing
 Agents who are located and have
 Beliefs that lead them to engage in
 Activities that are specified by
 Workframes that consist of
 Preconditions of beliefs that lead to
 Actions, consisting of
 Communication activities
 Movement activities
 Primitive activities
 Other composite activities
 Consequences of new beliefs and facts
 Thoughtframes that consist of
 Preconditions and
 Consequences

188 T. Bui et al.

Table 9. An example using Brahms as a carrier platform

group Patient {
 attributes:
 public symbol bloodPressure;
 public symbol heartbeats;
 public symbol symptom;
 public symbol feelings;
 public boolean newAlert;
 relations:
 public ExamManager knowsExamManager;
 initial_beliefs:
 activities:
 communicate communicateVitalSigns(ExamManager examManager)

{
 max_duration: 300;
 with: examManager;
 about: send(current.symptom = s),
 send(current.feelings = f),
 send(current.bloodPressure = bp),
 send(current.heartbeats = hb);
 }
 workframes:
 workframe wf_recordVitalSigns {
 variables:
 forone(ExamManager) examManager;
 when(
 knownval(current knowsExamManager examManager)

and
 knownval(current.symptom != none))
 do {
 communicateVitalSigns(examManager);
 }

The communicateVitalSigns() activity of Table 9 exemplifies the use of the
message transporter in the Brahms middleware. The workframe wf_recordVitalSigns
is an example of subtask indicating that the communicateVitalSigns() activity must be
triggered when the patient feels sickness symptoms (knownval(current.symptom !=
none)).

The agent group modeling the vital signs device (the ExamManager defined in the
relations: section of the Patient group) defines a specific workframe to react to
communication activities from the patient (Table 10).

This workframe exemplifies how the market broker of the Brahms middleware matches
model elements together. The instruction knownval(current knowsDxTxManager
dxTxManager) can be interpreted as “find in the virtual environment the dxTxManager
element known to the current element”. This dxTxManager is later used by the message
transporter during the communicateVitalSigns() activity (last instruction of Table 10).

Message
Transporter

Task
Manager

 Virtual Environments for Computational and Analytical Modeling 189

Table 10. Finding other model elements with the broker

workframe wf_sendVitalSigns {
 repeat: false;
 variables:
 forone(Patient) patient;
 forone(DxTxManager) dxTxManager;
 when(
 known(patient.bloodPressure) and
 known(patient.heartbeats) and
 known(patient.symptom) and
 known(patient.feelings) and
 knownval(current knowsDxTxManager dxTxManager))
 do {
 conclude((patient.newAlert = true));
 communicateVitalSigns(patient, dxTxManager);
 }

The computer at the field nursing station defines another workframe to react to
communication activities from the vital signs device (Table 11).

Table 11. The Brahms middleware interacting with an Analytical modeling language

workframe wfr_processIncomingAlert {
 variables:
 forone(TreatmentPlan) treatmentPlan;
 forone(BaseAreaDef) loc;
 when(
 knownval(current.location = loc))
 do {
 broadcastIncomingAlert(loc, patient);
 createTreatmentPlan(treatmentPlan);
 conclude(
 (current knowsTreatmentPlan
 treatmentPlan));
 conclude(
 (treatmentPlan isDesignedFor patient));
 conclude(
 (treatmentPlan.shouldBeSentToSpecialist = false));
 broadcastTreatmentPlan(loc, treatmentPlan, patient);
 }
 }

Market broker

VECAM Interface
Manager

190 T. Bui et al.

In this specific example, the createTreatmentPlan() instruction connects the
Brahms middleware to a Java activity calling a rule-based language to establish a
preliminary treatment plan.

Fig. 7 illustrates the communication between a (human) patient (John Smith), his
exam manager agent in a dedicated device, and the diagnosis agent at the field nursing
station (called the DxTxManager in the figure). The figure is a screenshot of the
Agent Viewer, the visualization tool of the Brahms language. Each layer shows the
active workframe(s) of the agent (“wf”) and its corresponding activities (“cw” for
communicate activities, “ca” for compound activities, and “pa” for primitive
activities). Note that a compound activity (for example, the processIncomingAlert
activity of the DxTxManager) is broken down into subworkframes and subactivites.
Reasoning activities are represented with light bulbs. In Fig. 7, light bulbs identify
simple conclude statements (see Table 11). However, light bulbs in Fig. 8, which
represent the negotiation activities between the cardiologist and the psychiatrist,
facilitated by a negotiation software agent, represent reasoning activities performed
by a dedicated negotiation sublanguage.

Fig. 7. Interaction between the Patient and the diagnosis agent,via the exam manager agent

Presenting in detail the complete scenario and the Brahms syntax goes beyond the
scope of this paper. Tables 9 to 11 and Fig. 6 and 7 are only provided for illustrative
purposes. However, it is important to understand that a model of activities in Brahms
does not necessarily describe the intricate details of reasoning or calculation, but
instead captures aspects of the social-physical context in which reasoning occurs. For

 Virtual Environments for Computational and Analytical Modeling 191

example, the activity createTreatmentPlan() in the workframe of the computer at the
field nursing station does not contain any information about the actual operation
consisting of establishing a treatment plan based on a preliminary diagnosis. The only
information that the Brahms language associates with this activity is its duration and
the artifacts (resources) used during the activity (if any).

Fig. 8. Negotiation between the cardiologist and the psychiatrist facilitated by a negotiation agent

This is where the second level of our formal language comes into play. The carrier
middleware must be “modulated” by other modeling languages or, in other words, the
carrier middleware must offer hooks for other formal languages to do some reasoning
and processing. For example, we might want to use a formal rule-based sublanguage
(such as CLIPS or JESS) to model the actual reasoning happening in the
createTreatmentPlan() action (with standard medical diagnosis rules). This language
should have access to the belief set of the agent and to the fact set of the virtual
environment. It should also be able to conclude new beliefs and facts. In Brahms,
such hooks are currently provided in the form of communication agents performing

192 T. Bui et al.

Java activities. Java activities are primitive activities, but their actual behavior is
specified in Java code. Of course, this code could itself call native operations
implemented in a different language (for example, the above mentioned rule-based
language).

Our telemedicine example also illustrates the possibility to consult one or several
specialists if an immediate diagnosis cannot be established by the nurse on duty.
However, specialists might recommend conflicting treatment plans for a same patient.
As mentioned above when describing Fig. 8, a special negotiation agent could rely on
a structured communication language, such as the ARBAS language, to support
argumentation and try to reach a consensus between the specialists. Once again, the
reasoning operations modeled in ARBAS would be conveyed on the carrier
sublanguage as beliefs and facts.

It is important to remember that the set of analytical modeling languages on the
second level of our language is unbounded. Computational exploration might require
various forms of reasoning and it is mandatory to give modelers and users the
freedom to modulate the carrier middleware with the modeling language best adapted
to the problem at hand. As such, the modeler would have a tool for computational
explanation and experimentation.

5 Summary

With the increased use of virtual systems to make systems applications less dependent
on hardware platforms, and the need for a framework to model highly complex
situations, there is a growing recognition that the context in which modeling is
required needs to be expanded from the traditional formalism of knowledge inquiry
and problem solving. This is particularly true for service-based applications which we
see as benefiting from advances in computational modeling. We propose a new
paradigm – virtual environments for computational and analytical modeling
(VECAM) – to help OR/MS/IS researchers explore new ways of modeling based
upon negotiated reality. The framework consists of a Virtual Environment – the
Carrier – that provides a virtual platform for applications to be built upon, and a
Computational and Analytical Modeling module that contains a variety of modeling
tools to allow the modeler to model and experiment with a virtuality.

We have successfully developed a virtual telemedicine application derived from a
real-life concept of providing distributed, patient-centric emergency care. The
migration of this reality to the VECAM platform allows the modeler to experiment
with a number of new and virtual environments (virtual medical offices, virtual social
network of medical professionals) and new and virtual business practices (medical
advising procedures, semi-automated negotiation support). With VECAM as a
conceptual basis, we believe we can begin to dramatically enhance, transform, and
integrate the nature of modeling processes and environments.

The VECAM framework opens the door to several future research directions.
From a model management perspective, an interesting avenue to explore is the model
representation of agent-based simulations (ABS). Can higher level representations of

 Virtual Environments for Computational and Analytical Modeling 193

ABS be developed much like modeling languages were for OR/MS applications
[Fourer et al 2003], which allow a more abstract and concise specification of models
that not only free the modeler and end-user from the chains of learning object-
oriented programming but also facilitate the integration of analytical and
computational models? From a system design perspective, we might ask whether a
different set of design principles is required for building a Carrier, or Virtual,
Environment than for a Modeling module. The latter can be constructed from well
known system life cycle methodologies, but as [Markus et al 2002] points out in
discussing systems for emergent knowledge processes which have much in common
with virtual worlds, the landscape may be much less crisp when the set of end users
and their respective requirements are not known a priori. Virtual environments are
much more likely to exhibit emergent properties which in turn may require a higher
degree of dynamic configurability and “fuzzy” design, much like what has been
envisioned for the Semantic Web, Adopting a network perspective, there is still much
to be learned about combining virtual worlds as suggested in Fig. 2c and the network
effects of doing so. As virtual worlds enter and leave such a network, what impact
will this have on the process of scientific inquiry and how will this enhance or
obfuscate the collaborative decision-making that will be required? How even does
one “share” a virtual world in the first place? For example, how can a telemedicine
virtual world be integrated with an emergency response counterpart so that medical
assistance can be accelerated in times of crises? Also, implicit in the discussion, it
seems that technologists understand well the distinction and interaction between
virtual reality and reality, this understanding seems to be lost to post-modern
sociologists. As an example, when extending the virtuality-reality continuum to the
context of crisis management, the interplay between the emergent behaviors in the
real worlds (e.g., on-site rescue vs. forum blogs offering resources) [Subba and Bui,
2009] has become an undeniable artefact. These and many more issues arise from
thinking about fully idealized virtual environments. We hope that VECAM can be a
preliminary step in addressing some of these intriguing questions.

References

1. Acquisti, A., Sierhuis, M., Clancey, W.J., Bradshaw, J.M.: Agent Based Modeling of
Collaboration and Work Practices Onboard the International Space Station. In: 11th
Conference on Computer-Generated Forces and Behavior Representation, Orlando, FL
(2002)

2. Anrig, B., Haenni, R., Kohlas, J., Lehmann, N.: Assumption-based Modeling using ABEL.
In: Nonnengart, A., Kruse, R., Ohlbach, H.J., Gabbay, D.M. (eds.) FAPR 1997 and
ECSQARU 1997. LNCS, vol. 1244, pp. 171–182. Springer, Heidelberg (1997)

3. Association for Computing Machinery and Institute of Electrical and Electronics
Engineers. In: Third International Symposium on Information Processing in Sensor
Networks, IPSN 2004, Berkeley, California, USA. New York, N.Y, April 26-27,
Association for Computing Machinery (2004)

4. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A White Paper. Exp. 3(3), 6–19
(2003)

194 T. Bui et al.

5. Bui, T.: Building agent-based corporate information systems: An application to
telemedicine. European Journal of Operational Research 122, 242–257 (2000)

6. Bui, T., Bodart, F., Ma, P.-C.: ARBAS: A Formal Language to Support Argumentation in
Network-Based Organizations. Journal of Management Information Systems 14(3), 223–
237 (1998)

7. Carley, K.: Computational Organizational Science and Organizational Engineering.
Simulation Modeling Practice and Theory 10(5-7), 253–269 (2003)

8. Castillo, E.: Building and solving mathematical programming models in engineering.
Wiley, New York (2002)

9. Clancey, W., Sierhuis, M., Kaskiris, C., van Hoof, R.: Advantages of Brahms for
Specifying and Implementing a Multi-agent Human-Robotic Exploration System. In: 16th
International FLAIRS Conference, St. Augustine, FL (2003)

10. Deleuze, G., Guattari, F.: Anti-Oedipus: capitalism and schizophrenia. Viking Press, New
York (1977)

11. Dietrich, B.: Resource planning for business services. Communications of the ACM 49, 7
(2006)

12. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: a modeling language for mathematical
programming. Thomson/Brooks/Cole, Pacific Grove (2003)

13. Friedman-Hill, E.: Jess in action: rule-based systems in Java, Greenwich, CT, Manning
(2003)

14. Geoffrion, A.M.: The Formal Aspects of Structured Modeling. Operations Research 37(1),
30–51 (1989)

15. Giarratano, J.C., Riley, G.: Expert systems: principles and programming. PWS Pub. Co.,
Boston (1998)

16. Hamming, R.W.: The Art of Doing Science and Engineering: Learning to Learn. Gordon
and Breach Science Publishers, Amsterdam B.V. The Netherlands (1997)

17. Helsinger, A., Thome, M., Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent
Architecture. In: International Conference on Systems, Man and Cybernetics, The Hague,
The Netherlands. IEEE (2004)

18. Huerlimann, T.: Mathematical Modeling and Optimization, An Essay for the Design of
Computer-Based Modeling Tools. Kluwer Academic Publishers, Dordrecht (1999)

19. Jarke, M., Bui, T., Carroll, J.: Scenario Management – An Interdisciplinary Perspective.
Requirements Engineering Journal 3, 3 (1998)

20. Kimbrough, S., Wu, D., Zhong, F.: Computers play the beer game: Can artificial agents
manage supply chains? Decision Support Systems 33, 323–333 (2002)

21. Kimbrough, S.: Computational Modeling: Opportunities for the Information and
Management Sciences. In: Eighth INFORMS Computing Society Conferences, Chandler,
AZ (2003)

22. Kristensen, B.B., May, D., Jensen, L.K., Gesbo-Moller, C., Nowack, P.: Reality-Virtuality
Continuum Systems Empowered with Pervasive and Ubiquitous Computing Technology:
Combination and Integration of Real World and Model Systems, University of Southern
Denmark (2004)

23. Lendaris, G.: Structural Modeling: A Tutorial Guide. IEEE Transactions onf Systems, Man
and Cybernetics 10, 12 (1980)

24. Linstone, H.A., Turoff, M. (eds.): The Delphi Method: Techniques and Applications, NJIT
(2002)

25. Maglio, P., Srinivasan, S., Kreulen, J., Spohrer, J.: Service systems, service sciences,
SSME and innovation. Communications of the ACM 49, 7 (2006)

 Virtual Environments for Computational and Analytical Modeling 195

26. Markus, M.L., Majchrzak, A., Gasser, L.: A design theory for systems that support
emergent knowledge processes. MIS Quarterly 26(3), 179–212 (2002)

27. Milgram, P., Kishino, F.: A Taxonomy of Mixed Reality Visual Displays. IEICE
Transactions on Information Systems E77-D(12) (1994)

28. Mitroff, I., Turoff, M.: Philosophical and methodological foundations of Delphi. In:
Linstone, H.A., Turoff, M. (eds.) The Delphi method: Techniques and Application, pp. 17–
36. Addison Wesley, Reading Massachusetts (2002)

29. Minsky, M.L.: The society of mind. Simon and Schuster, New York (1986)
30. Nguyen, C.: GAME: Generalized agent modeling environment. Naval Postgraduate School

M.S. Thesis (2008)
31. Osman, I.H., Kelly, J.P.: Meta-heuristics: theory & applications. Kluwer Academic,

Boston (1996)
32. Sierhuis, M., Clancey, W.J., van Hoof Brahms, R.: A multi-agent modeling environment

for simulating social phenomena. In: First Conference of the European Social Simulation
Association (SIMSOC VI), Groningen, The Netherlands (2003)

33. Sterling, L., Shapiro, E.Y.: The art of Prolog: advanced programming techniques.
MIT Press, Cambridge (1994)

34. Stone, A.R.: The war of desire and technology at the close of the mechanical age.
MIT Press, Cambridge (1995)

35. Subba, R., Bui, T.: Convergence Behavior in the Blogosphere. In: Proceedings of the
Americas Conference on Information Systems (August 2009)

36. Turkle, S.: Life on the Screen: Identity in the Age of the Internet. Simon and Schuster,
New York (1995)

37. Turoff, M.: Virtuality. Communications of the ACM 40(9), 38–44 (1997)
38. Voss, S.: Meta-heuristics: advances and trends in local search paradigms for optimization.

Kluwer Academic Publishers, Boston (1999)
39. Wooldridge, M., Parsons, S.: Languages for Negotiation. In: Fourteenth European

Conference on Artificial Intelligence (2000)

View publication statsView publication stats

https://www.researchgate.net/publication/286810296

	Virtual Environments for Computational and Analytical Modeling: A Telemedicine Application

	Introduction
	Evolution of Virtuality
	Modeling and Simulation in the Scientific Method
	The Virtuality – Reality Continuum
	Modeling of Service Systems: Negotiated Reality and SSME

	Virtual Environments (VE) for Computational and Analytical Modeling (CAM): An Integrative Approach
	The VECAM Platform
	Carrier Systems to Support Virtual Environments
	Analytical Modeling Languages for VECAM

	Modeling Telemedicine Using VECAM
	Summary
	References

