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Abstract. Virtualization is commonly known in computer science as an 
abstraction technique of computer resources – physical platforms and resources 
– so that applications or end-users can seamlessly interact with these resources 
without the needs to deal with physical requirements. Going beyond the 
simulation of computer environments and resources, this paper proposes a 
paradigm for designing complex information systems based upon the concept of 
virtual modeling. The idea is to allow modelers use a virtual environment that is 
composed of real modeling platforms to replicate complex real problems, and 
explore new and virtual problems that might have high potential for real–life 
applications. Modeling here is not just an effort to find (new) solutions to an 
existing problem, rather it is also a discovery process seeking to create new 
(problems).  We see this approach as vital in addressing the applications 
emerging from service science, management and engineering (SSME), which 
will rely upon computational modeling approaches as much, if not more, than 
traditional supply-chain based analytical modeling. We illustrate our design 
methodology with a telemedicine application using Brahms, a multi-agent 
programming language developed by the NASA. 

Keywords: Information Systems Modeling, simulation and decision support, 
service system, SSME, virtual environments, telemedicine. 

1 Introduction 

With the advent of high performance computing systems, modeling has become both 
a process of explanation (e.g., knowledge representation, business process 
engineering and re-engineering formally coded in executable code) and a process of 
exploration (e.g., action-driven artificial intelligence software, decision support 
systems, agent-based simulation). Carley [3] argues that organizational computing has 
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evolved toward an inquiry process related to information, knowledge and 
computation, and this process has led to a wide range of advanced I.S. applications 
(e.g., flight simulators, remotely-controlled robots for task-specific applications, and 
virtual classrooms). Within this expanded scope, modeling can be viewed as a process 
that not only replicates models of realities but is also capable of creating life-like 
situations that appear real, yet have no correspondence in reality [29,37]. For 
example, a computerized business game is modeled after the realities of competition. 
However, as it becomes a tool for exploring new competitive strategies, the emerging 
rules of virtual competition might nevertheless lead to real actions. Another classic 
example is SimCity.  

In this paper, we discuss the evolution of both virtuality and modeling in the 
context of modeling for problem solving with a focus on services science, 
management and engineering (SSME). We argue that virtuality has evolved to a state 
in which, only under certain modeling objectives and conditions, should reality be 
used as a reference. We also contend that modeling under virtual environments 
requires a new paradigm that views computation as both an experimentation and 
explanation process. We advocate a paradigm shift in developing a computational 
model. A negotiated reality – an application environment that situates within the 
reality-virtuality continuum – requires both the modeler and the users of the model to: 
(i) use a formal language for describing and explaining the functions and behaviors of 
a phenomenon and its environment, and (ii) use the power of information 
technologies to search and experiment with new environments that would best address 
the problem at hand. Negotiated reality may be a particularly relevant context in 
which to consider SSME applications since service activities require a much higher 
degree of cooperation and coordination between provider and consumer than is 
typically the case with commodity-based economic transactions.  We will elaborate 
this thesis by emphasizing the concepts of computational experimentation and 
computational explanation.  

The paper is organized as follows. Section 2 discusses the evolution of the concept 
of virtuality. It serves as a foundation to explore in Section 3 how computational 
modeling and problem solving converge thanks to the joint consideration of reality 
and virtuality (Fig. 1). In Section 4, we propose a software modeling methodology 
called Virtual Environment for Computational and Analytical Modeling (VECAM) 
that applies model management design principles for analytical modeling to generate 
requirements desiderata for computational modeling environments. Through the 
discussion of a telemedicine service application, we demonstrate how VECAM can be 
implemented as a design methodology, one that is particularly relevant to service 
science, management and engineering (SSME). 

2 Evolution of Virtuality 

We examine the concept of virtuality in progressive stages, looking first at the role of 
modeling and simulation in scientific inquiry to see how virtual environments are 
becoming more integral to that process. We then posit a virtuality spectrum which  
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includes the key concept of negotiated reality which we see as one of the 
distinguishing aspects of services-based applications. We discuss how negotiated 
reality in concert with virtual environments support SSME concepts and applications. 

 

Fig. 1. VECAM framework 

2.1 Modeling and Simulation in the Scientific Method 

We begin by examining the role of modeling and simulation in the scientific method 
as characterized by [16]. Fig. 2a shows the traditional interplay between theory and 
experiment which has earmarked science since the beginning of the Enlightenment 
until the advent of digital computers. Fig. 2b shows the emergence of modeling and 
simulation in this process as a result of the use of digital computing. In this scenario, a 
Model is a formal representation of reality which implements a Theory, and a 
Simulation elicits the behavior of the Model, usually over time, thus corresponding to 
an Experiment. Models in this context have largely been what we call analytical 
models in that they are primarily mathematical in nature, for example systems of 
partial differential equations, mathematical programming, and the like. We use the 
term simulation in the larger sense of an experimental design for solving and 
analyzing a model using various forms of sensitivity analysis and/or goal-seeking, as 
opposed to the more specific context of various simulation technologies such as 
discrete or continuous event simulations. Not all models are dynamic, for example, a 
mathematical programming model for determining the optimal location of a 
warehouse is spatially, rather than temporally, oriented. Nevertheless, it makes sense 
to think of an experimental design, or simulation, for testing and analyzing such a 
model even though it may be time independent. 
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Fig. 2. Role of modeling and simulation in scientific inquiry [16] 

Fig. 2c shows the next stage in the scientific method which moves beyond 
analytical modeling and squarely into the arena of virtual environments.  In this 
scenario, Hamming envisions networks of virtual environments that eventually can be 
linked via shared semantics.  This is model integration in the large, and relies heavily 
upon computational modeling and the methodology of computational experimentation 
for the creation and maintenance of virtual environments.  We take pains to 
emphasize that analytical modeling is not rendered obsolete in this context, but rather 
subsumed and integrated under the umbrella of computational modeling.  We will 
indicate ways in which this can be achieved, specifically through a VECAM 
architecture. 

2.2 The Virtuality – Reality Continuum 

According to the Oxford English Dictionary, “virtual reality” is a state or an object 
that is “not physically existing, but made by software to appear to do so from the 
point of view of the program or user”. This definition depicts a fundamental 
characteristic of virtuality. According to Turoff, it is a process of negotiated reality in 
which the artifacts of computer systems are adopted by their users as “agreed-upon” 
reality [37]. In this process, the reality becomes simply more and more artificial [10] 
while the virtuality becomes more and more real. The virtuality-reality continuum can 
be explained as a constant search for truth using analytical, experiential, conflictual, 
synthetic and pragmatic approaches [28]. 

 

Fig. 3. The evolution of virtuality - from real to virtual environments 
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Table 1. The Reality-Virtuality continuum with some application examples 

REALITY-
VIRTUALITY 

CONTINUUM 
APPLICATIONS 

CHARACTERISTI

CS 
OBJECTIVES EXAMPLES 

AUGMENTED 

REALITY 
Simulation Replicate a 

business 
behavior 

Generate 
lifelike 
behavior in 
either cost-
effective or 
accelerated 
simulated 
environment 

Queuing 
applications; 
flight 
simulator; 
technological 
forecasting; 
futures 
research 

AUGMENTED 

VIRTUALITY 
e-environments Create a task in 

an electronic 
environment 
that is different 
than reality 

Use agent-
based systems 
for complex 
applications on 
the Internet 

e-classroom, 
Internet-
supported 
distributed 
teamwork 

VIRTUAL 

ENVIRON-
MENTS 

Virtual 
communities 
(e.g., users’ 
groups) 

Social 
connectedness 
in cyberspace 

Create new 
communities 
(e.g., virtual 
cities with 
avatars) 

MUD (Multi-
User 
Dungeons), 
MOO (Object-
oriented 
MUDs); 
Second Life; 
Facebook 
groups 
 

Yet, negotiated reality implies a number of implicit but fundamental assumptions 
about modeling that depend on the way the modeler approaches the “reality-
virtuality” continuum. As evidenced by several recent systems [22], the reality-
virtuality continuum spans from real environments to augmented reality to augmented 
virtuality and to virtual environments [27] (see Fig. 3 and Table 1). One contrasting 
dimension of this continuum is the unity of space, time and place in a real 
environment compared to a dislocation by information and communication 
technologies and the omnipresence of the WWW in a virtual environment (for 
example, the traditional classroom versus the distributed e-classroom). 

There are two notions that may be relevant here in the discussion of real and virtual 
environments: coherence and correspondence. Coherence is a measure of how well a 
virtual environment holds together internally. Does it exhibit consistent behavior  
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within the boundaries of its environment? Is it believable by the users who interact 
with it? Does it conform to its internal “laws”? A computer game such as SimCity or 
a combat simulation would have coherence as a desirable property. Correspondence 
refers to how well the virtual environment corresponds to a real world counterpart. 
This is closely related to the concept of “external validation”. For example, if we 
build a synthetic economy, we may want that economy to emulate the real world 
economy to a specified degree of verisimilitude.  

The same is true for many operations research and management science (OR/MS) 
models, including simulations (e.g., business games). Virtual worlds could also be 
categorized by the degree of correspondence that is required of them. A recreational 
computer game such as SimCity may have a low correspondence requirement. Other 
virtual worlds such as flight simulators may have a partial correspondence 
requirement that gives the user a sense of the “real world” but not necessarily align 
completely. An OR model on the other hand may require as complete a 
correspondence as necessary.  

This issue arises in the field of artificial life (AL), for example. AL researchers 
build elegant virtual environments which mimic the outcomes of evolutionary and 
biological processes quite impressively.  However, they are continually criticized by 
the scientific establishment for having little, or no, correspondence. The coherence-
correspondence relationship has become intertwined and pervasive in the information-
based world in which we live (Table 2), and scientists in a number of fields have 
captured it from a variety of perspectives (Tables 3 and 4).  

Kimbrough [21] argues that to deal with complex problem solving, we need a 
modeling language that is capable of explaining the real world (i.e., extract the basic  
 

Table 2. Characteristics of virtuality 

CHARACTERISTICS 

OF VIRTUALITY 
ATTRIBUTES EXAMPLE 

Visual Unreal, but looking real Optics: real and virtual picture of an 
object look the same, but the virtual 
picture can’t be caught on 
photographic paper 

Place Immaterial, but provided 
by ICT 

Virtual library, virtual database, 
virtual classrooms 

Time Potentially present On-line or offline web services or e-
communities 

Evolution Existing, but changing Dynamic reconfiguration of adaptive 
systems 



 Virtual Environments for Computational and Analytical Modeling 175 

characteristics of the reality and explain how it works), and of experimenting with it 
(i.e., use the model that is derived from real-life and experiment with it using 
conditions that may not (yet) exist in reality). The Delphi method [24] could be 
interpreted as an example of such a modeling language. Using a structured approach 
to communications, Delphi could be described as a participatory rituals for reflection 
and imagination in a highly complex and uncertain scenario [24].  

We see the trend towards experimentation as inevitable and it coincides with the 
growing complexity of the problems to be solved as well as the exponential progress 
in computer processing capacity. Experimentation in the context of negotiated reality 
is the iterative search for the virtuality configuration that finds the best interplay 
between perceptual-motor, cognitive and social aspects of people and computer 
systems. Thus computational experimentation is both a science of discovery and an 
engineering design methodology.  

Table 3. Computing requirements for virtuality in the Reality-Virtuality continuum 

 
APPLIC-
ATIONS 

MODEL DATA INTERFACE 
INFO-

STRUCTURE 

 
REAL 

ENVIRONMENTS

 
▼ 

 
AUGMENTED 

REALITY 
 

 
AUGMENTED 

VIRTUALITY 
 

▲ 
 
VIRTUAL 

ENVIRONMENTS

Simulation Replicate 
a close-to-
real-life 
business 
behavior 

Queuing 
applications; 
flight 
simulator 

3D GUI; 
robotics 

Stand-alone 
with 
advanced 
real-time 
sensor or 
high-
performance 
computing 
i l t

e-environ-
ments 

Achieve a 
task in an 
electronic 
environment 
that is 
different 
than reality 

e-classroom, 
Internet-
supported 
distributed 
teamwork 

Distributed 
multi-media 
platform 

High 
bandwidth 
networks; 
cloud 
computing 
platforms 

Virtual 
commun-
ities 

Social 
connected-
ness in 
cyberspace 

MUD, MOO Instant-
Messenger-
like 
technology 

Internet; 
Virtual-
ization 
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Table 4. Definitions of virtuality – An inter-disciplinary perspective 

DISCIPLINE CHARACTERISTICS SOME REFERENCES 

Philosophy High technology applications of the 
general principle that humans are self-
defining creatures 
Inquiring systems and reality 
construction 

[24] 
[36] 

Management 
Science/ Operations 
Research 

Conceptualization and abstraction of 
real-world via modeling and simulation 
Inquiring systems (e.g., Delphi) 

[28] 
[29] 

Computer Science Property of a computer system with the 
potential for enabling a virtual system (in 
a computer) to become a real system; 
create model without coding 

[23] 
[37] 

Sociology Departure from everyday reality to 
construct identity in the culture of 
simulation, thus eroding boundaries 
between the real and the virtual; create 
new forms of identities as they work and 
play with the new technologies 

[34]   
[36]  

Information 
systems 

A new way of representing the world that 
is proving its value for understanding, 
monitoring and controlling natural 
processes; Scenario management 

[19] 

2.3 Modeling of Service Systems: Negotiated Reality and SSME 

The relationship of virtual environments to service science, management and 
engineering (SSME) is one that has not yet been examined closely, most likely 
because the field of SSME is relatively new and still searching for guiding principles 
and concepts. 

The formal representation and modeling of service systems is nascent, largely 
because of the complexity of modeling people, their knowledge, activities, and 
intentions. Service system complexity is a function of the number and variety of 
people, technologies, and organizations linked in the value creation networks. The 
challenge lies not simply in formally modeling the technology or organizational 
interactions, but in modeling the people and their roles as knowledge workers in the 
system [25]. 

Modeling requirements for service systems subsume conventional analytical 
modeling techniques. Although traditional operations research models, for example,  
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may still play an important role in service system analysis [11], the organic (versus 
hierarchical) perspective implied above suggests that computational experimentation 
approaches may be equally, if not more relevant, for capturing the people-based and 
knowledge-based dimensions of value creation networks.   

Consider, as a very simple example, the well known MIT Beer Game simulation 
which demonstrates how local optimization of activities performed by each node in a 
beer supply chain (Factory->Distributor->Wholesaler->Retailer) leads to 
dysfunctional global  system behavior such as the bullwhip effect where demand is 
cyclically over- and underestimated.   Kimbrough et al. [20] show how an agent-based 
representation of the problem leads to a system optimum which is Pareto superior for 
all nodes in the chain.  Although the optimization model can be formulated and solved 
at the overall system level, it is difficult to envision how it may realistically be 
implemented.  What the Beer Game experiments and the agent-based model suggest 
is how a negotiated reality environment, one wherein each of the service providers 
plays the role actually corresponding to his/her “real life” role, may reveal improved 
service strategies in reality which benefit all players in the supply chain. 

One of the salient features of service systems is that participating players must rely 
more heavily upon cooperation than competition.   Inter-network dynamics may be 
competitive but intra-network processes are largely cooperative.  This increased need 
for cooperation in turn relies heavily upon negotiation (e.g., service level agreements) 
as a critical element in service-based processes.  We therefore return to the negotiated 
reality aspect of virtual environments as playing a key role in the modeling of SSME. 

It appears that computational modeling and virtual environments are in the 
ascendant as instruments of exploration and analysis of reality, and that this may very 
likely be the case as well with service-based applications.  However, we do not 
believe that this argues in any way for the obsolescence or decreased importance of 
the more conventional analytical modeling techniques and environments.  As the Beer 
Game example demonstrates, there is substantive value to both approaches.  What we 
would like to achieve is a synthesis in the form of an architecture for virtual 
environments which not only supports both analytical and computational modeling, 
but facilitates their integration in the spirit of Fig. 2c.  In the next section, we outline 
guidelines and design principles for such an architecture. 

3 Virtual Environments (VE) for Computational and Analytical 
Modeling (CAM): An Integrative Approach 

This concept paper is an attempt to introduce the reader to the basic notions about 
virtual environments for computational and analytical modeling (VECAM). But what 
does the “for” really mean? At least two possibilities come to mind: “Virtual 
environments in support of computational and analytical modeling (VECAM)” and 
“Virtual environments created by computational and analytical modeling 
(CAMVE)”. The former in our view emphasizes the Science of Design resulting in 
artifacts such as model management systems, collaborative environments, libraries of 
meta-heuristic solution procedures and grid arrays for solving systems of large-scale 
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simulation and optimization models. Many other examples could be cited. Broadly 
speaking, the purpose of these systems is to help modelers solve a wider array of 
more complex problems than they currently can address feasibly, including the 
integration of existing models. 

The latter is oriented more towards decision-makers, and embodies the traditional 
view of DSS as “models in support of decision-making”. By its very nature, any 
model comprises a virtual world, by dint of the assumptions it makes about which 
details of the “real world” to emphasize and which to ignore. Certainly, the agent-
based phenomenon plays a central role in this category embracing both the real and 
virtual worlds. We contend that the essence and potential of virtuality is such that 
modeling virtuality and using virtuality to model reality present contemporaneously 
rich opportunities and challenges for the scientific community.    

In this section, we adopt the VECAM perspective, specifically examining agent-
based modeling and simulation (ABMS) platforms for computational modeling in the 
context of model management research.  We observe that ABMS environments are 
roughly at the same level of software maturity that analytical systems such as 
optimization modeling were twenty years ago.  We apply design principles learned 
about analytical modeling environments from model management to generate 
requirements desiderata for computational modeling environments.  In this way we 
hope to achieve a rapprochement that facilitates development of environments which 
support computational and analytical modeling simultaneously.  In the Section 4, we 
take up the CAMVE perspective and show how such a system can be used to create 
a virtual service environment in the telemedicine domain. 

3.1 The VECAM Platform 

To help bridge the gap between analytical and computational modeling environments, 
we advocate the definition of a bi-level, integrative framework inspired by the basic 
principles of analog transmission in the field of telecommunications. In analog 
transmission, data is transmitted using two components: a carrier wave and a signal. 
The carrier wave is a waveform that is modulated by the signal that is to be 
transmitted. This carrier wave is of much higher frequency than the modulating signal 
(the signal which contains the information). The reason for this is that it is much 
easier to transmit a signal of higher frequency, and the signal will travel further.  

By analogy, the language that we propose consists of two components (Fig. 4). On 
the bottom level, a formal “carrier” middleware supports the modeling of all the 
social interactions in the virtual environment and offers the infrastructure needed to 
explain behaviors and describe environments. On the upper level, an unbounded set of 
formal languages (by analogy, a set of different signals) support the modeling of 
cognitive and reasoning operations. 

We define this framework as integrative because it unites two families of existing 
platforms and languages. On the one hand, analytical modeling languages have been 
around for a long time (for example, mathematical, rule-based, heuristic, analog, and 
social modeling systems). However, just as an analog signal does not travel far on a  
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conductive medium without a carrier wave, the knowledge created by such languages 
does not travel far in a virtual environment without carrier middleware. On the other 
hand, agent-based languages can play the role of the carrier middleware. The next 
section focuses on the carrier middleware. Section 3.3 focuses on analytical modeling 
languages. 

 

Fig. 4. The VECAM modeling framework 

3.2 Carrier Systems to Support Virtual Environments 

We use agent-based modeling and simulation (ABMS) platforms as exemplars of 
computational modeling environments.  Recent years have seen a rapid growth in the 
number of multi-agent platforms, with a current total of at least 150 products1.   
However, modeling software in the ABMS domain is currently at a relatively 
immature level when viewed from a model management perspective.   For example, 
[Nguyen 2008] conducted a survey of six popular agent toolkits (SWARM, NetLogo, 
AnyLogic, Ascape, MASON, REPAST) focusing upon agent structure(s) and the 
technique(s) for representing agent behavior which each system employs (e.g., state 
transition graphs, programming language procedures, rules, etc.).  Without exception, 
some level of software coding knowledge is required for the construction and 
execution of agent-based models using these systems.  Further, there are very limited 
higher level agent representation schemas; of the six systems surveyed, only 
AnyLogic provides any capability in this realm in the form of state transition graphs 
for capturing agent behaviors.  All systems, however, do provide libraries of reusable 
executable models which can be retrieved and modified.  

This situation is similar in many ways to where modeling software for operations 
research and management science (OR/MS) applications was two or three decades 
ago. Linear programming systems, for example, used to employ matrix generators as 
the standard model representation. This required modelers to view and manipulate 
models as matrices at a machine level of representation instead of in a more natural 
mathematical form. Model representation formalisms such as structured modeling 
[14] and modeling languages such as AMPL were eventually developed to overcome 
this drawback [12]. As a result, the universe of model builders expanded from the 
highly focused specialist who had to know Fortran and mathematical programming in  
 
                                                           
1 UMBC AgentWeb website, http://agents.umbc.edu, accessed September 20, 2010. 
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order to develop models.  We would like to replicate the success of software evolution 
in the domain of OR/MS to the area of agent-based modeling environments, and 
incorporate some of these design advances into a broad conceptual architecture for a 
VECAM platform.  In this vein, we see the following requirements as desirable, 
although not exhaustive, features of a computational modeling environment: 

1. Generalized representations for agent structure and behaviors.  The desideratum 
here is that model builders be freed from having to be Java programmers in order 
to build agent-based virtual environments. This, in turn, requires higher level ways 
of representing agent-based models.  Static agent structures are relatively simple, 
often consisting of little more than attributes one might specify in a normalized 
relational table. Dynamic behaviors, however, are considerably more complex to 
represent and may require a portfolio of representation formalisms such as state 
transition diagrams, workflow diagrams, decision trees, and event diagrams.  
Higher level languages with corresponding graphical interfaces for specifying 
agents in these formalisms are necessary. 

2. Separation of model representations from data. Agent-based models are typically 
less data intensive at run time than analytical models. Often the bulk of data 
processing in ABMS is at the front end of model building in the form of data 
mining to derive agent behaviors. Nevertheless, any data required for model 
development and execution should be logically separated from the agent 
representation. 

3. Separation of model representations from solvers.  Existing ABMS platforms are 
best viewed as potential solvers for an agent-based model representation, in the 
same way that OR algorithms and heuristics are solvers for various mathematical 
programming representations.  Freeing model representations from any particular 
software platform protocols provides a powerful increase in generalization and 
flexibility.  The cost of this generalization is the need to develop conversion 
engines for translating model representations transparently into specific solver 
formats (and vice versa for transmitting results). 

4. Reusable model libraries.  Models that have been developed, tested and used 
effectively should be documented and stored for future reuse.   

5. Language(s) for experimental design.  Specifying agent structure and behavior is 
only half the battle with agent-based models.  As with any simulation technique, it 
is equally critical to set up experimental designs for analyzing the dynamic 
behavior of the model.   

We re-emphasize that this is not intended to be a complete list of VECAM 
requirements but rather desirable features culled from decades of model management 
research into analytical modeling environments [Lindstone and Turoff 2002] which 
may be transferable to computational modeling systems.  However, agent-based 
models have unique characteristics above and beyond analytical models that facilitate 
the cultivation of virtuality.  We look at three more sophisticated and complex multi-
agent ABMS environments: Cougaar, JADE and Brahms (Table 5) in order to extend 
our requirements list.   



 Virtual Environments for Computational and Analytical Modeling 181 

Table 5. Examples of platforms to implement the VECAM carrier 

 Cougaar JADE Brahms 

Main supporter DARPA Telecom Italia Lab NASA 

Implementatio
n language 

Java Java Java 

Availability Open Source (BSD-like) Open Source 
(LGPL) 

For research and 
non-commercial 
purposes. Licensed 
to NASA 

Real-world use 
cases 

Logistics DSS, military 
maneuver DSS (US 
Army); 
IT management 
software; 
Vulnerability analysis 
(e.g. Electrical grids) 

Supply chain 
management; 
Holonic 
manufacturing; 
Rescue 
management; 
Fleet management; 
Auctions; 
Tourism 

Human-robotic 
exploration; 
Modeling work 
practices onboard 
the International 
Space Station (ISS) 
NASA mission 
operations, 
planning, and 
scheduling 

References Helsinger, Thome et al, 
2004 
http://www.cougaar.org 

Bellifemine, Caire 
et al, 2003 
http://jade.tilab.com
/ 

Sierhuis, J. et al, 
2003 
http://www.agentiso
lutions.com/ 

Cougaar is “an open-source Java-based agent architecture that provides a survivable 
base on which to deploy large-scale, robust distributed applications” [17]. Its extreme 
reliability makes it a very strong carrier middleware in the augmented virtuality area of 
the reality-virtuality spectrum (see Fig. 2). It offers the features required by any carrier 
sublanguage. The task manager is based on Cougaar applications. An application 
includes a set of domains (application data ontologies), a network of agents, and a 
society configuration (assigning agents to hosts and plugins to agents). The virtual 
reality architecture builder supports the development of highly resilient distributed 
architecture. The market broker relies on white and yellow pages repositories. Finally, 
the message transporter relies on a proprietary agent communication language (high 
level) and pluggable asynchronous protocols (low level). 

With Cougaar, the VECAM interface with the upper layer of our bi-level 
framework (the modeling languages) is provided through plugins. “A plugin is a 
software component that is added to an agent to contribute a specific piece of 
application business logic. Each plugin adds domain-specific behavior to the agent” 
[17]. This definition is perfectly in line with our framework and Cougaar plugins 
naturally represent the VECAM interface manager shown in Fig. 4.   
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Table 6. Platform features in the context of the VECAM framework 

VE Cougaar JADE Brahms 

Task Manager Based on Cougaar 
applications 

Based on 
ontologies and 
complex 
conversation 
skeletons 

Based on Brahms 
workframes 

VR Architecture 
Builder (with 
position on the VR 
spectrum) 

Highly resilient 
distributed 
architecture 
(Augmented 
virtuality) 

Peer-to-peer 
distributed 
architecture 
(Augmented 
virtuality) 

Single VM 
simulation engine2 

(Augmented reality) 

Market Broker White pages, 
yellow pages, 
service discovery 

White pages, 
yellow pages 

Single VM 
namespace 

Message 
Transporter (low 
level protocols) 

Pluggable 
asynchronous 
protocols, including 
RMI, CORBA, 
HTTP, and UDP, 
SSL, SMTP 

RMI, JICP (JADE 
proprietary 
protocol), HTTP, 
IIOP 

Relies on the KAoS 
middleware; 
CORBA 

Message 
Transporter (high-
level agent 
communication 
languages) 

Proprietary agent 
communication 
languages 

FIPA standard 
compliance 
Interoperability 
between J2EE, 
J2SE, J2ME, and 
.NET platforms 

Proprietary agent 
communication 
language 
Open Agent 
Architecture (OAA) 
messages 

VECAM Interface 
Manager 

Using plugins Opacity of the 
underlying 
inference engine 

Using 
communication 
agents and/or Java 
activities 

JADE is “middleware for the development and run-time execution of peer-to-peer 
applications which are based on the agents paradigm” [4].  JADE shares many 
similarities with Cougaar. However, it focuses more on mobility than on resilience, 
and offers better compliance with existing agent standards than Cougaar. The 
connectivity with the upper layer of our bi-level framework does not use the same 
plugin architecture. According to [4], “JADE is opaque to the underlying inference 

                                                           
2 Even though Brahms is designed to produce a runtime system from a simulation, the publicly 

available version of the language is only meant to write simulation models. 



 Virtual Environments for Computational and Analytical Modeling 183 

engine system, if inferences are needed for a specific application, and it allows 
programmers to reuse their preferred system. It has been already integrated and tested 
with JESS and Prolog” (two rule-based languages belonging to the “rule-based 
modeling” category of Fig. 4). The other elements are described in Table 6. 

The third platform, Brahms, is a multi-agent programming language developed by 
the NASA Ames Research Center [32]. Brahms relates knowledge-based models of 
cognition (e.g., task models) with discrete simulations and the behavior-based 
subsumption architecture. Unlike Cougaar and JADE, the publicly available version 
of Brahms belongs to the augmented reality area of the reality-virtuality spectrum. It 
is more a simulation engine than a runtime execution engine. The connectivity with 
the upper layer of our bi-level framework occurs via a specific kind of agent called 
communication agents. A communication agent is “a Java-based agent that interfaces 
between a Brahms system and other hardware or software components” [9]. 

Table 6 presents the features of these three platforms in the context of the VECAM 
framework shown in Fig. 4. 

In the context of the VECAM framework, the carrier middleware must support the 
five requirements displayed in Fig. 4: 

1. A Task Manager– this manager supports the representation in the virtual 
environment of tasks associated with the studied phenomenon. For example this 
representation can take the form of application data ontologies (e.g., for workflow-
based planning or logistics), of typical interaction patterns to perform specific tasks 
(such as negotiations, auctions and task delegations), or to locate behaviors of 
people and their tools in time and space. 

2. A Virtual Reality Architecture Builder– this builder supports the development 
and implementation of the actual virtual reality architecture adapted to the tasks of 
the studied phenomenon, as represented by the task manager. 

3. A Market Broker– this broker supports the dynamic matching between entities 
that need to interact to solve a task or subtask during the study of the phenomenon. 

4. A Message Transporter– this transporter supports the actual exchange of 
messages between entities brought together by the market broker. The message 
transporter manages both the high-level communication languages and the low-
level network protocols. 

5. A VECAM Interface Manager– this manager supports the connectivity between 
the carrier middleware and the upper layer of the framework, that is to say the 
Analytical modeling languages. 

3.3 Analytical Modeling Languages for VECAM 

Connected with the appropriate carrier middleware, modeling languages can be taken 
out of the often isolated and very domain-specific environments in which they 
currently reside. Table 7 groups existing modeling languages in five broad categories 
that could be used together on top of a carrier middleware to solve varied real-life 
problems. The purpose of this table is to illustrate the broad spectrum of modeling 
languages that can be integrated in the proposed framework. For example, rule-based  
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languages, such as JESS or CLIPS, can turn underlying agents into experts, injecting 
in their virtual incarnations knowledge traditionally found in isolated expert systems. 
Mathematical and heuristics-based languages, such as LPL, GAMS, or AMPL, can 
turn agents into number-crunching model solvers. Conversely, analog modeling 
languages can turn passive sensors usually considered as artifacts into reactive agents 
and group them in sensor networks [ACM 2004]. Finally, social modeling languages, 
such as ARBAS or ABEL, can lead agents to engage in negotiation and 
argumentation activities going far beyond the simpler communication patterns usually 
found in multi-agent platforms. 

What we have shown in this section is a conceptual architecture for VECAM 
which facilitates a fusion of analytical and computational modeling in the service of 
virtual environments.  Borrowing design principles from model management has the 
potential of liberating agent-based modeling environments from the sole bailiwick of 
programmers, and simultaneously putting both modeling paradigms on equal footing 
in terms of computer representation and executability.  Meanwhile, the signal-carrier 
paradigm allows us to differentiate between agent-oriented languages and analytical 
modeling languages, while still allowing for the fruitful combination of the two in a 
powerful integrative way.  Thus, we have taken a step in extending the notion of 
virtual environments to accommodate computational models without sacrificing the 
power and utility of more conventional analytical models. 

Table 7. Modeling languages for VECAM 

 Mathematical 
Modeling 

Rule-
based 

Modeling 

Heuristic 
Modeling 

Analog 
Modeling 

Social 
Modeling 

Methods Linear and 
nonlinear 
programming, 
differential 
equations; 
game theory, 
queuing 
theory, linear 
regression, 
time series 
analysis, path 
analysis, and 
logistical 
regression or 
logic analysis 

Forward 
chaining, 
backward 
chaining 

Simulated 
annealing, tabu 
search, iterated 
local search, 
evolutionary 
algorithms, ant 
colony 
optimization, 
and other 
meta-heuristics 

Sensors-
based 
techniques 
(thermomete
r, 
speedometer
, 
anemometer
s, barometer, 
hygrometer, 
accelero-
meter, etc.) 

Negotiation, 
argument-
ation, 
discussion, 
articulation 
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Table 7. (continued) 

Languag
es 
(exampl
es) 

AIMMS, 
AMPL, 
CPLEX, 
GAMS, Lindo, 
LPL, MPL, 
OPL Studio, 
Xpress; Prism, 
SPSS, R, S-
Plus 

JESS, 
CLIPS, 
OPS5, 
PROLOG 

(ad hoc 
languages) 
 

(ad hoc 
languages 
usually 
embedded 
with the 
physical 
devices) 
 

ARBAS, 
ABEL 

Input Data Facts Data Stimuli Positions 

Know-
ledge 
base 

Models Rules Algorithms Symbols Social models 

Reasoni
ng 

Optimization, 
mining, 
forecasting 

Inference (Sub)optimizat
ion, 

Symbolic 
representatio
n 

Inference; 
optimization 

Output Data Facts Data Data Propositions 

Refer-
ences 

Huerlimann, 
1999; Fourer, 
Gay et al, 
2003; Castillo, 
2002 

Friedman-
Hill, 2003; 
Giarratano 
and Riley, 
1998; 
Sterling 
and 
Shapiro, 
1994 

Osman and 
Kelly, 1996; 
Voss, 1999 

ACM and 
IEEE, 2004 

Wooldridge 
and Parsons, 
2000; Bui, 
Bodart et al, 
1998; Anrig, 
Haenni et al, 
1997 

In the next section, we show notionally how to apply a limited version of VECAM 
architecture to a services-based application.  We explore a telemedicine scenario as an 
example of negotiated reality and show how, using Brahms, we can create an 
appropriate virtual environment for examining and analyzing this situation.  We 
believe that the computational modeling dimension of VECAM will play an 
increasingly important role in SSME applications. 

4 Modeling Telemedicine Using VECAM 

To illustrate the concepts advanced in this paper, we have modeled the virtual 
environment of a simulated telemedicine scenario [Bui 2000]. Telemedicine is not 
only a highly services-oriented application but it illustrates well the negotiated reality  
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aspect of SSME environments, and thus the suitability of VECAM for addressing 
these phenomena.  Fig. 5 describes the workflow model of this scenario. Due to the 
simulation nature of this example, we have chosen the Brahms language as a carrier 
middleware. We note that Brahms suffers many of the same shortcomings as most 
ABMS platforms with respect to model management features, but is nevertheless 
sufficiently powerful to demonstrate conceptually the signal-carrier metaphor central 
to our VECAM architecture.  A real-world implementation, however, would most 
likely rely upon Cougaar and its resilient architecture. A Brahms model can be used to 
simulate human-machine systems for what-if experiments, for training, for “user 
models”, or for driving intelligent assistants and robots. 

 

Fig. 5. The telemedicine workflow model 

In a negotiated reality, we look for a model that includes aspects of reasoning 
found in an information-processing model, plus aspects of geography, agent 
movement, and physical changes to the environment found in a multi-agent 
simulation. Brahms makes this kind of model possible. Brahms relates knowledge-
based models of cognition (e.g., task models) with discrete simulations and the 
behavior-based subsumption architecture. Brahms is centered on the concept of 
“agents.” Agents’ behaviors are organized into activities, inherited from groups to 
which agents belong. Brahms differs, however, from other multi-agent systems by 
incorporating chronological activities of multiple agents, conversations, as well as 
descriptions of how information is represented, transformed, and reinterpreted in 
various physical modalities. Activities locate behaviors of people and their tools in 
time and space, such that resource availability and informal human participation can 
be taken into account. Fig. 6 can be seen as an instantiation of Fig. 4 for the specific 
context of this telemedicine scenario. 
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Fig. 6. The bi-level, integrated language adapted to the telemedicine scenario 

The Brahms language is built around constructs which can be related to one 
another according to the structure outlined in Table 8 (Acquisti, Sierhuis et al. 2002). 
This structure represents the backbone of the simulation engine built by the Brahms 
virtual reality architecture builder.  With this structure, it is possible to accurately 
model complex man-machine, machine-machine, and man-man social interactions in 
a virtual environment.  

Let’s consider the telemedicine example. A specific patient (an agent belonging to 
the group “Patient”) feeling sick (that is to say, having certain beliefs about his 
current health) can engage in a communication activity with a device monitoring 
vital signs (man-machine interaction). Beliefs about the patient’s health condition are 
exchanged during this communication activity. The device in turn connects to the 
computer of the field nursing station (machine-machine communication), which will 
alert a nurse on duty (machine-man). In Brahms, the agent group Patient is modeled 
as in Table 9. 

Table 8. An example of VR architecture builder 

Groups of groups containing 
 Agents who are located and have 
  Beliefs that lead them to engage in 
   Activities that are specified by 
    Workframes that consist of 
     Preconditions of beliefs that lead to 
          Actions, consisting of 
           Communication activities 
           Movement activities 
           Primitive activities 
           Other composite activities 
          Consequences of new beliefs and facts 
     Thoughtframes that consist of 
            Preconditions and 
            Consequences 
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Table 9. An example using Brahms as a carrier platform 

group Patient { 
 attributes: 
  public symbol bloodPressure; 
  public symbol heartbeats; 
  public symbol symptom; 
  public symbol feelings; 
  public boolean newAlert; 
 relations: 
  public ExamManager knowsExamManager; 
 initial_beliefs: 
 activities: 
     communicate communicateVitalSigns(ExamManager examManager) 

{ 
   max_duration: 300; 
   with: examManager; 
   about: send(current.symptom = s), 
         send(current.feelings = f),  
         send(current.bloodPressure = bp),  
         send(current.heartbeats = hb); 
  } 
 workframes: 
    workframe wf_recordVitalSigns { 
  variables: 
          forone(ExamManager) examManager; 
  when( 
          knownval(current knowsExamManager examManager) 

and 
          knownval(current.symptom != none)) 
  do { 
          communicateVitalSigns(examManager); 
  } 

The communicateVitalSigns() activity of Table 9 exemplifies the use of the 
message transporter in the Brahms middleware. The workframe wf_recordVitalSigns 
is an example of subtask indicating that the communicateVitalSigns() activity must be 
triggered when the patient feels sickness symptoms (knownval(current.symptom != 
none)). 

The agent group modeling the vital signs device (the ExamManager defined in the 
relations: section of the Patient group) defines a specific workframe to react to 
communication activities from the patient (Table 10). 

This workframe exemplifies how the market broker of the Brahms middleware matches 
model elements together. The instruction knownval(current knowsDxTxManager 
dxTxManager) can be interpreted as “find in the virtual environment the dxTxManager 
element known to the current element”. This dxTxManager is later used by the message 
transporter during the communicateVitalSigns() activity (last instruction of Table 10). 

Message
Transporter

Task
Manager
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Table 10. Finding other model elements with the broker 

workframe wf_sendVitalSigns { 
  repeat: false; 
  variables: 
         forone(Patient) patient; 
         forone(DxTxManager) dxTxManager; 
  when( 
         known(patient.bloodPressure ) and 
         known(patient.heartbeats ) and 
         known(patient.symptom ) and 
         known(patient.feelings ) and 
         knownval(current knowsDxTxManager dxTxManager)) 
  do { 
        conclude((patient.newAlert = true)); 
        communicateVitalSigns(patient, dxTxManager); 
  } 

The computer at the field nursing station defines another workframe to react to 
communication activities from the vital signs device (Table 11). 

Table 11. The Brahms middleware interacting with an Analytical modeling language 

workframe wfr_processIncomingAlert { 
 variables: 
  forone(TreatmentPlan) treatmentPlan; 
  forone(BaseAreaDef) loc; 
 when( 
  knownval(current.location = loc)) 
 do { 
  broadcastIncomingAlert(loc, patient); 
  createTreatmentPlan(treatmentPlan); 
  conclude( 
   (current knowsTreatmentPlan  
    treatmentPlan)); 
  conclude( 
   (treatmentPlan isDesignedFor patient)); 
  conclude( 
   (treatmentPlan.shouldBeSentToSpecialist = false)); 
  broadcastTreatmentPlan(loc, treatmentPlan, patient); 
     } 
    } 

Market broker

VECAM Interface 
Manager 
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In this specific example, the createTreatmentPlan() instruction connects the 
Brahms middleware to a Java activity calling a rule-based language to establish a 
preliminary treatment plan. 

Fig. 7 illustrates the communication between a (human) patient (John Smith), his 
exam manager agent in a dedicated device, and the diagnosis agent at the field nursing 
station (called the DxTxManager in the figure). The figure is a screenshot of the 
Agent Viewer, the visualization tool of the Brahms language. Each layer shows the 
active workframe(s) of the agent (“wf”) and its corresponding activities (“cw” for 
communicate activities, “ca” for compound activities, and “pa” for primitive 
activities). Note that a compound activity (for example, the processIncomingAlert 
activity of the DxTxManager) is broken down into subworkframes and subactivites. 
Reasoning activities are represented  with light bulbs. In Fig. 7, light bulbs identify 
simple conclude statements (see Table 11). However, light bulbs in Fig. 8, which 
represent the negotiation activities between the cardiologist and the psychiatrist, 
facilitated by a negotiation software agent, represent reasoning activities performed 
by a dedicated negotiation sublanguage. 

 

Fig. 7. Interaction between the Patient and the diagnosis agent,via the exam manager agent 

Presenting in detail the complete scenario and the Brahms syntax goes beyond the 
scope of this paper. Tables 9 to 11 and Fig. 6 and 7 are only provided for illustrative 
purposes. However, it is important to understand that a model of activities in Brahms 
does not necessarily describe the intricate details of reasoning or calculation, but 
instead captures aspects of the social-physical context in which reasoning occurs. For 
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example, the activity createTreatmentPlan() in the workframe of the computer at the 
field nursing station does not contain any information about the actual operation 
consisting of establishing a treatment plan based on a preliminary diagnosis. The only 
information that the Brahms language associates with this activity is its duration and 
the artifacts (resources) used during the activity (if any). 

 

Fig. 8. Negotiation between the cardiologist and the psychiatrist facilitated by a negotiation agent 

This is where the second level of our formal language comes into play. The carrier 
middleware must be “modulated” by other modeling languages or, in other words, the 
carrier middleware must offer hooks for other formal languages to do some reasoning 
and processing. For example, we might want to use a formal rule-based sublanguage 
(such as CLIPS or JESS) to model the actual reasoning happening in the 
createTreatmentPlan() action (with standard medical diagnosis rules). This language 
should have access to the belief set of the agent and to the fact set of the virtual 
environment. It should also be able to conclude new beliefs and facts. In Brahms, 
such hooks are currently provided in the form of communication agents performing 
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Java activities. Java activities are primitive activities, but their actual behavior is 
specified in Java code. Of course, this code could itself call native operations 
implemented in a different language (for example, the above mentioned rule-based 
language). 

Our telemedicine example also illustrates the possibility to consult one or several 
specialists if an immediate diagnosis cannot be established by the nurse on duty. 
However, specialists might recommend conflicting treatment plans for a same patient. 
As mentioned above when describing Fig. 8, a special negotiation agent could rely on 
a structured communication language, such as the ARBAS language, to support 
argumentation and try to reach a consensus between the specialists. Once again, the 
reasoning operations modeled in ARBAS would be conveyed on the carrier 
sublanguage as beliefs and facts. 

It is important to remember that the set of analytical modeling languages on the 
second level of our language is unbounded. Computational exploration might require 
various forms of reasoning and it is mandatory to give modelers and users the 
freedom to modulate the carrier middleware with the modeling language best adapted 
to the problem at hand. As such, the modeler would have a tool for computational 
explanation and experimentation.  

5 Summary 

With the increased use of virtual systems to make systems applications less dependent 
on hardware platforms, and the need for a framework to model highly complex 
situations, there is a growing recognition that the context in which modeling is 
required needs to be expanded from the traditional formalism of knowledge inquiry 
and problem solving. This is particularly true for service-based applications which we 
see as benefiting from advances in computational modeling.  We propose a new 
paradigm – virtual environments for computational and analytical modeling 
(VECAM) – to help OR/MS/IS researchers explore new ways of modeling based 
upon negotiated reality. The framework consists of a Virtual Environment – the 
Carrier – that provides a virtual platform for applications to be built upon, and a 
Computational and Analytical Modeling module that contains a variety of modeling 
tools to allow the modeler to model and experiment with a virtuality.  

We have successfully developed a virtual telemedicine application derived from a 
real-life concept of providing distributed, patient-centric emergency care. The 
migration of this reality to the VECAM platform allows the modeler to experiment 
with a number of new and virtual environments (virtual medical offices, virtual social 
network of medical professionals) and new and virtual business practices (medical 
advising procedures, semi-automated negotiation support).  With VECAM as a 
conceptual basis, we believe we can begin to dramatically enhance, transform, and 
integrate the nature of modeling processes and environments. 

The VECAM framework opens the door to several future research directions.  
From a model management perspective, an interesting avenue to explore is the model 
representation of agent-based simulations (ABS).  Can higher level representations of 
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ABS be developed much like modeling languages were for OR/MS applications 
[Fourer et al 2003], which allow a more abstract and concise specification of models 
that not only free the modeler and end-user from the chains of learning object-
oriented programming but also facilitate the integration of analytical and 
computational models? From a system design perspective, we might ask whether a 
different set of design principles is required for building a Carrier, or Virtual, 
Environment than for a Modeling module.  The latter can be constructed from well 
known system life cycle methodologies, but as [Markus et al 2002] points out in 
discussing systems for emergent knowledge processes which have much in common 
with virtual worlds, the landscape may be much less crisp when the set of end users 
and their respective requirements are not known a priori.  Virtual environments are 
much more likely to exhibit emergent properties which in turn may require a higher 
degree of dynamic configurability and “fuzzy” design, much like what has been 
envisioned for the Semantic Web, Adopting a network perspective, there is still much 
to be learned about combining virtual worlds as suggested in Fig. 2c and the network 
effects of doing so.  As virtual worlds enter and leave such a network, what impact 
will this have on the process of scientific inquiry and how will this enhance or 
obfuscate the collaborative decision-making that will be required?  How even does 
one “share” a virtual world in the first place?  For example, how can a telemedicine 
virtual world be integrated with an emergency response counterpart so that medical 
assistance can be accelerated in times of crises? Also, implicit in the discussion, it 
seems that technologists understand well the distinction and interaction between 
virtual reality and reality, this understanding seems to be lost to post-modern 
sociologists. As an example,  when extending the virtuality-reality continuum to the 
context of crisis management, the interplay between the emergent behaviors in the 
real worlds (e.g., on-site rescue vs. forum blogs offering resources) [Subba and Bui, 
2009] has become an undeniable artefact. These and many more issues arise from 
thinking about fully idealized virtual environments.  We hope that VECAM can be a 
preliminary step in addressing some of these intriguing questions.  
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