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Abstract. The rational agent community uses Michael Bratman’s planning 
theory of intention as its theoretical foundation for the development of its agent-
oriented BDI languages. We present an alternative framework based on situated 
action and activity theory, combining both BDI and activity-based modeling, to 
provide a more general agent framework. We describe an activity-based, as 
opposed to a goal-based, BDI language and agent architecture, and provide an 
example that shows the flexibility of this language compared to a goal-based 
language. 

1   Introduction 

This chapter is written based on a talk with the same title given as an invited talk at 
the seventh annual international "Engineering Societies in the Agents World" (ESAW 
2006) conference. The title is meant as a tongue-in-cheek provocation towards the 
BDI agent community being proponents of agents as goal-driven planners. A previous 
presentation about the Brahms multiagent simulation and development environment, 
at the 2006 Dagstuhl seminar on Foundations and Practice of Programming Multi-
Agent Systems, had created debates with agent language researchers about the 
primary use of goal-driven behavior in agent languages [1]. In this talk, we intended 
to put forth an alternative to agents being solely goal-driven planners. We not only put 
forward an alternative view on human behavior (a view that relies on activities instead 
of goal-driven action), but we also presented our Brahms multiagent language and 
simulation environment that is BDI-like without the notion of goals as the driving 
force of agent action [2][3]. In this chapter, we try to more thoroughly explain this 
activity-based BDI approach and present not only the Brahms language and the 
workings of the architecture, but present the theoretical basis for this alternative view 
of human behavior. The theory of activity-based modeling is rooted in situated action, 
cognition in practice, situated cognition and activity theory.  

It has to be noted that this paper cannot do justice to the large number of research 
articles that have been written on these concepts. We merely can scratch the surface, 
and we do not claim that we explain these concepts completely. We quote heavily 
from writings of other, more prominent, researchers to explain these concepts, and we 
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advice the reader to study them in order to get a deeper understanding of the theories 
and research behind them. What we hope this paper contributes to is a theory, practice 
and tool of how to analyze, design and implement large agent systems. Our hope is 
also that we succeed in providing a well enough argument for activity-based rational 
agents as a more general alternative to goal-driven ones. 

The rational agent community, over the last ten or so years, has settled on using 
Michael Bratman’s planning theory of intention as its theoretical foundation for the 
development of its agent-oriented BDI languages [4][5]. Fundamentally, we believe 
that it is very good for a programming paradigm and its subsequent languages to be 
based on a theory. In general, programming is about modeling the world as we know 
it, and a specific program embeds a particular theory—the programmer’s theory of the 
world being modeled. When a programming language itself is based on a solid theory 
it can help the programmer. However, this is both a good and a bad thing. The good 
thing is that we can have a tool that is sound—based on a theory—and thus the 
programs that are being developed with it will, by definition, adhere to the theory. 
This helps the programmer not to have to invent a new theory before implementing a 
model based on it. The theory is already there. For example, all computer 
programmers use Turing’s theory of universal computing machines as their basis for 
developing programs as a sequence of instructions.1 The bad thing is that believers of 
the theory tend to apply the theory in all sorts of ways that might, or more 
importantly, might not be within the theory’s relevance. A second problem is that the 
theory might be flawed, or at least, can have alternative theories that put in question a 
fundamental part of the theory. 

In this chapter we discuss some of the fundamental underpinnings of the theory on 
which the BDI programming languages of today are based. We point out that a 
fundamental assumption of Bratman’s theory has at least one alternative theory that is 
based on the inverse assumption. This is interesting in the sense that both theories 
cannot be correct. After we discuss some of Bratman’s theory and its fundamental 
assumption, we will move on to describe the alternative theory and its assumption. 
Then, we will merge the two theories into a theory that combines both and thus will 
provide a more general theory on which future BDI languages could be based. We 
then move on to describe an activity-based BDI language and agent architecture based 
on this new more general theory, and provide an example that shows the flexibility of 
this language compared to a goal-based BDI language. 

2   Theoretical Stances 

2.1   Bratman’s Planning Theory 

Bratman’s philosophical treatise on human behavior is based on commonsense or folk 
psychology—a not falsifiable theory based on propositional attitude ascriptions, such 
as “belief”, “desire”, “pain”, “love,” “fear”. The fact that the theory on which 
Bratman’s treatise is based is not falsifiable makes it not a theory, but a theory about 

                                                           
1 Alan Turing (1936), "On Computable Numbers, With an Application to the Entscheidungs-

problem", Proceedings of the London Mathematical Society, Series 2, Volume 42 (1936). 
Eprint. Reprinted in The Undecidable pp.115-154. 
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the existence of a theory, also known as a theory-theory. Herein lays the division in 
camps of believers: Those who believe in the theory and those who do not, and then 
those who believe in some of it. It is difficult to decipher in which camp the rational 
agent community lays. To me there are only two possibilities. First, it is completely 
possible that people in the rational agent community believe in Bratman’s Planning 
Theory [4]. Falling in this camp means that one agrees with the assumption that 
people are planning agents. This has a major implication, to which we will return in 
the next section. The other possibility is that people in this camp do not necessary 
believe that Bratman’s theory says something in particular about people, but it says 
something about any kind of animal or any non-living object. People in this camp care 
less about the fact that Bratman’s theory only talks about people and not about 
systems in general, but they nevertheless believe that using planning to deliberatively 
decide on future actions is a very attractive presupposition, and even more, it is a very 
useful concept for computer programming. For people in this camp every behavior, 
whether human or not, can be reduced to a problem that needs to be solved, because 
in that case Bratman’s Planning Theory can be used to predict and execute actions to 
solve it. Thus, in short, Bratman’s theory can easily be used to solve any behavioral 
“problem” with an algorithm developed by researchers of artificial intelligence and 
cognitive science. 

Let us briefly turn to Bratman’s theory, and let us start by stating that we do not 
have the space or the time to fully describe Bratman’s theory here. We only focus on 
those parts that are relevant for our ultimate points. Since this paper is part of a book 
about engineering software agents, we assume for simplicity sake that the reader is 
familiar with the concepts belief, desire and intention, and we therefore do not explain 
these concepts. What does Bratman’s theory say? 

People are planning agents => they settle in advance on complex 
plans for the future and these plans guide their conduct. 

This is Bratman’s fundamental assumption. This is neither fully explained, nor is it 
proven by his theory. It is simply a supposition. The only evidence for this 
supposition being true is given by Bratman in the form of a reference to Simon’s 
notion that people are bounded rational agents [6]. Most artificial intelligence 
researchers, economists and cognitive scientists agree with Simon’s claim. Never 
mind that Simon’s notion came about as a reaction on economic models always 
assuming that people are hyperrational2. Simon postulated that people are boundedly 
rational and the only way of behaving is by satisficing3. 

People, as planning agents, have two capacities: 1) the capacity to act 
purposeful, 2) the capacity to form and execute plans. 

The following quote exemplifies the extent to which Bratman justifies his claim 
that people must be planning agents; “So we need ways for deliberation and rational 

                                                           
2 In this context, hyperrational means that people are always rational, to a fault, and would 

never do anything to violate their preferences. 
3 “Satisficing is a behaviour which attempts to achieve at least some minimum level of a 

particular variable, but which does not necessarily maximize its value.” from Wikipedia, 
12/24/2006. 
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reflection to influence action beyond the present; and we need sources of support for 
coordination, both intrapersonal and interpersonal. Our capacities as planners help us 
meet these needs” [4, p. 3]. In here lies Bratman’s basic “proof” that people are 
planning agents. His reasoning goes something like this; Planning is an algorithmic 
way to deal with deciding on what to do in the future, i.e. future action. Planning can 
be seen as a sort of coordination. People need to decide on future action; otherwise 
they could never do anything. Deliberation takes time and it is not in and of it-self 
useful for taking action. We need a way to influence what we do in the future. People 
need to coordinate their actions, as well as what they do together. Therfore, people 
need a planning algorithm to do this. Quod erat demonstrandum. 

Goal-Based Modeling 
Those who believe in Bratman’s Planning Theory almost always also believe in 
people being general problem-solvers, and that deciding what to do next is a problem 
to be solved for which people use a goal-based or goal-driven reasoning method. The 
reason that this way of thinking is almost always synonymous with believing in the 
BDI agent architecture is that it fits very well with Bratman’s Planning Theory. To be 
goal-based means that one stores information about the world and about situations 
that are desirable, which we refer to as the goals to be reached. Our model of current 
situation or current state and of goals or future state, allows us then to choose among 
the multiple future states we can think of and select which one should be next. This 
next state is then called our (sub)goal. This maps, in principle, very well onto the 
concepts of beliefs, desires and intentions. In a more general way, not necessarily 
only related to how people operate, we might change the names of these concepts into 
stored current state, desired future state or goal, and intent to act. It is the concept of 
desire that makes the BDI architecture inherently a goal-driven architecture and BDI 
agents problem-solving agents. 

This model of agent behavior is compelling to people adhering to Bratman’s 
Planning Theory, because it also fits very well with some of the most prominent 
theories of cognition, namely Newell’s Unified Theory of Cognition and Anderson’s 
ACT-R model of cognition [7][8]. However, there are theories and implemented 
architectures out there that are alternatives to goal-driven planning. One of the most 
prominent alternatives is the behavior-based robot architecture that shows that robots 
can achieve intelligent behavior that is not based on the existence of an explicit plan 
and of goal-driven behavior. Indeed, Brooks argues convincingly, as we are trying to 
do in this chapter, that “planning is just a way of avoiding figuring out what to do 
next.” [9, Chapter 6, p. 103]. Brooks’ basic argument goes something like this: The 
idea of planning and plan execution is based on an intuition. There is no evidence that 
it has to be the only way to develop intelligent behavior. Putting sensors and effectors 
together using a program can also create intelligent behavior.  

Thus a process-way of acting is just as possible as a state way of reasoning. In the 
Artificial Intelligence and Robotics community Brooks is the most well known 
researcher that argues against Bratman’s Planning Theory. However, there have also 
been social- and cognitive scientists that have argued against the Planning Theory, not 
from an engineering or computational angle, but from a social and behavioral angle. 
This is the subject of the next section, and together with Brooks’ argument will form 
the basis for our thesis that an activity-based approach is a more general approach, 
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incorporating both a goal-based and a behavior-based approach for BDI agent 
architectures. 

2.2   The Alternative View 

Let us turn to an alternative view of human behavior, namely a view of human 
purposeful action based on ethnomethodology4. Suchman, in her book “Plans and 
Situated Actions,” takes a strong stance against the traditional view of planned 
purposeful action. It is this alternative view that in our opinion best expresses the 
problems with Bratman’s Planning Theory as a theory about human purposeful  
action [8]. 

Situated Action 
Suchman’s view takes human purposeful action as its starting point for understanding 
human behavior, but it is not a theory of the brain’s functioning. Suchman’s view is 
not presented as a theory of human behavior, as it does not predict human behavior. 
However, Suchman investigates an alternative view to the view deeply rooted in 
Western cognitive science, that human action is only and essentially determined by 
plans. Suchman describes human activity from a socially-, culturally- and 
environmentally situated point of view, rather than from a cognitive point of view. 
This different angle on human activity opens up an entirely new take on purposeful 
action, namely that learning how to act is dependent on the culture in which one 
grows up, and thus there is variation based on the situation. Whether our actions are 
ad hoc or planned depends on the nature of the activity and the situation in which it 
occurs.  

Although we might contrast goal-directed activities from creative or expressive 
activities, or contrast novice with expert behavior, Suchman argues convincingly that 
every purposeful action is a situated action, however planned or unanticipated. 
Situated action is defined as “actions taken in the context of particular, concrete 
circumstances.” [p. viii] Suchman posits an important consequence of this definition 
of purposeful action that is best retold with a quote:  

“… our actions, while systematic, are never planned in the strong sense 
that cognitive science would have it. Rather, plans are best viewed as weak 
resources for what is primarily ad hoc activity. It is only when we are 
pressed to account for the rationality of our actions, given the biases of 
European culture, that we invoke guidance of a plan.” [p. ix] 

Suchman goes on to say that plans stated in advance of our action are resources 
that are necessarily vague, and they filter out the precise and necessary detail of 
situated actions. Plans are not only resources used in advance of situated action, they 
are also used as a reconstruction of our actions in an explanation of what happened. 
However, we filter out those particulars that define our situated actions in favor of 
explaining aspects of our actions that can be seen in accordance with the plan. Thus, 
                                                           
4

  Ethnomethodology (literally, 'the study of people's (folk) methods') is a sociological discipline 
which focuses on the ways in which people make sense of their world, display this 
understanding to others, and produce the mutually shared social order in which they live. 
[Wikipedia, 12/27/06]. 
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according to Suchman, in strong contrast with the view of Bratman, plans are 
necessarily abstract representations of our actions and as such cannot serve as an 
account of our actions in a particular situation. In other words, our actions are not 
planned in advance, but are always ad hoc. Let us take a brief look at how cognitive 
science and AI are changing to a science of situated cognition. 

Situated Cognition 
Behavioral robotics is part of a new stream in AI, evolving from text-based or 
symbolic architectures of expert systems, descriptive cognitive models, and indeed 
BDI-like planning, to reactive, self-organizing situated robots and connectionist 
models. Many scientists have started to write about alternatives to the “wet computer” 
as a symbolic planning machine, such as Suchman [10], Brooks [9], Agre [11], Fodor 
[12], Edelman [13], Winograd and Flores [14]. We surely are leaving out others. In 
this section we will briefly present the work of Bill Clancey, because he is both the 
father of Brahms (the activity-based BDI language and multiagent architecture we 
describe in this paper) and a well-known father of expert tutoring systems (a purely 
symbolic approach), who has “gone the other way.” Clancey is one of the proponents 
of situated cognition, and having written two books about it, one of the experts in the 
field [15][16]. 

Situated cognition goes one-step further than Suchman’s situated action, namely it 
posits an alternative human memory architecture to the symbolic memory architecture 
of Newell and Anderson [7][8]. Clancey, in [16], develops an architecture of human 
memory at the neural level that is quite different from an architecture of a long-term 
memory storing productions and a short-term memory for matching and copying text 
(or symbols) into a “buffer.” Clancey’s arguments against the “memory as stored 
structures” hypothesis of Newell and Anderson has far reaching consequences for the 
Planning Theory of Bratman, namely that BDI-type planning cannot be the process 
for human thinking. It are exactly the concepts on which planning is based, like 
search, retrieve, and, match, that are associated with thinking as a “process of 
manipulating copies of structures, retrieved from memory” and “learning [as] a 
process of selectively writing associations back into long-term memory [p. 3].” 

What is important for situatedness is the notion that thinking is a situated 
experience over time. In Newell and Anderson’s model, time plays an important role 
in the matching of antecedents (of productions in long-term memory) and retrieval of 
the matched production from long-term memory and copying into short-term 
memory. In other words, the time it takes to think has little to do with being in the 
activity of doing something in the world, but rather it has to do with being in the 
activity of matching, retrieving and copying of symbols. In Clancey’s model, 
however, the overall time it takes for neuronal processes to subsequently activate in 
the brain is the essence of situated action and  (subconscious) conceptualization 
occurs as an activity. The essential part of the Newell and Anderson models of 
cognition that is disputed is the sequential relation of:  

sensation ⇒ perception memory ⇒ processing/thought and planning ⇒ action.  

Instead, these are processes coupled in activation relations called conceptual 
coordination. 
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All else being equal, we adhere to the view that actions are situated as the starting 
point for developing an activity modeling approach. Not in the least, because the 
situated view of human activity constrains us less, by not having to commit to theories 
about brain function that model problem-solving tasks at the millisecond range. It 
frees us from having to model what is “in between our ears,” and opens up our focus 
on modeling an agent’s activities as larger time-taking situated actions within the 
environment. It finally enables us to model human behavior based on individual and 
social interaction with other individuals and artifacts in the world.  

Activity-Based Modeling: Combining BDI with Situated Action 
In the previous section, we laid the groundwork for activity-based modeling. 
Suchman’s treatise on situated action is important, because it proofs that modeling 
intention to act may not only be goal-based. In fact, Suchman argues convincingly 
that an intention leading every-day life action is always situated in an environment, 
and is only goal-driven when there is a real-world problem to be solved. The 
overarching conclusion of this alternative view is that acting in the world is not only 
bounded by rationality, i.e. reasoning—or rather problem-solving—in the abstract, but 
is mainly situated in an environment that is historically, culturally and socially learned 
by its changes over time. It is thus important to not leave out the environment. In the 
remainder of this chapter, we define a modeling framework that combines the 
concepts of belief, desire and intention with that of situated action, to form an 
activity-based modeling approach that can be used not only to model the work 
practices of people, but also to model rational agent behavior in any multiagent 
system. By now, it should be no surprise that in this modeling framework an agent’s 
behavior is not goal-based, but rather activity-based. This means that an agent’s 
desires are not the possible subgoals the agent derives from its intention to solve a 
particular problem. Rather, as we will see, an agent’s desires are reflected in the 
agent’s motives for performing activities, and these motives are dependent on the 
environment and the situation, i.e. the state of the world at that moment. In the next 
section we describe what is meant with the word situated. 

Modeling the Environment 
The social anthropologist Jean Lave studied how people apply cognition in practice 
[17]. In the Adult Match Project she studied how people do math. She found that the 
same individuals do arithmetic completely different depending on the situation they 
are in. The results from her studies are significant, because solving mathematical 
problems has for a long time been the way scientists have studied general problem-
solving in school and in the laboratory. Lave and her colleagues studied adult 
arithmetic practices in every-day settings, such as cooking and grocery shopping. 
Their work shows that solving mathematical problems is not so much constraint by 
how much of a math expert one is because of their math education, but because of the 
setting or situation in which the arithmetic activity takes place. Lave argues 
convincingly that, in order to understand problem solving we need to model the 
problem-solving process in situ. 

Russian psychologist Lev Semyonovich Vygotsky plays an important role in 
developmental psychology. Vygotsky’s deeply experimental work on child learning 
and behavior developed the notion that cognition develops at a young age through 
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tools and the shared social and cultural understanding of tools in the form of 
internalized signs [18]. For example, a ten-month-old child is able to pull a string to 
obtain a cookie. However, it is not till the child is about 18 months that it is able to 
remove a ring from a post by lifting it, rather then pulling on it. Vygotsky writes; 
“Consequently, the child’s system of activity is determined at each specific stage both 
by the child’s degree of organic development and by his or her degree of mastery in 
the use of tools.” [p. 21] The internalization of mimicry of tool use by young infants 
into a shared meaning of signs is, according to Vygotsky, intertwined with the 
development of speech. At the same time, speech plays an important role in the 
organization of a child’s activities. Vygotsky writes; “Our analysis accords symbolic 
activity a specific organization function that penetrates the process of tool use and 
produces fundamentally new forms of behavior.” [p. 24] While we will discuss the 
concept of activity later on, here it is important to see the essential importance of 
physical artifacts used as tools within an activity. Similar to the role of an artifact as a 
tool, the role of artifacts as the products of an activity plays an equally important role 
in what Vygotsky calls practical intelligence. Figure 1. shows the use of an artifact in 
the activity—its role—that transforms the artifact into a tool or a product of the 
activity, used or created by the subject. Outside the activity the artifact is just an 
object in the world. To the observer the object is necessary for the activity to be 
performed. 

 

Fig. 1. Mediated relationship of artifacts in activities [3, p. 62] 

Situatedness in Brahms is modeled by representing places and locations as objects 
in a conceptual hierarchical geography model and by representing artifacts as objects 
in a hierarchical object model, separate from modeling the agents and their possible 
activity behavior [3]. 

3   Modeling Places and Locations 

In Brahms’ geography model relevant locations are modeled conceptually as area 
objects in a part-of hierarchy. Locations are areas, which are instances of classes of 
areas called areadefintions. Areas can be part of other areas. Using these two simple 
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concepts we are able to model any environment as a conceptual hierarchical structure 
of area objects. For example, we can model the geography for UC Berkeley students 
studying at South Hall and going for lunch on Telegraph or Bancroft Avenue in 
Berkeley as follows: 

area AtmGeography instanceof World 
// Berkeley 
area Berkeley instanceof City partof AtmModelGeography 
// inside Berkeley 
area UCB instanceof UniversityCampus partof Berkeley 
area SouthHall instanceof UniversityHall partof UCB 
area SpraulHall instanceof UniversityHall partof UCB 
area BofA_Telegraph_Av_2347 instanceof BankBranch 
     partof Berkeley 
area Wells_Fargo_Bancroft_Av_2460 instanceof BankBranch 
     partof Berkeley 
area Blondies_Pizza_Telegraph_Av_2347 instanceof 
     Restaurant partof Berkeley 
area Tako_Sushi_Telegraph_Av_2379 instanceof Restaurant 
     part of Berkeley 

Being situated means that Brahms agents are located within the geography model. 
Area objects are special kinds of objects that can inhabit agents. Agents can have an 
initial location. For example, agent Joe can initially be located in area SouthHall as 
follows: 

agent Joe { 
  intial_location: SouthHall; 
} 

People do not stay in one location, but move around. Similarly, Brahms agents can 
move around within a geography model. Agent (and object) movement is performed 
with a move activity. How activities are performed is described in the next section. 
Although a geography model and agent and object location and movement within 
such a model is essential for modeling situatedness, the state of the world needs to be 
modeled as well. Current BDI architectures do not model the state of the world and 
therefore do not allow for representing a factual state of the world independent of the 
agent’s beliefs about that state. In Brahms the state of the world is modeled as facts5. 
For example, the location of an agent is a fact, because, regardless of the beliefs of 
agents, the agents have a location within the geography model. 

Fact: (Joe.location = SouthHall) 

To model facts about areas we give the areas attributes and relations. For example, 
we can model the temperature in South Hall and the fact that South Hall is part of the 
UC Berkeley campus. To do this, we first define these as an attribute and relation in 
the area definition class. This way all university hall areas we model will inherit them. 

                                                           
5 Here we deal with solipsism, since the model is an interpretation of the world by the modeler. 

Facts, as such, are thus not real facts, but only the modeler’s representation of world states 
independent of the beliefs of agents. 
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areadefinition UniversityHall { 
  attributes: 
    public int temperature; 
  relations: 
    public UniversityCampus partOf; 
} 

Having defined the attributes and relations, we can have additional facts about the 
world. 

Facts: 
  (SouthHall partOf UCB); 
  (SouthHall.temperature = 72); 

4   Modeling Objects and Artifacts 

As discussed above, artifacts in the world are important aspects for modeling situated 
action. Similar to the geography model, we model artifacts as object instances of a 
class hierarchy. Actually, areas are special kind of objects and areadefinitions are 
special classes. However, artifacts are more like agents than they are like areas. 
Artifacts are located and some can display situated behavior. Some types of objects, 
for instance a book, can also store information. Then there are data objects, which can 
represent located information conceptually. We use a class hierarchy to model these 
artifacts and data objects in the world. For example, to model a book Joe the student 
is reading we can define the following object model: 

class Book { 
  attributes: 
    public String title; 
    public Writer author; 
  relations: 
    public Student belongsTo; 
    public BookChapter hasChapter 
} 

object BookPlansAndSituatedAction instanceof Book { 
  initial_location: SouthHall; 
  initial_facts: 
    (current.title = “Plans and Situated Action”); 
    (current.author = LucySuchman); 
    (current.belongsTo = Joe); 
} 

We can model the content of the book as conceptual chapter data objects. For 
example: 

conceptual_class BookChapter { 
  attributes: 
    public String title; 
    public String text; 
} 
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We model the information held by the object as “beliefs” of the object6. Thus, we 
can model Chapter 4 in Suchman’s book as a conceptual BookChapter object the 
Book object “stores” information about: 

conceptual_object Chapter4 instanceof BookChapter { } 

object BookPlansAndSituatedAction instanceof Book { 
  initial_beliefs: 
    (current hasChapter Chapter1); 
    (current hasChapter Chapter2); 
    (current hasChapter Chapter3); 
    (current hasChapter Chapter4); 
    (current hasChapter Chapter5); 
    (current hasChapter Chapter6); 
    (current hasChapter Chapter7); 
    (current hasChapter Chapter8); 
    ... 
    (Chapter4.title = “Situated Action”); 
    (Chapter4.text = “… I have introduced the  
                     term situated action …”); 
} 

The key point in modeling information is to locate the BookChapter content as 
information held within the Book object. To do this, we model the content of the book 
as the “beliefs of the book.” 

Now that we discussed how situatedness is modeled in Brahms, we turn to 
modeling activities. To understand what activities are, we must first understand that 
human action is inherently social, which means it is “outside the brain” involving the 
environment. The key thing is that action is meant in the broad sense of an activity, 
and not in the narrow sense of altering the state of the world. In the next section we 
discuss the concept of an activity and how to model it. 

5   Modeling Activities 

Like Bratman’s notion of humans as planners based on commonsense psychology, the 
notion of human behavior in terms of activities is based on the Marxist activity theory, 
developed initially between 1920s and 1930s by Russian psychologists Vygotsky and 
Leont’ev [18][19]. Activity theory is also a meta-theory, as is commonsense 
psychology, and can better be seen as a framework with which human behavior can 
be analyzed as a system of activities. Activity theory has become more established in 
last twenty years in its further development by educational and social scientists 
[20][21], as well as human-computer interaction scientists [22]. 

The unit of behavioral analysis in Activity theory is, not surprisingly, an activity. 
Activity theory defines a relationship between an activity and the concept of motive. 
Motives are socially learned and shared with people from the same culture, 
organization, or more generally a community of practice [23]. For instance, all 
activities of flight controllers and directors at NASA Johnson Space Center’s Mission 

                                                           
6 We call information contained in an object also beliefs to minimize language keywords. 



12 M. Sierhuis 

Control for the International Space Station are driven by the shared motives of 
keeping the space station healthy and making sure the space station crew is safe. 
Motives and goals, at first glance, seem to be similar, but motives, unlike goals, are 
situational and environmental states that we want to maintain over relatively long 
periods of time, such as keeping the astronauts safe and healthy onboard the space 
station. Motives are not internal states that drive our minute-by-minute action and 
deliberation, but enable a shared external understanding of our actions in the world 
(e.g. flight controllers are not, every minute of their time, working on tasks that are 
driven by the goal of keeping astronauts alive). Motives keep us in “equilibrium” with 
the system’s environment and allow us to categorize actions as socially situated 
activities (e.g. everything flight controllers do is in line with their motives and have as 
an overall result that the ISS is safe and the astronauts are healthy). 

Describing human activities as socially situated does not mean people doing things 
together, as in “socializing at a party” or “the social chat before a meeting.” 
Describing human activities as social means that the tools and materials we use, and 
how we conceive of what we are doing, are socially constructed, based on our culture. 
Although an individual may be alone, as when reading a book, there is always some 
larger social activity in which he or she is engaged. For instance, the individual is 
watching television in his hotel, as relaxation, while on a business trip. Engaging in 
the activity of "being on a business trip," there is an even larger social activity that is 
being engaged in, namely "working for the company," and so on. The point is that we 
are always engaged in multiple social activities, which is to say that our activities, as 
human beings, are always shaped, constrained, and given meaning by our motives and 
our ongoing interactions within a business, family, and community. An activity is 
therefore not just something we do, but a manner of conceiving our action and our 
interaction with the social environment we are in. Viewing activities as a form of 
engagement emphasizes that the conception of activity constitutes a means of 
coordinating action, a means of deciding what to do next, what goal to pursue; In 
other words, a manner of being engaged with other people and artifacts in the 
environment. The social perspective adds the emphasis of time, rhythm, place, shared 
understanding and a well-defined beginning and end. 

This can be contrasted with the concept of a task, which in AI is defined as being 
composed of only those subtasks and actions that are relevant to accomplish the goal 
of the task. A task is by definition goal-driven, and the conception of a task leaves out 
the inherent social, cultural and emotional aspects of why, when, where and how the 
task is performed within the socially and culturally bounded environment. Clancey 
provides a nice example that portrays the difference between an activity and a task:  

“All human activity is purposeful. But not every goal is a problem to be solved 
(cf. Newell & Simon 1972), and not every action is motivated by a task (cf. 
Kantowitz & Sorkin 1983). For example, listening to music while driving home is 
part of the practice of driving for many people, but it is not a subgoal [subtask] for 
reaching the destination. Listening to music is part of the activity of driving, with 
an emotional motive.” [24, p. 1] 

In this view of human behavior, activities are socially constructed engagements 
situated in the real world, taking time, effort and application of knowledge. Activities 
have a well-defined beginning and end, but do not have goals in the sense of  
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problem-solving planning models. Viewing behavior as activities of individuals 
allows us to understand why a person is working on a particular task at a particular 
time, why certain tools are being used or not, and why others are participating or not. 
This contextual perspective helps us explain the quality of a task-oriented 
performance. In this sense, as is shown in Figure 2, activities are orthogonal to tasks 
and goals. 

Task

Activity

Goal

 

Fig. 2. Dimensions of behavior [3, p. 55] 

While modeling an activity we might want to use a goal-plan approach to represent 
a specific task to solve a particular problem, but this can also be done within the 
activity model itself. This is to say that a goal-driven planning approach is subsumed 
by an activity-based approach, and a goal-oriented task can be modeled with a goal-
driven activity. An activity-based approach is more general and allows the modeling 
of all kinds of activities, including activities that are not necessarily work-oriented 
and goal-driven, but are based on social and cultural norms, such as the kinds of 
activities described by Clancey [24, p. 4]:  

• Intellectual: These include activities that represent any form of conceptual inquiry 
or manipulation of things or ideas. This includes work-oriented problem solving, 
but also activities that are less directed, such as exploration or browsing; artistic 
and documentation activities, such as taking photographs, writing, etc. 

• Interactional: These include activities in which we interact directly with other 
people, such as in a fact-to-face conversation, or using a communication artifact, 
such as a telephone or fax machine. 

• Physical/body maintenance: These include activities where we “take care” of 
ourselves physically, such as eating, sleeping, etc. 

5.1   Activities Are Like Scripts 

Engström integrates the notion of activity with the notion of practice. How do we 
know what to do, what actions we should take, when and how? Habitual scripts drive 
our practice, our learned actions in a context: “At an intermediate level, the continuity 
of actions is accounted for by the existence of standardized or habitual scripts that 
dictate the expected normal order of actions.” [25, p. 964]. 

In cognitive science and AI, the notion of scripts was developed by Shank and 
Abelson for the purpose of language processing and understanding of knowledge 
structures. Although they did not refer to activity theory, they did refer to something 
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that sounds very much like the notion of behavior as situated activities: “People know 
how to act appropriately because they have knowledge about the world they live in.” 
[26, p. 36]. Unlike Engström, Shank and Abelson focus not on how and why people 
get to engage in a social activity, although they use stories of social activities (such as 
eating in a restaurant) as examples, but they focus on the knowledge that people need 
to bring to bear to understand and process a situation. They argue that known scripts, 
which can be based on general knowledge (i.e. knowledge we have because we are 
people living in the world) and specific knowledge (i.e. knowledge we get, based on 
being in the same situation over and over), are what people use to understand a story: 

“A script is a structure that defines appropriate sequences of events in a 
particular context. A script is made up of slots and requirements about what can fill 
those slots. The structure is an interconnected whole, and what is in one slot affects 
what can be in another. Scripts handle stylized everyday situations. They are not 
subject to much change, nor do they provide the apparatus for handling totally 
novel situations. Thus, a script is a predetermined, stereotyped sequence of actions 
that defines a well-known situation … There are scripts for eating in a restaurant, 
riding a bus, watching and playing a football game, participating in a birthday 
party, and so on.” [p. 41] 

Modeling activities as scripts enables us to model people’s behavior as situated 
activities and is how we model activities in the Brahms language. This is the subject 
of the next section. 

6   Activities in Brahms 

In Brahms, an activity system is modeled by individually performed activities by 
agents. An agent while executing activities can be located in a geography model (see 
geography discussion above), representing the agent executing located behaviors. 
Activities are like scripts having “predetermined, stereotyped sequence of actions that 
defines a well-known situation.” An activity abstracts a behavioral episode into a 
sequence of subactivities, or, if not further decomposed, it abstracts an episode into a 
single activity taking time, using resources—objects in the object model—or creating 
products—other objects in the object model—or both. In Brahms we call these 
composite- and primitive activities subsequently. 

6.1   Primitive Activities 

Activities define episodes of actions that an agent can perform. They are not the 
episodes themselves, but provide the “slot definitions” for possible instantiations of 
them. Following is the grammar definitions, in BNF form, for a primitive activity in 
the Brahms language: 

primitive_activity activity-name( { param-decl  
[ , param-decl ]* } )  
{  
{ display : literal-string ; } 
{ priority : [ unsigned | param-name ] ; } 
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{ random : [ truth-value | param-name ] ; } 
{ min_duration : [ unsigned | param-name ] ; } 
{ max_duration : [ unsigned | param-name ] ; } 
{ resources : [ param-name | object-name ] [ ,  
              [param-name | object-name ]*; } 
} 

A primitive activity can have parameters that at runtime are instantiated with 
parameter values, depending on the type in the parameter declaration. Parameters can 
be assigned to the slots in the activity definition, enabling the activity to be situated in 
a particular instantiation. The display slot provides a way to give the activity a more 
appropriate name when displayed. For example, the display string can include blank 
spaces. The priority slot is a positive integer that gives the activity a priority. Activity 
priorities are used by the agent’s engine in case more than one activity can be chosen 
in the next event cycle. The max_duration slot gives the (maximum) duration of the 
primitive activity. Primitive activities only take an amount of time representing the 
time the agent performs the activity. In case the modeler wants a random time to be 
assigned, the modeler has to provide a min_duration as well, and set the random slot 
to true. For example, the activity bellow simulates the life of an agent in one simple 
primitive activity that takes a random lifetime: 

primitive_activity Being_Alive( int pri,  
  int max_life_time, Body body_obj )  
{  
  display : “Alive and kicking” ; 
  priority : pri ; 
  random : true ; 
  min_duration : 0 ; 
  max_duration : max_life_time ; 
  resources : body_obj ; 
} 

The above Brahms activity code is only the definition of the activity. It will not 
make the agent execute the activity. For this, the activity needs to be placed in a 
situation-action rule called a workframe. A workframe can have a set of preconditions 
that are matched against the belief-set of an agent. When there exist a set of beliefs 
that match the precondition, the variables in the precondition are bound to those 
matching the beliefs, and an instance of the workframe is created. The body of the 
workframe-instance is then executed. For example: 

workframe wf_Being_Alive { 
  repeat: true ; 
  when (knowval(current.alive = true)) { 
  do { 
   Being_Alive( 100, 3600 ) ; 
   conclude((current.alive = false), bc: 100, fc: 100); 
  } 
} 

In this workframe, the precondition knownval(current.active =true) is matched 
against the belief-set of the agent. The current keyword means the agent that is 



16 M. Sierhuis 

executing the workframe. The knownval predicate returns true if the agent has a belief 
that matches exactly the precondition. Other possible precondition predicates are 
known, unknown and not, which subsequently would return true, if a) the agent has 
any belief about the agent-attribute pair current.alive irrespective of the value, b) the 
agent has no belief about this agent-attribute pair, and c) the agent has a belief about 
the agent-attribute pair, but its value is not true (i.e. in this specific case the value is 
either false or unknown). 

If the preconditions are all true, a workframe instantiation for each set of variable 
bindings is created. In this above example, there are no variables and thus there will 
only be one workframe instantiation created. A workframe instantiation is an 
instance-copy of the workframe with every precondition variable bound, available to 
be executed (see section bellow about composite activities). If a workframe 
instantiation is selected as the current to be executed, the body of the workframe (i.e. 
the do-part) is executed. In the above workframe, the Being_Alive activity is 
subsequently executed. It should be noted that the agent’s engine matches the 
preconditions and starts executing the first activity in the workframe all at the same 
time (i.e. the same simulation clock tick). 

It is at the start of the execution of the activity that the activity duration time is 
calculated. For the Being_Alive activity a random duration, between the value of the 
min- and max-duration slot, is selected. This then becomes the duration of the of the 
workframe instantiation for wf_Alive. After the activity ends, the conclude statement 
is executed in the same clock tick. In other words, conclude statements do not take 
any time, only activities. The conclude statement creates a new belief for the agent, 
and/or a new fact in the world. In the above example there is a belief created for the 
agent in hundred percent of the time (bc:100). There is also a fact created in hundred 
percent of the time (fc:100). If the belief- or fact certainty factor were set to zero 
percent, no belief or fact would be created. Using these certainty factors, the modeler 
thus has control over the creation of facts in the world and beliefs of an agent. 

6.2   Composite Activities 

How can we represent complex activities that are decomposed into lower-level 
activities without using a goal-driven planning approach? This is an essential question 
in finding a way to model every-day situated activities that are not goal-driven.  One 
of the important capabilities of people is that we can easily resume an activity that 
was previously interrupted by another activity. For example, while in the activity of 
reading e-mail your cell phone rings. Without hesitation you suspend the “reading 
work-related e-mail” activity and start your “talking to your child on the phone 
activity,” switching not only your perceptual-motor context, from reading e-mail on 
your computer to talking on a cell phone, but also switching your situated social 
context from being an employee reading work-related e-mail to the role of a father. 
One question is how you get to change this context? It is obvious that this is not 
triggered by a sub-goal of the reading e-mail activity. It is detecting (i.e. hearing) your 
cell phone ringing that makes you interrupt your e-mail reading activity, and the 
social norms of today makes the answering your cell phone activity most likely be of 
higher priority.  
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The organization principle we use to enable this type of interrupt and resume 
behavior is Brooks’ subsumption architecture [9]. Brooks developed his subsumption 
architecture for situated robots, with the premise that this architecture enables the 
development of robots without a central declarative world model and without a 
planning system that acts upon that model. In Brahms agents do have a declarative 
world model, namely the belief-set of the agent represent the agent’s view of the 
world. However, similarly to Brooks’ subsumption architecture, Brahms agents do not 
use a goal-directed planning system, but rather an activation system that is based upon 
a “computational substrate that is organized into a series of incremental layers, each, 
in a general case, connecting perception to action.” [p.39]. In our case the substrate is 
a hierarchical network of situation-action rules with timing elements in the form of 
primitive activities with duration. This hierarchical workframe-activity network 
enables flexible context switching between independent activities at all levels in the 
hierarchy. Similar to Brooks’ augmented finite state machine (AFSM) language, each 
individual Brahms agent engine executes activities as manageable units selectively 
activated and deactivated (i.e. interrupted or impassed). Each Brahms agent engine 
works similar to Brooks’ AFSMs, namely “[(activity behaviors] are not directly 
specified, but rather as rule sets of real-time rules which compile into AFSMs in a 
one-to-one manner.” [p. 40]. 

Activity Subsumption 
It is obvious that we want to be able to decompose primitive activities into more 
complex activities in order to model more complex behavior. For example, we want 
to be able to decompose the Being_Alive activity into more specific activities that the 
agent performs while alive. In Brahms this is done with a composite activity. 
Following is the grammar definitions, in BNF form, for a composite activity in the 
Brahms language: 

composite-activity activity-name (  
{ param-decl [ , param-decl ]* } )  
{  
{ display : literal-string ; } 
{ priority : [ unsigned | param-name ] ; } 
{ end_condition : [ detectable | nowork ] ; } 
{ detectable-decl } 
{ activities } 
{ workframes } 
{ thoughtframes } 
} 

The “slots” of a composite activity are different from that of a primitive activity, 
except for the display- and priority slots. A composite activity has sections to define 
the decomposed behavior of the activity: detectable-decl, activities, workframes, 
thoughtframes. First, the end_condition slot declares how a composite activity can 
end. There are two possibilities; 1) the activity ends when there is nothing more to do. 
This is called end when there is no work (i.e. no workframe or thoughtframe in the 
activity fires); 2) the activity ends, because the agent has detected some condition in 
the world that makes it end the activity. In this case, when the activity should be 
ended is defined in the detectable-decl slot, by declaring so-called detectlables. How 
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detectables work is explained bellow in the section about reactive behavior. Here we 
first explain the other sections of a composite activity. The other three sections define 
a composite activity in terms of more specialized activities in the activities section, 
and workframes calling these activities in the workframes section. The thoughtframes 
section contains thoughtframes. Thoughtframes are simple forward-chaining 
production rules. Actually, thoughtframes are like workframes except they cannot call 
activities but only conclude beliefs, based on matching belief preconditions. Also, 
thoughtframes do not take any simulated time, unlike workframes that always 
perform activities that take time. Thus, composite activities allow the definition of 
detailed scripts for well-known situations (a.k.a. work practice).  

Next, we provide an example of how composite activities are used. We will use the 
example from before about an agent who is in the activity of being alive. We expand 
the example to have the agent go from being alive to being in a coma. Instead of 
defining the Being_Alive activity as a primitive activity that simply takes an amount 
of time, let us define this activity in more detail as a composite activity of two 
subactivities called PAC_1 and PAC_2.  Both of these subactivities are primitive 
activities being called in two separate workframes wf_PAC_1 and wf_PAC_2: 

composite_activity Being_Alive( ) { 
 priority: 0; 
  detectables: 
   detectable det_Impasse { 
    detect((current.headTrauma = true)) 
     then impasse; 
   } 
 
  activities: 
   primitive_activity PAC_1(int pri) { 
    display: "PAC 1"; 
    priority: pri; 
    max_duration: 900; 
   } 
 
   primitive_activity PAC_2(int pri, int dur) { 
    display: "PAC 2"; 
    priority: pri; 
    max_duration: dur; 
   } 
 
  workframes: 
   workframe wf_PAC_1 { 
    repeat: true; 
    when (knownval(current.execute_PAC_1 = true)) 
    do { 
     PAC_1(1); 
     conclude((current.headTrauma = true), fc:50); 
    } //end do 
   } //end wf_PAC_1 
 
   workframe wf_PAC_2 { 
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    repeat: true; 
    do { 
     PAC_2(0, 1800); 
     conclude((current.execute_PAC_1 = true), bc:25); 
    PAC_2(0, 600); 
    } //end do 
   } //end wf_PAC_2 
} //end composite activity Being_Alive 

The left side of Figure 3 shows the workframe-activity subsumption hierarchy for 
the Being_Alive activity. The wf_Being_Alive workframe from before now calls the 
composite activity Being_Alive, instead of the previous primitive activity.  From the 
above source code you can see that, at first, the workframe wf_PAC_2 will fire, 
because that workframe does not have any preconditions and can thus fire 
immediately. This workframe will fire forever due to the repeat: true statement. Thus, 
if nothing else changes, the agent will first execute primitive activity PAC_2 for 1800 
clock ticks, and then again for 600 clock ticks, after which the wf_PAC_2 fires again, 
and again. However, the conclude statement, in between the two PAC_2 activity calls 
concludes its specified belief 25% of the time, due to the belief-certainty of 25. This 
means that approximately one out of four executions of the workframe wf_PAC_2 the 
agent gets the belief to execute PAC_1.  

 

Fig. 3. Coma Model Workframe-Activity Subsumption Hierarchy 

When this happens the belief immediately matches with the precondition of the 
wf_PAC_1 workframe, which then becomes available to fire. Now the agent’s engine 
needs to determine which workframe to execute in the next clock tick. This is done 
using the priorities of the workframes. If no priority is specified directly on the 
workframe, the workframe will get the priority of the highest priority activity within 
its body. In this example workframe wf_PAC_2 has a priority of zero, because both 
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PAC_2 activity calls get a priority of zero as a parameter value. Workframe 
wf_PAC_1 on the other hand will get the priority one, due to PAC_1 having a priority 
parameter value of one. Thus, wf_PAC_1 has the highest priority and the engine will 
pick this workframe as the next workframe to execute, with as the result that the agent 
will start performing PAC_1 for its defined duration of 900 clock ticks. Workframe 
wf_PAC_2 will be interrupted at the point of the beginning of the second PAC_2 
activity call, right after the execution of the conclude statement. Therefore, when the 
wf_PAC_1 workframe finishes its execution of the PAC_1 activity (i.e. 900 clock 
ticks later) the agent will switch immediately back to the execution of the interrupted 
wf_PAC_2 workframe, and will continue with executing the second PAC_2 activity in 
the workframe. 

This example shows the selective activation and deactivation of subsumed 
activities via a perception-action architecture based on an activity-priority scheme. 
Agents can easily switch their activity context, independent of the level in the activity 
network hierarchy. When a workframe with activities within it becomes available, no 
matter where in the workframe-activity network, the workframe with the highest 
priority becomes the agent’s current context—this is called the agent’s current 
work—and thus the activities within this current workframe will execute.  

Thus far the example shows how an agent can easily switch activities based on new 
belief creation, i.e. either through performance of activities in workframes or through 
pure reasoning in thoughtframes. Next, we will show how an agent can also react to 
changes in the environment by detecting facts in the world. This approach enables 
flexible reactive behavior by the agent due to changes in “the outside” environment. 

6.3   Reactive Behavior 

The example of the composite Being_Alive activity shows how agents can switch 
activity contexts based on “internally” created beliefs and activity-workframe 
priorities. However, we want agents be able to react to fact chances in the 
environment outside of the agent. This is done through the definition of detectables in 
activities and workframes. The above source code shows the det_Impasse activity 
detectable declared in the Being_Alive activity. What this means is that while the 
agent is “in the Being_Alive activity” this detectable is active and the agent will detect 
any fact changes, made by any agent or object, to the headTrauma attibute of the 
agent.  

The process of firing a detectable goes as follows: When a new fact is detected 1) 
the fact becomes a belief for the agent that can then trigger a switch in activity context 
as shown in the example before, 2) the agent matches the detectable condition of all 
active detectables that refer to the fact and checks if the fact matches the condition, 3) 
in case the detectable condition matches the fact the detectable action statement is 
executed. There are four types of detectable actions possible, continue, abort, 
complete, and impasse. 

In the Coma model source code for the Being_Alive composite activity, the 
det_Impasse detectable has an impasse action. An impasse action means that the 
activity will be impassed (i.e. interrupted) until the impasse condition is resolved.  
The impasse condition is the detect condition of the detectable. Thus, in the 
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det_Impasse detectable, the activity is impassed when the fact (current.headTrauma 
= true) is created. The wf_Being_Alive will be impassed until the fact is changed. 

Figure 3, on the right hand side, shows an additional workframe for the agent 
called wf_In_Coma. This workframe has a precondition that matches on the belief 
(current.headTrauma = true) created by the detection of the fact, and will activate the 
In_Coma activity. If the In_Coma activity, or something else, at some point in the 
future creates the fact (current.headTrauma = false), the impasse is resolved and the 
Being_Alive activity will be available again for the agent to continue executing it, 
depending its priority compared to other available activities. 

The above example shows how a Brahms agent’s behavior is modeled as 
decomposed script-like activities that are executed using a perception-action 
subsumption architecture, enabling both rational and reactive behavior. There is one 
more important organizational element in the Brahms language that provides an 
important agent organizational modeling capability. This is briefly discussed in the 
next section. 

7   Modeling Agent Organization 

Societies consist of many different types of behaviors. As a design principle we want 
to be able to organize these behaviors in categories that are logically and culturally 
understandable, and moreover useful for the design of complex agent communities. In 
Brahms there is the notion of a group as the concept allowing the creation of agent 
pastiches. Not only did we develop groups based on the notion of organization in 
categories or classes, groups are based on the important idea of communities of 
practice: 

“Being alive as human beings means that we are constantly engaged in the 
pursuit of enterprises of all kinds, from ensuring our physical survival to 
seeking the most lofty pleasures. As we define these enterprises and engage 
in their pursuit together, we interact with each other and with the world and 
we tune our relations with each other and with the world accordingly. In 
other words we learn. Over time, this collective learning results in practices 
that reflect both the pursuit of our enterprises and the attendant social 
relations. These practices are thus the property of a kind of community 
created over time by the pursuit of a shared enterprise. It makes sense, 
therefore, to call these kinds of communities communities of practice.” [23, 
p. 45] 

Groups are thus meant to be the representation of the practices of communities of 
agents. People belong to many communities at once, blending practices from many 
different groups into one, so called, work practice [3]. We are students, parents, 
workers, children, engineers of a particular kind, etc. But we also are social creatures, 
belonging to a community of like-minded individuals playing sports, having hobbies, 
going to the same coffee shop every day, playing roles in an organization, etc. It is 
therefore that people belong to many communities of practice at once. Agents in the 
Brahms language can thus belong to many different groups, enabling the design of 
complex organization models of agents. 
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Groups in Brahms, just like agents, can contain attributes, relations, initial beliefs 
and facts, activities, workframes and thoughtframes. An agent can be a member of a 
group, but a group itself can also be a member of another group, enabling the design 
of a complex hierarchical structure of agent group-membership. An agent or group 
that is a member of another group will inherit all of the contents of that group. For 
example, agent Joe, from our first example, will inherit its behavior as a student from 
the Student group. But, we can create another group, let’s call it HumanBeing, in 
which we put the BeingAlive and BeingInComa activities. We can now have agent Joe 
inherit both the behavior from the Student group and from the HumanBeing group; 

group HumanBeing {…} 

group Student {…} 

agent Joe memberof HumanBeing, Student {…} 

Groups and multiple group inheritance allows us to model common behavior as 
communities of practice, from which all group members will inherit its behavior. 
Using this simple group membership relation we can design any type of organization 
we want. Groups can represent a functional organization, such as groups representing 
particular roles that agents play, performing certain functions (i.e. activities) in an 
organization. However, groups can also represent social organizations, such the 
relationships and social knowledge people share about a particular community. For 
example, everyone who comes to drink coffee at the same coffee shop everyday 
knows the name of the shop’s barista. 

8   Conclusions 

In this chapter, we discussed some of the issues and limitations of BDI agent 
architectures based on Bratman’s Planning Theory that explicitly states that humans 
are goal-driven planning agents. We posited an alternative view of human behavior 
based on a combined notion of situated action, cognition in practice, situated 
cognition and activity theory. Based on this alternative view, we developed an 
activity-based theory of behavior that allows for the description of complex behavior 
that is not only based on goals. We then described the Brahms multiagent language 
and execution architecture that implements this activity-based theory into a BDI agent 
language. Brahms allows for designing and implementing complex agent societies not 
based on goal-based planning agents. 

The Brahms multiagent language, for each agent, “groups multiple processes (each 
of which turns out to be usually implemented as a single [composite activity]) into 
behaviors. There can be message passing, suppression and inhibition between 
processes within a [composite activity], and there can be message passing, 
suppression and inhibition between [composite activities]. [Activities] act as 
abstraction barriers, and one [activity] cannot reach inside another.” [9, p.41]. 

Compared to the goal-driven paradigm, the Brahms activity-based paradigm is a 
more flexible execution paradigm. In a goal-driven execution engine only sub-goal 
contexts within the task being executed can be called as the next action, unless the 
current task is finished and the current goal is or is not reached and thus “popped off” 
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the goal stack. This limits an agent’s ability to flexibly react to new belief 
“perceptions” unrelated to the current goal it is trying to reach. 

With the simple examples in this paper, we hope we have convincingly shown that 
Brahms agents are both rational and reactive, and use composite architecture with 
situation-action rules to implement a perception-action approach similar to Brooks’ 
behavioral architecture, all without the use of goals and goal-driven planning. 
However, it should not be forgotten that a forward-driven approach might just as well 
implement goal-directed behavior as a backward-driven goal-based approach. It is 
thus that in Brahms we can implement goal-driven activities without any problem, 
and it can be said that Brahms enables modeling of agent behaviors much more 
flexibly than a goal-based planning architecture. In other words, the activity approach 
is more general than the goal-based approach, which justifies the title of this paper 
and our claim that goals develop within an activity, but they are not the driving force 
of behavior, and are only useful in activities where problem solving is necessary. In 
other words: “All human behavior is activity-based, but not every activity is a 
problem to be solved.” 
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