
G. O’Hare et al. (Eds.): ESAW 2006, LNAI 4457, pp. 1–24, 2007.
© Springer-Verlag Berlin Heidelberg 2007

“It’s Not Just Goals All the Way Down” – “It’s Activities
All the Way Down”

Maarten Sierhuis

Research Institute for Advanced Computer Science
NASA Ames Research Center

M/S 269-1
Moffett Field,

CA 94035-1000, USA
Maarten.Sierhuis-1@nasa.gov

Abstract. The rational agent community uses Michael Bratman’s planning
theory of intention as its theoretical foundation for the development of its agent-
oriented BDI languages. We present an alternative framework based on situated
action and activity theory, combining both BDI and activity-based modeling, to
provide a more general agent framework. We describe an activity-based, as
opposed to a goal-based, BDI language and agent architecture, and provide an
example that shows the flexibility of this language compared to a goal-based
language.

1 Introduction

This chapter is written based on a talk with the same title given as an invited talk at
the seventh annual international "Engineering Societies in the Agents World" (ESAW
2006) conference. The title is meant as a tongue-in-cheek provocation towards the
BDI agent community being proponents of agents as goal-driven planners. A previous
presentation about the Brahms multiagent simulation and development environment,
at the 2006 Dagstuhl seminar on Foundations and Practice of Programming Multi-
Agent Systems, had created debates with agent language researchers about the
primary use of goal-driven behavior in agent languages [1]. In this talk, we intended
to put forth an alternative to agents being solely goal-driven planners. We not only put
forward an alternative view on human behavior (a view that relies on activities instead
of goal-driven action), but we also presented our Brahms multiagent language and
simulation environment that is BDI-like without the notion of goals as the driving
force of agent action [2][3]. In this chapter, we try to more thoroughly explain this
activity-based BDI approach and present not only the Brahms language and the
workings of the architecture, but present the theoretical basis for this alternative view
of human behavior. The theory of activity-based modeling is rooted in situated action,
cognition in practice, situated cognition and activity theory.

It has to be noted that this paper cannot do justice to the large number of research
articles that have been written on these concepts. We merely can scratch the surface,
and we do not claim that we explain these concepts completely. We quote heavily
from writings of other, more prominent, researchers to explain these concepts, and we

2 M. Sierhuis

advice the reader to study them in order to get a deeper understanding of the theories
and research behind them. What we hope this paper contributes to is a theory, practice
and tool of how to analyze, design and implement large agent systems. Our hope is
also that we succeed in providing a well enough argument for activity-based rational
agents as a more general alternative to goal-driven ones.

The rational agent community, over the last ten or so years, has settled on using
Michael Bratman’s planning theory of intention as its theoretical foundation for the
development of its agent-oriented BDI languages [4][5]. Fundamentally, we believe
that it is very good for a programming paradigm and its subsequent languages to be
based on a theory. In general, programming is about modeling the world as we know
it, and a specific program embeds a particular theory—the programmer’s theory of the
world being modeled. When a programming language itself is based on a solid theory
it can help the programmer. However, this is both a good and a bad thing. The good
thing is that we can have a tool that is sound—based on a theory—and thus the
programs that are being developed with it will, by definition, adhere to the theory.
This helps the programmer not to have to invent a new theory before implementing a
model based on it. The theory is already there. For example, all computer
programmers use Turing’s theory of universal computing machines as their basis for
developing programs as a sequence of instructions.1 The bad thing is that believers of
the theory tend to apply the theory in all sorts of ways that might, or more
importantly, might not be within the theory’s relevance. A second problem is that the
theory might be flawed, or at least, can have alternative theories that put in question a
fundamental part of the theory.

In this chapter we discuss some of the fundamental underpinnings of the theory on
which the BDI programming languages of today are based. We point out that a
fundamental assumption of Bratman’s theory has at least one alternative theory that is
based on the inverse assumption. This is interesting in the sense that both theories
cannot be correct. After we discuss some of Bratman’s theory and its fundamental
assumption, we will move on to describe the alternative theory and its assumption.
Then, we will merge the two theories into a theory that combines both and thus will
provide a more general theory on which future BDI languages could be based. We
then move on to describe an activity-based BDI language and agent architecture based
on this new more general theory, and provide an example that shows the flexibility of
this language compared to a goal-based BDI language.

2 Theoretical Stances

2.1 Bratman’s Planning Theory

Bratman’s philosophical treatise on human behavior is based on commonsense or folk
psychology—a not falsifiable theory based on propositional attitude ascriptions, such
as “belief”, “desire”, “pain”, “love,” “fear”. The fact that the theory on which
Bratman’s treatise is based is not falsifiable makes it not a theory, but a theory about

1 Alan Turing (1936), "On Computable Numbers, With an Application to the Entscheidungs-

problem", Proceedings of the London Mathematical Society, Series 2, Volume 42 (1936).
Eprint. Reprinted in The Undecidable pp.115-154.

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 3

the existence of a theory, also known as a theory-theory. Herein lays the division in
camps of believers: Those who believe in the theory and those who do not, and then
those who believe in some of it. It is difficult to decipher in which camp the rational
agent community lays. To me there are only two possibilities. First, it is completely
possible that people in the rational agent community believe in Bratman’s Planning
Theory [4]. Falling in this camp means that one agrees with the assumption that
people are planning agents. This has a major implication, to which we will return in
the next section. The other possibility is that people in this camp do not necessary
believe that Bratman’s theory says something in particular about people, but it says
something about any kind of animal or any non-living object. People in this camp care
less about the fact that Bratman’s theory only talks about people and not about
systems in general, but they nevertheless believe that using planning to deliberatively
decide on future actions is a very attractive presupposition, and even more, it is a very
useful concept for computer programming. For people in this camp every behavior,
whether human or not, can be reduced to a problem that needs to be solved, because
in that case Bratman’s Planning Theory can be used to predict and execute actions to
solve it. Thus, in short, Bratman’s theory can easily be used to solve any behavioral
“problem” with an algorithm developed by researchers of artificial intelligence and
cognitive science.

Let us briefly turn to Bratman’s theory, and let us start by stating that we do not
have the space or the time to fully describe Bratman’s theory here. We only focus on
those parts that are relevant for our ultimate points. Since this paper is part of a book
about engineering software agents, we assume for simplicity sake that the reader is
familiar with the concepts belief, desire and intention, and we therefore do not explain
these concepts. What does Bratman’s theory say?

People are planning agents => they settle in advance on complex
plans for the future and these plans guide their conduct.

This is Bratman’s fundamental assumption. This is neither fully explained, nor is it
proven by his theory. It is simply a supposition. The only evidence for this
supposition being true is given by Bratman in the form of a reference to Simon’s
notion that people are bounded rational agents [6]. Most artificial intelligence
researchers, economists and cognitive scientists agree with Simon’s claim. Never
mind that Simon’s notion came about as a reaction on economic models always
assuming that people are hyperrational2. Simon postulated that people are boundedly
rational and the only way of behaving is by satisficing3.

People, as planning agents, have two capacities: 1) the capacity to act
purposeful, 2) the capacity to form and execute plans.

The following quote exemplifies the extent to which Bratman justifies his claim
that people must be planning agents; “So we need ways for deliberation and rational

2 In this context, hyperrational means that people are always rational, to a fault, and would

never do anything to violate their preferences.
3 “Satisficing is a behaviour which attempts to achieve at least some minimum level of a

particular variable, but which does not necessarily maximize its value.” from Wikipedia,
12/24/2006.

4 M. Sierhuis

reflection to influence action beyond the present; and we need sources of support for
coordination, both intrapersonal and interpersonal. Our capacities as planners help us
meet these needs” [4, p. 3]. In here lies Bratman’s basic “proof” that people are
planning agents. His reasoning goes something like this; Planning is an algorithmic
way to deal with deciding on what to do in the future, i.e. future action. Planning can
be seen as a sort of coordination. People need to decide on future action; otherwise
they could never do anything. Deliberation takes time and it is not in and of it-self
useful for taking action. We need a way to influence what we do in the future. People
need to coordinate their actions, as well as what they do together. Therfore, people
need a planning algorithm to do this. Quod erat demonstrandum.

Goal-Based Modeling
Those who believe in Bratman’s Planning Theory almost always also believe in
people being general problem-solvers, and that deciding what to do next is a problem
to be solved for which people use a goal-based or goal-driven reasoning method. The
reason that this way of thinking is almost always synonymous with believing in the
BDI agent architecture is that it fits very well with Bratman’s Planning Theory. To be
goal-based means that one stores information about the world and about situations
that are desirable, which we refer to as the goals to be reached. Our model of current
situation or current state and of goals or future state, allows us then to choose among
the multiple future states we can think of and select which one should be next. This
next state is then called our (sub)goal. This maps, in principle, very well onto the
concepts of beliefs, desires and intentions. In a more general way, not necessarily
only related to how people operate, we might change the names of these concepts into
stored current state, desired future state or goal, and intent to act. It is the concept of
desire that makes the BDI architecture inherently a goal-driven architecture and BDI
agents problem-solving agents.

This model of agent behavior is compelling to people adhering to Bratman’s
Planning Theory, because it also fits very well with some of the most prominent
theories of cognition, namely Newell’s Unified Theory of Cognition and Anderson’s
ACT-R model of cognition [7][8]. However, there are theories and implemented
architectures out there that are alternatives to goal-driven planning. One of the most
prominent alternatives is the behavior-based robot architecture that shows that robots
can achieve intelligent behavior that is not based on the existence of an explicit plan
and of goal-driven behavior. Indeed, Brooks argues convincingly, as we are trying to
do in this chapter, that “planning is just a way of avoiding figuring out what to do
next.” [9, Chapter 6, p. 103]. Brooks’ basic argument goes something like this: The
idea of planning and plan execution is based on an intuition. There is no evidence that
it has to be the only way to develop intelligent behavior. Putting sensors and effectors
together using a program can also create intelligent behavior.

Thus a process-way of acting is just as possible as a state way of reasoning. In the
Artificial Intelligence and Robotics community Brooks is the most well known
researcher that argues against Bratman’s Planning Theory. However, there have also
been social- and cognitive scientists that have argued against the Planning Theory, not
from an engineering or computational angle, but from a social and behavioral angle.
This is the subject of the next section, and together with Brooks’ argument will form
the basis for our thesis that an activity-based approach is a more general approach,

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 5

incorporating both a goal-based and a behavior-based approach for BDI agent
architectures.

2.2 The Alternative View

Let us turn to an alternative view of human behavior, namely a view of human
purposeful action based on ethnomethodology4. Suchman, in her book “Plans and
Situated Actions,” takes a strong stance against the traditional view of planned
purposeful action. It is this alternative view that in our opinion best expresses the
problems with Bratman’s Planning Theory as a theory about human purposeful
action [8].

Situated Action
Suchman’s view takes human purposeful action as its starting point for understanding
human behavior, but it is not a theory of the brain’s functioning. Suchman’s view is
not presented as a theory of human behavior, as it does not predict human behavior.
However, Suchman investigates an alternative view to the view deeply rooted in
Western cognitive science, that human action is only and essentially determined by
plans. Suchman describes human activity from a socially-, culturally- and
environmentally situated point of view, rather than from a cognitive point of view.
This different angle on human activity opens up an entirely new take on purposeful
action, namely that learning how to act is dependent on the culture in which one
grows up, and thus there is variation based on the situation. Whether our actions are
ad hoc or planned depends on the nature of the activity and the situation in which it
occurs.

Although we might contrast goal-directed activities from creative or expressive
activities, or contrast novice with expert behavior, Suchman argues convincingly that
every purposeful action is a situated action, however planned or unanticipated.
Situated action is defined as “actions taken in the context of particular, concrete
circumstances.” [p. viii] Suchman posits an important consequence of this definition
of purposeful action that is best retold with a quote:

“… our actions, while systematic, are never planned in the strong sense
that cognitive science would have it. Rather, plans are best viewed as weak
resources for what is primarily ad hoc activity. It is only when we are
pressed to account for the rationality of our actions, given the biases of
European culture, that we invoke guidance of a plan.” [p. ix]

Suchman goes on to say that plans stated in advance of our action are resources
that are necessarily vague, and they filter out the precise and necessary detail of
situated actions. Plans are not only resources used in advance of situated action, they
are also used as a reconstruction of our actions in an explanation of what happened.
However, we filter out those particulars that define our situated actions in favor of
explaining aspects of our actions that can be seen in accordance with the plan. Thus,

4

 Ethnomethodology (literally, 'the study of people's (folk) methods') is a sociological discipline
which focuses on the ways in which people make sense of their world, display this
understanding to others, and produce the mutually shared social order in which they live.
[Wikipedia, 12/27/06].

6 M. Sierhuis

according to Suchman, in strong contrast with the view of Bratman, plans are
necessarily abstract representations of our actions and as such cannot serve as an
account of our actions in a particular situation. In other words, our actions are not
planned in advance, but are always ad hoc. Let us take a brief look at how cognitive
science and AI are changing to a science of situated cognition.

Situated Cognition
Behavioral robotics is part of a new stream in AI, evolving from text-based or
symbolic architectures of expert systems, descriptive cognitive models, and indeed
BDI-like planning, to reactive, self-organizing situated robots and connectionist
models. Many scientists have started to write about alternatives to the “wet computer”
as a symbolic planning machine, such as Suchman [10], Brooks [9], Agre [11], Fodor
[12], Edelman [13], Winograd and Flores [14]. We surely are leaving out others. In
this section we will briefly present the work of Bill Clancey, because he is both the
father of Brahms (the activity-based BDI language and multiagent architecture we
describe in this paper) and a well-known father of expert tutoring systems (a purely
symbolic approach), who has “gone the other way.” Clancey is one of the proponents
of situated cognition, and having written two books about it, one of the experts in the
field [15][16].

Situated cognition goes one-step further than Suchman’s situated action, namely it
posits an alternative human memory architecture to the symbolic memory architecture
of Newell and Anderson [7][8]. Clancey, in [16], develops an architecture of human
memory at the neural level that is quite different from an architecture of a long-term
memory storing productions and a short-term memory for matching and copying text
(or symbols) into a “buffer.” Clancey’s arguments against the “memory as stored
structures” hypothesis of Newell and Anderson has far reaching consequences for the
Planning Theory of Bratman, namely that BDI-type planning cannot be the process
for human thinking. It are exactly the concepts on which planning is based, like
search, retrieve, and, match, that are associated with thinking as a “process of
manipulating copies of structures, retrieved from memory” and “learning [as] a
process of selectively writing associations back into long-term memory [p. 3].”

What is important for situatedness is the notion that thinking is a situated
experience over time. In Newell and Anderson’s model, time plays an important role
in the matching of antecedents (of productions in long-term memory) and retrieval of
the matched production from long-term memory and copying into short-term
memory. In other words, the time it takes to think has little to do with being in the
activity of doing something in the world, but rather it has to do with being in the
activity of matching, retrieving and copying of symbols. In Clancey’s model,
however, the overall time it takes for neuronal processes to subsequently activate in
the brain is the essence of situated action and (subconscious) conceptualization
occurs as an activity. The essential part of the Newell and Anderson models of
cognition that is disputed is the sequential relation of:

sensation ⇒ perception memory ⇒ processing/thought and planning ⇒ action.

Instead, these are processes coupled in activation relations called conceptual
coordination.

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 7

All else being equal, we adhere to the view that actions are situated as the starting
point for developing an activity modeling approach. Not in the least, because the
situated view of human activity constrains us less, by not having to commit to theories
about brain function that model problem-solving tasks at the millisecond range. It
frees us from having to model what is “in between our ears,” and opens up our focus
on modeling an agent’s activities as larger time-taking situated actions within the
environment. It finally enables us to model human behavior based on individual and
social interaction with other individuals and artifacts in the world.

Activity-Based Modeling: Combining BDI with Situated Action
In the previous section, we laid the groundwork for activity-based modeling.
Suchman’s treatise on situated action is important, because it proofs that modeling
intention to act may not only be goal-based. In fact, Suchman argues convincingly
that an intention leading every-day life action is always situated in an environment,
and is only goal-driven when there is a real-world problem to be solved. The
overarching conclusion of this alternative view is that acting in the world is not only
bounded by rationality, i.e. reasoning—or rather problem-solving—in the abstract, but
is mainly situated in an environment that is historically, culturally and socially learned
by its changes over time. It is thus important to not leave out the environment. In the
remainder of this chapter, we define a modeling framework that combines the
concepts of belief, desire and intention with that of situated action, to form an
activity-based modeling approach that can be used not only to model the work
practices of people, but also to model rational agent behavior in any multiagent
system. By now, it should be no surprise that in this modeling framework an agent’s
behavior is not goal-based, but rather activity-based. This means that an agent’s
desires are not the possible subgoals the agent derives from its intention to solve a
particular problem. Rather, as we will see, an agent’s desires are reflected in the
agent’s motives for performing activities, and these motives are dependent on the
environment and the situation, i.e. the state of the world at that moment. In the next
section we describe what is meant with the word situated.

Modeling the Environment
The social anthropologist Jean Lave studied how people apply cognition in practice
[17]. In the Adult Match Project she studied how people do math. She found that the
same individuals do arithmetic completely different depending on the situation they
are in. The results from her studies are significant, because solving mathematical
problems has for a long time been the way scientists have studied general problem-
solving in school and in the laboratory. Lave and her colleagues studied adult
arithmetic practices in every-day settings, such as cooking and grocery shopping.
Their work shows that solving mathematical problems is not so much constraint by
how much of a math expert one is because of their math education, but because of the
setting or situation in which the arithmetic activity takes place. Lave argues
convincingly that, in order to understand problem solving we need to model the
problem-solving process in situ.

Russian psychologist Lev Semyonovich Vygotsky plays an important role in
developmental psychology. Vygotsky’s deeply experimental work on child learning
and behavior developed the notion that cognition develops at a young age through

8 M. Sierhuis

tools and the shared social and cultural understanding of tools in the form of
internalized signs [18]. For example, a ten-month-old child is able to pull a string to
obtain a cookie. However, it is not till the child is about 18 months that it is able to
remove a ring from a post by lifting it, rather then pulling on it. Vygotsky writes;
“Consequently, the child’s system of activity is determined at each specific stage both
by the child’s degree of organic development and by his or her degree of mastery in
the use of tools.” [p. 21] The internalization of mimicry of tool use by young infants
into a shared meaning of signs is, according to Vygotsky, intertwined with the
development of speech. At the same time, speech plays an important role in the
organization of a child’s activities. Vygotsky writes; “Our analysis accords symbolic
activity a specific organization function that penetrates the process of tool use and
produces fundamentally new forms of behavior.” [p. 24] While we will discuss the
concept of activity later on, here it is important to see the essential importance of
physical artifacts used as tools within an activity. Similar to the role of an artifact as a
tool, the role of artifacts as the products of an activity plays an equally important role
in what Vygotsky calls practical intelligence. Figure 1. shows the use of an artifact in
the activity—its role—that transforms the artifact into a tool or a product of the
activity, used or created by the subject. Outside the activity the artifact is just an
object in the world. To the observer the object is necessary for the activity to be
performed.

Fig. 1. Mediated relationship of artifacts in activities [3, p. 62]

Situatedness in Brahms is modeled by representing places and locations as objects
in a conceptual hierarchical geography model and by representing artifacts as objects
in a hierarchical object model, separate from modeling the agents and their possible
activity behavior [3].

3 Modeling Places and Locations

In Brahms’ geography model relevant locations are modeled conceptually as area
objects in a part-of hierarchy. Locations are areas, which are instances of classes of
areas called areadefintions. Areas can be part of other areas. Using these two simple

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 9

concepts we are able to model any environment as a conceptual hierarchical structure
of area objects. For example, we can model the geography for UC Berkeley students
studying at South Hall and going for lunch on Telegraph or Bancroft Avenue in
Berkeley as follows:

area AtmGeography instanceof World
// Berkeley
area Berkeley instanceof City partof AtmModelGeography
// inside Berkeley
area UCB instanceof UniversityCampus partof Berkeley
area SouthHall instanceof UniversityHall partof UCB
area SpraulHall instanceof UniversityHall partof UCB
area BofA_Telegraph_Av_2347 instanceof BankBranch
 partof Berkeley
area Wells_Fargo_Bancroft_Av_2460 instanceof BankBranch
 partof Berkeley
area Blondies_Pizza_Telegraph_Av_2347 instanceof
 Restaurant partof Berkeley
area Tako_Sushi_Telegraph_Av_2379 instanceof Restaurant
 part of Berkeley

Being situated means that Brahms agents are located within the geography model.
Area objects are special kinds of objects that can inhabit agents. Agents can have an
initial location. For example, agent Joe can initially be located in area SouthHall as
follows:

agent Joe {
 intial_location: SouthHall;
}

People do not stay in one location, but move around. Similarly, Brahms agents can
move around within a geography model. Agent (and object) movement is performed
with a move activity. How activities are performed is described in the next section.
Although a geography model and agent and object location and movement within
such a model is essential for modeling situatedness, the state of the world needs to be
modeled as well. Current BDI architectures do not model the state of the world and
therefore do not allow for representing a factual state of the world independent of the
agent’s beliefs about that state. In Brahms the state of the world is modeled as facts5.
For example, the location of an agent is a fact, because, regardless of the beliefs of
agents, the agents have a location within the geography model.

Fact: (Joe.location = SouthHall)

To model facts about areas we give the areas attributes and relations. For example,
we can model the temperature in South Hall and the fact that South Hall is part of the
UC Berkeley campus. To do this, we first define these as an attribute and relation in
the area definition class. This way all university hall areas we model will inherit them.

5 Here we deal with solipsism, since the model is an interpretation of the world by the modeler.

Facts, as such, are thus not real facts, but only the modeler’s representation of world states
independent of the beliefs of agents.

10 M. Sierhuis

areadefinition UniversityHall {
 attributes:
 public int temperature;
 relations:
 public UniversityCampus partOf;
}

Having defined the attributes and relations, we can have additional facts about the
world.

Facts:
 (SouthHall partOf UCB);
 (SouthHall.temperature = 72);

4 Modeling Objects and Artifacts

As discussed above, artifacts in the world are important aspects for modeling situated
action. Similar to the geography model, we model artifacts as object instances of a
class hierarchy. Actually, areas are special kind of objects and areadefinitions are
special classes. However, artifacts are more like agents than they are like areas.
Artifacts are located and some can display situated behavior. Some types of objects,
for instance a book, can also store information. Then there are data objects, which can
represent located information conceptually. We use a class hierarchy to model these
artifacts and data objects in the world. For example, to model a book Joe the student
is reading we can define the following object model:

class Book {
 attributes:
 public String title;
 public Writer author;
 relations:
 public Student belongsTo;
 public BookChapter hasChapter
}

object BookPlansAndSituatedAction instanceof Book {
 initial_location: SouthHall;
 initial_facts:
 (current.title = “Plans and Situated Action”);
 (current.author = LucySuchman);
 (current.belongsTo = Joe);
}

We can model the content of the book as conceptual chapter data objects. For
example:

conceptual_class BookChapter {
 attributes:
 public String title;
 public String text;
}

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 11

We model the information held by the object as “beliefs” of the object6. Thus, we
can model Chapter 4 in Suchman’s book as a conceptual BookChapter object the
Book object “stores” information about:

conceptual_object Chapter4 instanceof BookChapter { }

object BookPlansAndSituatedAction instanceof Book {
 initial_beliefs:
 (current hasChapter Chapter1);
 (current hasChapter Chapter2);
 (current hasChapter Chapter3);
 (current hasChapter Chapter4);
 (current hasChapter Chapter5);
 (current hasChapter Chapter6);
 (current hasChapter Chapter7);
 (current hasChapter Chapter8);
 ...
 (Chapter4.title = “Situated Action”);
 (Chapter4.text = “… I have introduced the
 term situated action …”);
}

The key point in modeling information is to locate the BookChapter content as
information held within the Book object. To do this, we model the content of the book
as the “beliefs of the book.”

Now that we discussed how situatedness is modeled in Brahms, we turn to
modeling activities. To understand what activities are, we must first understand that
human action is inherently social, which means it is “outside the brain” involving the
environment. The key thing is that action is meant in the broad sense of an activity,
and not in the narrow sense of altering the state of the world. In the next section we
discuss the concept of an activity and how to model it.

5 Modeling Activities

Like Bratman’s notion of humans as planners based on commonsense psychology, the
notion of human behavior in terms of activities is based on the Marxist activity theory,
developed initially between 1920s and 1930s by Russian psychologists Vygotsky and
Leont’ev [18][19]. Activity theory is also a meta-theory, as is commonsense
psychology, and can better be seen as a framework with which human behavior can
be analyzed as a system of activities. Activity theory has become more established in
last twenty years in its further development by educational and social scientists
[20][21], as well as human-computer interaction scientists [22].

The unit of behavioral analysis in Activity theory is, not surprisingly, an activity.
Activity theory defines a relationship between an activity and the concept of motive.
Motives are socially learned and shared with people from the same culture,
organization, or more generally a community of practice [23]. For instance, all
activities of flight controllers and directors at NASA Johnson Space Center’s Mission

6 We call information contained in an object also beliefs to minimize language keywords.

12 M. Sierhuis

Control for the International Space Station are driven by the shared motives of
keeping the space station healthy and making sure the space station crew is safe.
Motives and goals, at first glance, seem to be similar, but motives, unlike goals, are
situational and environmental states that we want to maintain over relatively long
periods of time, such as keeping the astronauts safe and healthy onboard the space
station. Motives are not internal states that drive our minute-by-minute action and
deliberation, but enable a shared external understanding of our actions in the world
(e.g. flight controllers are not, every minute of their time, working on tasks that are
driven by the goal of keeping astronauts alive). Motives keep us in “equilibrium” with
the system’s environment and allow us to categorize actions as socially situated
activities (e.g. everything flight controllers do is in line with their motives and have as
an overall result that the ISS is safe and the astronauts are healthy).

Describing human activities as socially situated does not mean people doing things
together, as in “socializing at a party” or “the social chat before a meeting.”
Describing human activities as social means that the tools and materials we use, and
how we conceive of what we are doing, are socially constructed, based on our culture.
Although an individual may be alone, as when reading a book, there is always some
larger social activity in which he or she is engaged. For instance, the individual is
watching television in his hotel, as relaxation, while on a business trip. Engaging in
the activity of "being on a business trip," there is an even larger social activity that is
being engaged in, namely "working for the company," and so on. The point is that we
are always engaged in multiple social activities, which is to say that our activities, as
human beings, are always shaped, constrained, and given meaning by our motives and
our ongoing interactions within a business, family, and community. An activity is
therefore not just something we do, but a manner of conceiving our action and our
interaction with the social environment we are in. Viewing activities as a form of
engagement emphasizes that the conception of activity constitutes a means of
coordinating action, a means of deciding what to do next, what goal to pursue; In
other words, a manner of being engaged with other people and artifacts in the
environment. The social perspective adds the emphasis of time, rhythm, place, shared
understanding and a well-defined beginning and end.

This can be contrasted with the concept of a task, which in AI is defined as being
composed of only those subtasks and actions that are relevant to accomplish the goal
of the task. A task is by definition goal-driven, and the conception of a task leaves out
the inherent social, cultural and emotional aspects of why, when, where and how the
task is performed within the socially and culturally bounded environment. Clancey
provides a nice example that portrays the difference between an activity and a task:

“All human activity is purposeful. But not every goal is a problem to be solved
(cf. Newell & Simon 1972), and not every action is motivated by a task (cf.
Kantowitz & Sorkin 1983). For example, listening to music while driving home is
part of the practice of driving for many people, but it is not a subgoal [subtask] for
reaching the destination. Listening to music is part of the activity of driving, with
an emotional motive.” [24, p. 1]

In this view of human behavior, activities are socially constructed engagements
situated in the real world, taking time, effort and application of knowledge. Activities
have a well-defined beginning and end, but do not have goals in the sense of

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 13

problem-solving planning models. Viewing behavior as activities of individuals
allows us to understand why a person is working on a particular task at a particular
time, why certain tools are being used or not, and why others are participating or not.
This contextual perspective helps us explain the quality of a task-oriented
performance. In this sense, as is shown in Figure 2, activities are orthogonal to tasks
and goals.

Task

Activity

Goal

Fig. 2. Dimensions of behavior [3, p. 55]

While modeling an activity we might want to use a goal-plan approach to represent
a specific task to solve a particular problem, but this can also be done within the
activity model itself. This is to say that a goal-driven planning approach is subsumed
by an activity-based approach, and a goal-oriented task can be modeled with a goal-
driven activity. An activity-based approach is more general and allows the modeling
of all kinds of activities, including activities that are not necessarily work-oriented
and goal-driven, but are based on social and cultural norms, such as the kinds of
activities described by Clancey [24, p. 4]:

• Intellectual: These include activities that represent any form of conceptual inquiry
or manipulation of things or ideas. This includes work-oriented problem solving,
but also activities that are less directed, such as exploration or browsing; artistic
and documentation activities, such as taking photographs, writing, etc.

• Interactional: These include activities in which we interact directly with other
people, such as in a fact-to-face conversation, or using a communication artifact,
such as a telephone or fax machine.

• Physical/body maintenance: These include activities where we “take care” of
ourselves physically, such as eating, sleeping, etc.

5.1 Activities Are Like Scripts

Engström integrates the notion of activity with the notion of practice. How do we
know what to do, what actions we should take, when and how? Habitual scripts drive
our practice, our learned actions in a context: “At an intermediate level, the continuity
of actions is accounted for by the existence of standardized or habitual scripts that
dictate the expected normal order of actions.” [25, p. 964].

In cognitive science and AI, the notion of scripts was developed by Shank and
Abelson for the purpose of language processing and understanding of knowledge
structures. Although they did not refer to activity theory, they did refer to something

14 M. Sierhuis

that sounds very much like the notion of behavior as situated activities: “People know
how to act appropriately because they have knowledge about the world they live in.”
[26, p. 36]. Unlike Engström, Shank and Abelson focus not on how and why people
get to engage in a social activity, although they use stories of social activities (such as
eating in a restaurant) as examples, but they focus on the knowledge that people need
to bring to bear to understand and process a situation. They argue that known scripts,
which can be based on general knowledge (i.e. knowledge we have because we are
people living in the world) and specific knowledge (i.e. knowledge we get, based on
being in the same situation over and over), are what people use to understand a story:

“A script is a structure that defines appropriate sequences of events in a
particular context. A script is made up of slots and requirements about what can fill
those slots. The structure is an interconnected whole, and what is in one slot affects
what can be in another. Scripts handle stylized everyday situations. They are not
subject to much change, nor do they provide the apparatus for handling totally
novel situations. Thus, a script is a predetermined, stereotyped sequence of actions
that defines a well-known situation … There are scripts for eating in a restaurant,
riding a bus, watching and playing a football game, participating in a birthday
party, and so on.” [p. 41]

Modeling activities as scripts enables us to model people’s behavior as situated
activities and is how we model activities in the Brahms language. This is the subject
of the next section.

6 Activities in Brahms

In Brahms, an activity system is modeled by individually performed activities by
agents. An agent while executing activities can be located in a geography model (see
geography discussion above), representing the agent executing located behaviors.
Activities are like scripts having “predetermined, stereotyped sequence of actions that
defines a well-known situation.” An activity abstracts a behavioral episode into a
sequence of subactivities, or, if not further decomposed, it abstracts an episode into a
single activity taking time, using resources—objects in the object model—or creating
products—other objects in the object model—or both. In Brahms we call these
composite- and primitive activities subsequently.

6.1 Primitive Activities

Activities define episodes of actions that an agent can perform. They are not the
episodes themselves, but provide the “slot definitions” for possible instantiations of
them. Following is the grammar definitions, in BNF form, for a primitive activity in
the Brahms language:

primitive_activity activity-name({ param-decl
[, param-decl]* })
{
{ display : literal-string ; }
{ priority : [unsigned | param-name] ; }

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 15

{ random : [truth-value | param-name] ; }
{ min_duration : [unsigned | param-name] ; }
{ max_duration : [unsigned | param-name] ; }
{ resources : [param-name | object-name] [,
 [param-name | object-name]*; }
}

A primitive activity can have parameters that at runtime are instantiated with
parameter values, depending on the type in the parameter declaration. Parameters can
be assigned to the slots in the activity definition, enabling the activity to be situated in
a particular instantiation. The display slot provides a way to give the activity a more
appropriate name when displayed. For example, the display string can include blank
spaces. The priority slot is a positive integer that gives the activity a priority. Activity
priorities are used by the agent’s engine in case more than one activity can be chosen
in the next event cycle. The max_duration slot gives the (maximum) duration of the
primitive activity. Primitive activities only take an amount of time representing the
time the agent performs the activity. In case the modeler wants a random time to be
assigned, the modeler has to provide a min_duration as well, and set the random slot
to true. For example, the activity bellow simulates the life of an agent in one simple
primitive activity that takes a random lifetime:

primitive_activity Being_Alive(int pri,
 int max_life_time, Body body_obj)
{
 display : “Alive and kicking” ;
 priority : pri ;
 random : true ;
 min_duration : 0 ;
 max_duration : max_life_time ;
 resources : body_obj ;
}

The above Brahms activity code is only the definition of the activity. It will not
make the agent execute the activity. For this, the activity needs to be placed in a
situation-action rule called a workframe. A workframe can have a set of preconditions
that are matched against the belief-set of an agent. When there exist a set of beliefs
that match the precondition, the variables in the precondition are bound to those
matching the beliefs, and an instance of the workframe is created. The body of the
workframe-instance is then executed. For example:

workframe wf_Being_Alive {
 repeat: true ;
 when (knowval(current.alive = true)) {
 do {
 Being_Alive(100, 3600) ;
 conclude((current.alive = false), bc: 100, fc: 100);
 }
}

In this workframe, the precondition knownval(current.active =true) is matched
against the belief-set of the agent. The current keyword means the agent that is

16 M. Sierhuis

executing the workframe. The knownval predicate returns true if the agent has a belief
that matches exactly the precondition. Other possible precondition predicates are
known, unknown and not, which subsequently would return true, if a) the agent has
any belief about the agent-attribute pair current.alive irrespective of the value, b) the
agent has no belief about this agent-attribute pair, and c) the agent has a belief about
the agent-attribute pair, but its value is not true (i.e. in this specific case the value is
either false or unknown).

If the preconditions are all true, a workframe instantiation for each set of variable
bindings is created. In this above example, there are no variables and thus there will
only be one workframe instantiation created. A workframe instantiation is an
instance-copy of the workframe with every precondition variable bound, available to
be executed (see section bellow about composite activities). If a workframe
instantiation is selected as the current to be executed, the body of the workframe (i.e.
the do-part) is executed. In the above workframe, the Being_Alive activity is
subsequently executed. It should be noted that the agent’s engine matches the
preconditions and starts executing the first activity in the workframe all at the same
time (i.e. the same simulation clock tick).

It is at the start of the execution of the activity that the activity duration time is
calculated. For the Being_Alive activity a random duration, between the value of the
min- and max-duration slot, is selected. This then becomes the duration of the of the
workframe instantiation for wf_Alive. After the activity ends, the conclude statement
is executed in the same clock tick. In other words, conclude statements do not take
any time, only activities. The conclude statement creates a new belief for the agent,
and/or a new fact in the world. In the above example there is a belief created for the
agent in hundred percent of the time (bc:100). There is also a fact created in hundred
percent of the time (fc:100). If the belief- or fact certainty factor were set to zero
percent, no belief or fact would be created. Using these certainty factors, the modeler
thus has control over the creation of facts in the world and beliefs of an agent.

6.2 Composite Activities

How can we represent complex activities that are decomposed into lower-level
activities without using a goal-driven planning approach? This is an essential question
in finding a way to model every-day situated activities that are not goal-driven. One
of the important capabilities of people is that we can easily resume an activity that
was previously interrupted by another activity. For example, while in the activity of
reading e-mail your cell phone rings. Without hesitation you suspend the “reading
work-related e-mail” activity and start your “talking to your child on the phone
activity,” switching not only your perceptual-motor context, from reading e-mail on
your computer to talking on a cell phone, but also switching your situated social
context from being an employee reading work-related e-mail to the role of a father.
One question is how you get to change this context? It is obvious that this is not
triggered by a sub-goal of the reading e-mail activity. It is detecting (i.e. hearing) your
cell phone ringing that makes you interrupt your e-mail reading activity, and the
social norms of today makes the answering your cell phone activity most likely be of
higher priority.

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 17

The organization principle we use to enable this type of interrupt and resume
behavior is Brooks’ subsumption architecture [9]. Brooks developed his subsumption
architecture for situated robots, with the premise that this architecture enables the
development of robots without a central declarative world model and without a
planning system that acts upon that model. In Brahms agents do have a declarative
world model, namely the belief-set of the agent represent the agent’s view of the
world. However, similarly to Brooks’ subsumption architecture, Brahms agents do not
use a goal-directed planning system, but rather an activation system that is based upon
a “computational substrate that is organized into a series of incremental layers, each,
in a general case, connecting perception to action.” [p.39]. In our case the substrate is
a hierarchical network of situation-action rules with timing elements in the form of
primitive activities with duration. This hierarchical workframe-activity network
enables flexible context switching between independent activities at all levels in the
hierarchy. Similar to Brooks’ augmented finite state machine (AFSM) language, each
individual Brahms agent engine executes activities as manageable units selectively
activated and deactivated (i.e. interrupted or impassed). Each Brahms agent engine
works similar to Brooks’ AFSMs, namely “[(activity behaviors] are not directly
specified, but rather as rule sets of real-time rules which compile into AFSMs in a
one-to-one manner.” [p. 40].

Activity Subsumption
It is obvious that we want to be able to decompose primitive activities into more
complex activities in order to model more complex behavior. For example, we want
to be able to decompose the Being_Alive activity into more specific activities that the
agent performs while alive. In Brahms this is done with a composite activity.
Following is the grammar definitions, in BNF form, for a composite activity in the
Brahms language:

composite-activity activity-name (
{ param-decl [, param-decl]* })
{
{ display : literal-string ; }
{ priority : [unsigned | param-name] ; }
{ end_condition : [detectable | nowork] ; }
{ detectable-decl }
{ activities }
{ workframes }
{ thoughtframes }
}

The “slots” of a composite activity are different from that of a primitive activity,
except for the display- and priority slots. A composite activity has sections to define
the decomposed behavior of the activity: detectable-decl, activities, workframes,
thoughtframes. First, the end_condition slot declares how a composite activity can
end. There are two possibilities; 1) the activity ends when there is nothing more to do.
This is called end when there is no work (i.e. no workframe or thoughtframe in the
activity fires); 2) the activity ends, because the agent has detected some condition in
the world that makes it end the activity. In this case, when the activity should be
ended is defined in the detectable-decl slot, by declaring so-called detectlables. How

18 M. Sierhuis

detectables work is explained bellow in the section about reactive behavior. Here we
first explain the other sections of a composite activity. The other three sections define
a composite activity in terms of more specialized activities in the activities section,
and workframes calling these activities in the workframes section. The thoughtframes
section contains thoughtframes. Thoughtframes are simple forward-chaining
production rules. Actually, thoughtframes are like workframes except they cannot call
activities but only conclude beliefs, based on matching belief preconditions. Also,
thoughtframes do not take any simulated time, unlike workframes that always
perform activities that take time. Thus, composite activities allow the definition of
detailed scripts for well-known situations (a.k.a. work practice).

Next, we provide an example of how composite activities are used. We will use the
example from before about an agent who is in the activity of being alive. We expand
the example to have the agent go from being alive to being in a coma. Instead of
defining the Being_Alive activity as a primitive activity that simply takes an amount
of time, let us define this activity in more detail as a composite activity of two
subactivities called PAC_1 and PAC_2. Both of these subactivities are primitive
activities being called in two separate workframes wf_PAC_1 and wf_PAC_2:

composite_activity Being_Alive() {
 priority: 0;
 detectables:
 detectable det_Impasse {
 detect((current.headTrauma = true))
 then impasse;
 }

 activities:
 primitive_activity PAC_1(int pri) {
 display: "PAC 1";
 priority: pri;
 max_duration: 900;
 }

 primitive_activity PAC_2(int pri, int dur) {
 display: "PAC 2";
 priority: pri;
 max_duration: dur;
 }

 workframes:
 workframe wf_PAC_1 {
 repeat: true;
 when (knownval(current.execute_PAC_1 = true))
 do {
 PAC_1(1);
 conclude((current.headTrauma = true), fc:50);
 } //end do
 } //end wf_PAC_1

 workframe wf_PAC_2 {

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 19

 repeat: true;
 do {
 PAC_2(0, 1800);
 conclude((current.execute_PAC_1 = true), bc:25);
 PAC_2(0, 600);
 } //end do
 } //end wf_PAC_2
} //end composite activity Being_Alive

The left side of Figure 3 shows the workframe-activity subsumption hierarchy for
the Being_Alive activity. The wf_Being_Alive workframe from before now calls the
composite activity Being_Alive, instead of the previous primitive activity. From the
above source code you can see that, at first, the workframe wf_PAC_2 will fire,
because that workframe does not have any preconditions and can thus fire
immediately. This workframe will fire forever due to the repeat: true statement. Thus,
if nothing else changes, the agent will first execute primitive activity PAC_2 for 1800
clock ticks, and then again for 600 clock ticks, after which the wf_PAC_2 fires again,
and again. However, the conclude statement, in between the two PAC_2 activity calls
concludes its specified belief 25% of the time, due to the belief-certainty of 25. This
means that approximately one out of four executions of the workframe wf_PAC_2 the
agent gets the belief to execute PAC_1.

Fig. 3. Coma Model Workframe-Activity Subsumption Hierarchy

When this happens the belief immediately matches with the precondition of the
wf_PAC_1 workframe, which then becomes available to fire. Now the agent’s engine
needs to determine which workframe to execute in the next clock tick. This is done
using the priorities of the workframes. If no priority is specified directly on the
workframe, the workframe will get the priority of the highest priority activity within
its body. In this example workframe wf_PAC_2 has a priority of zero, because both

20 M. Sierhuis

PAC_2 activity calls get a priority of zero as a parameter value. Workframe
wf_PAC_1 on the other hand will get the priority one, due to PAC_1 having a priority
parameter value of one. Thus, wf_PAC_1 has the highest priority and the engine will
pick this workframe as the next workframe to execute, with as the result that the agent
will start performing PAC_1 for its defined duration of 900 clock ticks. Workframe
wf_PAC_2 will be interrupted at the point of the beginning of the second PAC_2
activity call, right after the execution of the conclude statement. Therefore, when the
wf_PAC_1 workframe finishes its execution of the PAC_1 activity (i.e. 900 clock
ticks later) the agent will switch immediately back to the execution of the interrupted
wf_PAC_2 workframe, and will continue with executing the second PAC_2 activity in
the workframe.

This example shows the selective activation and deactivation of subsumed
activities via a perception-action architecture based on an activity-priority scheme.
Agents can easily switch their activity context, independent of the level in the activity
network hierarchy. When a workframe with activities within it becomes available, no
matter where in the workframe-activity network, the workframe with the highest
priority becomes the agent’s current context—this is called the agent’s current
work—and thus the activities within this current workframe will execute.

Thus far the example shows how an agent can easily switch activities based on new
belief creation, i.e. either through performance of activities in workframes or through
pure reasoning in thoughtframes. Next, we will show how an agent can also react to
changes in the environment by detecting facts in the world. This approach enables
flexible reactive behavior by the agent due to changes in “the outside” environment.

6.3 Reactive Behavior

The example of the composite Being_Alive activity shows how agents can switch
activity contexts based on “internally” created beliefs and activity-workframe
priorities. However, we want agents be able to react to fact chances in the
environment outside of the agent. This is done through the definition of detectables in
activities and workframes. The above source code shows the det_Impasse activity
detectable declared in the Being_Alive activity. What this means is that while the
agent is “in the Being_Alive activity” this detectable is active and the agent will detect
any fact changes, made by any agent or object, to the headTrauma attibute of the
agent.

The process of firing a detectable goes as follows: When a new fact is detected 1)
the fact becomes a belief for the agent that can then trigger a switch in activity context
as shown in the example before, 2) the agent matches the detectable condition of all
active detectables that refer to the fact and checks if the fact matches the condition, 3)
in case the detectable condition matches the fact the detectable action statement is
executed. There are four types of detectable actions possible, continue, abort,
complete, and impasse.

In the Coma model source code for the Being_Alive composite activity, the
det_Impasse detectable has an impasse action. An impasse action means that the
activity will be impassed (i.e. interrupted) until the impasse condition is resolved.
The impasse condition is the detect condition of the detectable. Thus, in the

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 21

det_Impasse detectable, the activity is impassed when the fact (current.headTrauma
= true) is created. The wf_Being_Alive will be impassed until the fact is changed.

Figure 3, on the right hand side, shows an additional workframe for the agent
called wf_In_Coma. This workframe has a precondition that matches on the belief
(current.headTrauma = true) created by the detection of the fact, and will activate the
In_Coma activity. If the In_Coma activity, or something else, at some point in the
future creates the fact (current.headTrauma = false), the impasse is resolved and the
Being_Alive activity will be available again for the agent to continue executing it,
depending its priority compared to other available activities.

The above example shows how a Brahms agent’s behavior is modeled as
decomposed script-like activities that are executed using a perception-action
subsumption architecture, enabling both rational and reactive behavior. There is one
more important organizational element in the Brahms language that provides an
important agent organizational modeling capability. This is briefly discussed in the
next section.

7 Modeling Agent Organization

Societies consist of many different types of behaviors. As a design principle we want
to be able to organize these behaviors in categories that are logically and culturally
understandable, and moreover useful for the design of complex agent communities. In
Brahms there is the notion of a group as the concept allowing the creation of agent
pastiches. Not only did we develop groups based on the notion of organization in
categories or classes, groups are based on the important idea of communities of
practice:

“Being alive as human beings means that we are constantly engaged in the
pursuit of enterprises of all kinds, from ensuring our physical survival to
seeking the most lofty pleasures. As we define these enterprises and engage
in their pursuit together, we interact with each other and with the world and
we tune our relations with each other and with the world accordingly. In
other words we learn. Over time, this collective learning results in practices
that reflect both the pursuit of our enterprises and the attendant social
relations. These practices are thus the property of a kind of community
created over time by the pursuit of a shared enterprise. It makes sense,
therefore, to call these kinds of communities communities of practice.” [23,
p. 45]

Groups are thus meant to be the representation of the practices of communities of
agents. People belong to many communities at once, blending practices from many
different groups into one, so called, work practice [3]. We are students, parents,
workers, children, engineers of a particular kind, etc. But we also are social creatures,
belonging to a community of like-minded individuals playing sports, having hobbies,
going to the same coffee shop every day, playing roles in an organization, etc. It is
therefore that people belong to many communities of practice at once. Agents in the
Brahms language can thus belong to many different groups, enabling the design of
complex organization models of agents.

22 M. Sierhuis

Groups in Brahms, just like agents, can contain attributes, relations, initial beliefs
and facts, activities, workframes and thoughtframes. An agent can be a member of a
group, but a group itself can also be a member of another group, enabling the design
of a complex hierarchical structure of agent group-membership. An agent or group
that is a member of another group will inherit all of the contents of that group. For
example, agent Joe, from our first example, will inherit its behavior as a student from
the Student group. But, we can create another group, let’s call it HumanBeing, in
which we put the BeingAlive and BeingInComa activities. We can now have agent Joe
inherit both the behavior from the Student group and from the HumanBeing group;

group HumanBeing {…}

group Student {…}

agent Joe memberof HumanBeing, Student {…}

Groups and multiple group inheritance allows us to model common behavior as
communities of practice, from which all group members will inherit its behavior.
Using this simple group membership relation we can design any type of organization
we want. Groups can represent a functional organization, such as groups representing
particular roles that agents play, performing certain functions (i.e. activities) in an
organization. However, groups can also represent social organizations, such the
relationships and social knowledge people share about a particular community. For
example, everyone who comes to drink coffee at the same coffee shop everyday
knows the name of the shop’s barista.

8 Conclusions

In this chapter, we discussed some of the issues and limitations of BDI agent
architectures based on Bratman’s Planning Theory that explicitly states that humans
are goal-driven planning agents. We posited an alternative view of human behavior
based on a combined notion of situated action, cognition in practice, situated
cognition and activity theory. Based on this alternative view, we developed an
activity-based theory of behavior that allows for the description of complex behavior
that is not only based on goals. We then described the Brahms multiagent language
and execution architecture that implements this activity-based theory into a BDI agent
language. Brahms allows for designing and implementing complex agent societies not
based on goal-based planning agents.

The Brahms multiagent language, for each agent, “groups multiple processes (each
of which turns out to be usually implemented as a single [composite activity]) into
behaviors. There can be message passing, suppression and inhibition between
processes within a [composite activity], and there can be message passing,
suppression and inhibition between [composite activities]. [Activities] act as
abstraction barriers, and one [activity] cannot reach inside another.” [9, p.41].

Compared to the goal-driven paradigm, the Brahms activity-based paradigm is a
more flexible execution paradigm. In a goal-driven execution engine only sub-goal
contexts within the task being executed can be called as the next action, unless the
current task is finished and the current goal is or is not reached and thus “popped off”

 “It’s Not Just Goals All the Way Down” – “It’s Activities All the Way Down” 23

the goal stack. This limits an agent’s ability to flexibly react to new belief
“perceptions” unrelated to the current goal it is trying to reach.

With the simple examples in this paper, we hope we have convincingly shown that
Brahms agents are both rational and reactive, and use composite architecture with
situation-action rules to implement a perception-action approach similar to Brooks’
behavioral architecture, all without the use of goals and goal-driven planning.
However, it should not be forgotten that a forward-driven approach might just as well
implement goal-directed behavior as a backward-driven goal-based approach. It is
thus that in Brahms we can implement goal-driven activities without any problem,
and it can be said that Brahms enables modeling of agent behaviors much more
flexibly than a goal-based planning architecture. In other words, the activity approach
is more general than the goal-based approach, which justifies the title of this paper
and our claim that goals develop within an activity, but they are not the driving force
of behavior, and are only useful in activities where problem solving is necessary. In
other words: “All human behavior is activity-based, but not every activity is a
problem to be solved.”

References

1. Bordini, R.H., Dastani, M., Meyer, J.C. (eds.): Foundations and Practice of Programming
Multi-Agent Systems. Dagstuhl Seminar Proceedings 06261, 25.06. - 30.06, Schloss
Dagsthuhl (2006)

2. Clancey, W.J., et al.: Brahms: Simulating practice for work systems design. International
Journal on Human-Computer Studies 49, 831–865 (1998)

3. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A multiagent modeling
and simulation language for work system analysis and design. In: Social Science
Informatics (SWI), University of Amsterdam. SIKS Dissertation Series No. 2001-10, p.
350. Amsterdam, The Netherlands (2001)

4. Bratman, M.E.: Intention, Plans, and Practical Reason. The David Hume Series of
Philosophy and Cognitive Science Reissues. CLSI Publications, Stanford, CA (1999)

5. Bordini, R.H., et al. (eds.): Multi-Agent Programming: Languages, Platforms and
Applications, Springer Science+Business Media, Inc. (2005)

6. Simon, H.: A behavioral model of rational choice. Quarterly Journal of Economics 69, 99–
118 (1955)

7. Newell, A.: Unified theories of cognition. Harvard University Press, Cambridge, MA
(1990)

8. Anderson, J.R.: Rules of the mind. Lawrence Erlbaum Associates, Hillsdale, NJ (1993)
9. Brooks, R.A.: Cambrian intelligence: the early history of the new AI. MIT Press,

Cambridge, MA (1999)
10. Suchman, L.A.: Plans and Situated Action: The Problem of Human Machine

Communication. Cambridge University Press, Cambridge, MA (1987)
11. Agre, P.E.: Computation and Human Experience. In: Pea, R., Brown, J.S. (eds.) Learning

in doing: Social, cognitive, and computational perspectives. Cambridge University Press,
Cambridge, MA (1997)

12. Fodor, J.A.: The Modularity of Mind. The MIT Press, Cambridge, MA (1987)
13. Edelman, G.M.: Bright Air, Brilliant Fire: On the Matter of the Mind. BasicBooks, New

York, NY (1992)

24 M. Sierhuis

14. Winograd, T., Flores, F.: Understanding Computers and Cognition. Addison-Wesley
Publsihing Corporation, Menlo Park, CA (1986)

15. Clancey, W.J.: Situated Cognition: On Human Knowledge and Computer Representations.
Cambridge University Press, Cambridge (1997)

16. Clancey, W.J.: Conceptual Coordination: How the mind Orders Experiences in Time.
Lawrence Erlbaum Associates, Mahwah, New Jersey (1999)

17. Lave, J.: Cognition in Practice. Cambridge University Press, Cambridge, UK (1988)
18. Vygotsky, L.S.: In: Cole, M., et al. (ed.) Mind in Society: The Development of Higher

Psychological Processes. Harvard University Press, Cambridge, MA (1978)
19. Leont’ev, A.N.: Activity, Consciousness and Personality. Prentice-Hall, Englewood Cliffs,

NJ (1978)
20. Engström, Y., Miettinen, R., Panamaki (eds.): Perspectives on Activity Theory. In: Pea,

R., Brown, J.S. (eds.) Learning in doing: Social, Cognitive, and Computational
Perspectives. Cambridge University Press, Cambridge, MA (1999)

21. Chaiklin, S., Lave, J. (eds.): Understanding practice: Perspectives on activity and context.
In: Pea, R., Brown, J.S. (eds.) Learning in doing: Social, cognitive, and computational
perspectives. Cambridge University Press, Cambridge, MA (1996)

22. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer
Interaction. The MIT Press, Cambridge, MA (1996)

23. Wenger, E.: Communities of Practice; Learning, meaning, and identity (Draft). In: Pea, R.,
Brown, J.S. (eds.) Learning in doing: Social, cognitive and computational perspectives.
Cambridge University Press, Cambridge, MA (1998)

24. Clancey, W.J.: Simulating Activities: Relating Motives, Deliberation, and Attentive
Coordination. Cognitive Systems Research 3(3), 471–499 (2002)

25. Engeström, Y.: Activity theory as a framework for analyzing and redesigning work.
Ergonomics 43(7), 960–974 (2000)

26. Schank, R., Abelson, R.: Scripts, Plans, Goals, and Understanding. Lawrence Erlbaum
Associates, Inc. Hillsdale, NJ (1977)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

