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1 Introduction 

Since the mid-1990s, the start of Business Process 
Reengineering (BPR), modelling of business processes has 
become more widespread. It has been argued that some  
of the early failures in BPR were due to an inability to 
evaluate and predict the impact of design changes in a work 
process (Hlupic and Vreede, 2005). Simulation of business 
processes offers a great potential to overcome the inability 
to predict the effects of BPR on an organisation. 

However, predictions with the use of simulation  
can be only as good as the underlying model of the  
business process. The saying ‘garbage in, garbage out’ holds 
especially true for the use of simulation in predicting the 
impact of changes in a business process. In other words, if 
the underlying model of the process is not at the level of 
how people actually do the work, the prediction fails to 
show how a change to the process will actually change 
people’s work in the future. Therefore, it is important to 
model a business process at such a level that there is a direct 
correspondence with how this process is implemented. 

Brahms is a modelling and simulation environment  
for analysing human work practice and for developing 
intelligent software agents to support work practice in 
organisations. Brahms is the result of more than 50 person 
years of research since 1992.1 Brahms has been used on 
more than ten modelling and simulation research projects, 
including simulated human-robotic science exploration on 
planetary surfaces (Clancey et al., 2003, 2004, 2005a, 
Clancey, 2004). Brahms can be run in different simulation 
and runtime modes on distributed platforms, enabling 
flexible integration of people, hardware-software systems, 
and other simulations. Other publications about Brahms 
have described the theoretical foundations of work practice 
modelling (Clancey et al., 1998; Sierhuis, 2001; Sierhuis 
and Clancey, 2002) and particular applications (Acquisti  
et al., 2002; Seah et al., 2005; Sierhuis, 2000; Sierhuis et al., 
2003a). Here we present a more technical overview of the 
modelling language and simulation engine. 

Brahms was originally conceived as a business  
process modelling and simulation tool that incorporates  
the social systems of work, by illuminating how formal 
process flow descriptions relate to people’s actual located 
activities in the workplace. Brahms models are at the 
implementation level of a work process and are especially 
suitable for modelling and simulating a designed change  
in a business process. Using Brahms we can predict the  
impact of a process design change on its implementation  
in an organisation. Predicting the impact is done by  
first modelling and simulating the current implementation  
of the work process, and subsequently simulating a  
future implementation model that changes the current 
implementation based on the new design. Our research 
started in the early nineties as a reaction to experiences with 
work process modelling and simulation (Sachs, 1995). 
Although an effective tool for convincing management of 
the potential cost-savings of the newly designed work 
processes, the modelling and simulation environment 

(SparksTM from Coopers & Lybrand) was only able to 
describe work as an abstract, normative workflow. 
However, the social systems, uncovered in work practices 
studied by the design team played a significant role  
in how work actually got done – actual lived work  
(Button and Harper, 1996; Clancey, 2006). Multi-tasking, 
informal assistance and circumstantial work interactions 
could not easily be represented within a strict  
workflow modelling framework. In response, we began  
to develop a tool that would have the benefits of work 
process modelling and simulation, but be distinctively  
able to represent the relations of people, locations,  
systems, artifacts, communication and information content 
(Clancey et al., 1998). Thus, Brahms models work processes 
at the work practice level. 

Agent architectures often do not link to theories of 
human behaviour, or empirical data on human behaviour  
in comparable situations. The Brahms environment is based 
on a number of behavioural and cognitive theories, most 
importantly situated cognition (Sachs, 1995; Clancey, 
1997), activity theory (Leont’ev, 1978; Vygotsky, 1978), 
situated action (Suchman, 1987; Lave, 1988) and cognitive 
modelling (Laird et al., 1987; Anderson and Lebiere, 1998). 

Brahms has been validated as a modelling and 
simulation tool for work practice design and analysis by 
applying and analysing Brahms in three different uses of 
modelling and simulation of work practice 

• analysis of an existing work practice 

• prediction of people’s practice behaviour in an existing 
work system 

• designing a new, not yet existing, work system. 

Simulation models of the work practices of the Apollo 
astronauts on the surface of the Moon have been developed, 
simulated and validated with empirical Apollo mission  
data available from NASA, such as video analysis, voice 
transcripts and lunar surface procedures (Sierhuis, 2001), as 
well as ethnographic data and video from Mars analog field 
missions (Clancey et al., 2005b). 

To simulate human behaviour at the work practice level, 
one must model how people work together as individuals in 
organisations, performing both individual and teamwork 
activities. The Brahms language is unique in that it not only 
models both individual agent and group behaviour, but also 
systems and artifact behaviour, interpersonal interaction, as 
well as interaction of people, systems and objects with the 
environment. Most other multi-agent languages leave out 
artifacts and the interaction with the environment, making it 
difficult to develop a holistic model of real-world situations 
(c.f. Wooldridge and Jennings, 1995). By incorporating an 
ontology of objects, agents, groups, geography, etc. and 
means to model interactions, Brahms makes it possible  
to model empirical data gathered using ethnographic 
observations; this facilitates involving the workers being 
modelled in the simulation and work design process. 

In this paper, we first review the meaning of work 
practice and our theory of modelling work practice, based 
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on existing theories of activity theory, situated action and 
distributed cognition. We then discuss the Brahms language 
in detail, specifying the different conceptual models that 
build up a Brahms model, providing model examples and 
code fragments to explain the representational capabilities 
and workings of Brahms. We end the paper with a 
discussion of the use of Brahms as an organisational process 
simulation tool. 

2 Modelling work practice: a theoretical view 

Work practice is embodied in the way people perform  
their daily work activities in organisations. Our notion of 
work practice modelling has been developed as a reaction to 
historically conventional views of workflow modelling in 
organisations. The concept of work practice originates  
in the research disciplines of socio-technical systems, 
business anthropology, and management science, focusing 
on both the informal and formal features of work  
and applying ethnography and participant observation  
to the analysis and design of human-machine work systems 
(Emery and Trist, 1960; Pava, 1983; Weisbord, 1987;  
Ehn, 1988; Greenbaum and Kyng, 1991; Sachs, 1995; 
Clancey, 1999, 2001; Sierhuis and Clancey, 2002). 

Our definition of work practice is narrower than 
Hofstede’s dimensions of national culture (power distance, 
individualism, masculinity, uncertainty avoidance,  
long-term vs. short-tem orientation) and organisational 
culture or practices (process-oriented vs. results-oriented, 
job-oriented vs. employee-oriented, professional vs. 
parochial, open systems vs. closed systems, tightly  
vs. loosely controlled, and pragmatic vs. normative).  
We only intend to model the practice of people in an 
organisation in terms of their activities, which narrows our 
scope2 (c.f. with Hofstede and Hofstede, 2005). 

We define work practice as the collective social 
activities of a group of people who collaborate, cooperate, 
coordinate, and communicate, while performing their 
activities synchronously or asynchronously. Very often, 
people view work only as the process of transforming input 
to output, which is a functional, Tayloristic view.  
A functional or task-oriented perspective is often useful for 
work design, but such abstracted and idealised process 
models do not capture how work actually gets done  
‘in practice’. 

Work practice is how people behave in everyday, 
located, circumstantial interactions in the real world. That 
is, a practice model describes behaviours (as activities); a 
task model describes functional relations of processes 
(Clancey, 2002). Put another way, a practice model 
emphasises interactions with the environment such as 
communication and movement; a task model emphasises 
mental operations (inference). A practice model indicates 
how information flows (e.g., by mobile phone or e-mail)  
and how that choice is made circumstantially; a task model 
indicates what information flows (and usually only what 
tools are supposed to be used). A task model indicates what  
 

methods are applied to transform work objects; a work 
practice model emphasises who selected those methods and 
how that person became involved in the work process. 

To model people’s behaviour we need to include 
ecological (environmental) influences on individual  
activity, especially layout of facilities, tools, and perhaps 
body posture. For example, it may be relevant to simulate 
whether two people can hear each other speak.  
The circumstantial details of work practice may  
include: physically joint actions (e.g., carrying something 
together), ‘off-task’ behaviours (e.g., joking), multi-tasking, 
interrupted and resumed activities (e.g., answering the 
phone while eating), informal or improvised interactions 
(e.g., unscheduled planning conversations), work-arounds 
(Clancey et al., 1998; Sierhuis, 2001). 

A useful heuristic in simulating work practice is to 
model communications and how they occur. Brahms has 
been designed to facilitate modelling and visualising 
communications over time between people and systems.  
We define communication as: 

“The activity (speech act) of directional transferring  
of information (in the form of beliefs), held by one 
individual called the sender, to one or more individuals 
called the receiver(s), using a specific communication  
tool (face-to-face, telephone, e-mail, fax, document, etc). 
After the transfer activity is complete, and successful, the 
receiver(s) will hold the same information (belief) as the 
sender of the information, and can now react to it.” 
(Sierhuis, 2001) 

Our theory about modelling work practice is based on a 
number of elements borrowed from different existing 
approaches. Brahms models are models about real world 
phenomena, and the model is a description of the world as 
viewed by the modeller. Models of work practice are 
descriptions of work practice and as abstractions do not 
replicate all or even most of the aspects of human 
knowledge, experience, and behaviour. For example, 
situated cognition suggests that learning is always occurring 
and behaviour is always adapted, but Brahms agents behave 
rotely without any learning. Perception is modelled, but not 
facial expressions, gaze, or emotion. 

Winograd and Flores (1986) explain that just as we can 
ask how interpretation plays a role in understanding text, we 
can ask how it plays a role in understanding the world as a 
whole. The context in which people perform real world 
activities is an important aspect. A broad range of work in 
psychology and anthropology has shown that to fully 
understand how people work we need to study context in 
order to understand the relation between individuals, 
artifacts and social groups. Three approaches in the study of 
context – activity theory (Vygotsky, 1978; Leont’ev, 1978), 
situated action models (Clancey, 2002; Lave et al., 1984; 
Lave and Wenger, 1991; Nardi, 1996; Suchman, 1987), and 
distributed cognition (Hutchins, 1995a, 1995b) – have been 
fundamental in the development of our theory for modelling 
work practice. All these approaches use the notion of 
activity as the central concept for analysing the context of 
human behaviour. 
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2.1 Work activities 
The key construct in the Brahms language is an  
activity, which as mentioned above, is distinguished  
from the traditional notion of a task – a representational 
construct that describes human behaviour in terms of 
problem-solving with goals and functional operators  
(e.g., Newell, 1990; Anderson and Lebiere, 1998)  
(cf. Clancey, 1992). While tasks are goal-driven functional 
behaviour representations of planned action, an activity  
is a construct that can also represent unplanned and  
not goal-driven behaviour; especially those behaviours  
that are based on culturally learned daily practice. 

In Brahms a business process is described as the 
individual activities of people in the organisation.  
We describe each person’s behaviour as situated in the 
organisation’s physical and conceptual context, including 
location, tools, personal knowledge, interpersonal 
relationships, and aspects of organisational cultural 
behaviour. The question not only becomes what activities 
each individual performs, but more specifically, how they 
come to perform these activities at a particular time and 
place with other people. As we describe work practice in 
terms of activities engaged in, we also inquire how activities 
subsume and thus constrain each other. For example, 
although we are still parents when at work, we do not 
engage in parenting activities while at work, until our child 
calls us at work to ask a question, and how that call is 
handled privately will blend the commitments and norms of 
both the parenting and business activities. In that sense, we 
are constantly managing our activities in context, which is 
to say that our behaviour is situated. Viewing a work 
process as the interaction of activities of people over  
time leads us to conceive workflow as the interactive, 
circumstantially adapted practice of people, instead of just a 
flow of information by a well-defined procedure through a 
hierarchical organisation. 

The next section describes the Brahms language  
and explains what is meant with concepts multi-agent,  
rule-based and activity. 

3 The Brahms language 

In this section we explain the modelling concepts of the 
language. For a more detailed description of the language 
see Sierhuis (2001) and van Hoof and Sierhuis (2000). 
Agents in Brahms are Belief-Desire-Intention (BDI) agents, 
with beliefs representing the agent’s understanding  
of the world and rules representing their intentions to  
reason and perform activities (Bratman et al., 1988;  
Cohen and Levesque, 1990a; Rao and Georgeff, 1991). 
Figure 1 is a conceptual diagram of a Brahms agent showing 
Situated-Action (SA) Rules in a production system, used to 
represent people’s situated activities in the world. 
 
 
 

Figure 1 Brahms situated-action rule system 

 

SA Rules are a combination of a situated action and a 
cognitive framework. P1–P3 are SA Rules. C1–C7 are 
preconditions on the rules. They are matched against 
elements in working memory (E1, etc.). When elements 
match to all the conditions in the rules, the right hand side 
of the rule is executed. In contrast with a conventional 
production rule, the action of an SA rule has a duration and 
may specify another activity, which is itself modelled as SA 
Rules. Thus, an SA rule system adds timing to the execution 
of production rules. In Figure 1, B1–B5 are new beliefs that 
are created in working memory when SA rules execute. 

A Brahms agent has a Thoughtframe Rule Memory 
(TRM), a Workframe Rule Memory (WRM), and a Belief 
Memory (BM). The BM contains a set of all beliefs of the 
agent. Beliefs are first-order logic propositions (see section 
for a description of beliefs). 

The WRM contains a set of rules called workframes.  
A workframe is a special type of production rule,  
namely one that can create not only new beliefs, but also 
execute activities and create facts in the World State. Each 
workframe consists of a left-hand side and a Right-Hand 
Side (RHS). The left-hand side is a set of preconditions that 
are matched against the beliefs in the BM. RHS contains a 
list of statements, including detectables (see ‘Detect F4’ in 
Figure 1), activities (see ‘Activity 1(t)’ in Figure 1) and 
belief or fact conclude statements (see ‘B5’ and ‘F9’ in 
Figure 1). A detectable is a declarative statement that  
during the execution of the workframe detects a fact  
from the world state that matches its detect condition.  
For example, in Figure 1 ‘Detect F4’ represents that the 
agent is able to detect a fact of the form F4. When an agent 
detects fact F4 in rule P1, it creates a belief from the fact 
(B4) in the agent’s belief memory. This belief is now used 
in the next event cycle to match against the preconditions of 
all the rules. 

The TRM contains a set of rules called thoughtframes.  
A thoughtframe is a ‘pure’ production rule (also ‘inference 
rule’), in that it can only create new beliefs. Unlike a 
workframe, a thoughtframe’s application does take time; the 
change in beliefs occurs immediately. The agent’s rule 
engine (called the inference engine) is event-based. Events  
are scheduled by the Scheduler, which in turn is based on a  
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simulation clock (neither the Scheduler, nor the simulation 
clock are shown in Figure 1). 

The work practice of a person is represented as a 
combination of beliefs, thoughtframes, workframes, and 
activities that can be performed by an agent representing  
the person. The workframes constrain when the agent can 
perform the activities. Beliefs the agent acquires by 
executing workframes and thoughtframes represent the 
person’s interpretation of the world. Detection of facts 
represents perception in the world. 

The Brahms language was primarily designed to 
develop simulations of human and machine behaviour.3  
To enable the modelling of human activity behaviour, the 
Brahms language embodies assumptions about how to 
describe social action,4 workplaces and work practice. 
Brahms is an agent language that operationalises a theory 
for modelling work practice, allowing a researcher to 
develop models of human activity behaviour that 
corresponds with how people actually behave in the real 
world. 

3.1 Declarative vs. imperative 

In this section we discuss Brahms as a declarative language. 
For completeness, we start with a definition of imperative 
(a.k.a procedural) vs. declarative programming: 

“In computer science, imperative programming, as 
opposed to declarative programming, is a programming 
paradigm that describes computation in terms of a program 
state and statements that change the program state. […]. 
Logical programming languages, like Prolog, are often 
thought of as defining ‘what’ is to be computed, rather 
than ‘how’ the computation is to take place, as an 
imperative programming language does.”5 

Brahms is a declarative language. Brahms agents act based 
on beliefs matching to preconditions on SA rules. 
Workframes (SA Rules) are declarative statements about 
when new beliefs can be inferred and when activities  
can be performed. These are declarative statements,  
because workframes do not say when and how an agent’s 
behaviours (reasoning and situated-actions) will be 
executed. The order of execution is dependent on the 
implementation of the inference engine. In contrast, in an 
imperative language, such as C, C++ or Java, the behaviour 
of a piece of code (method, object, function, etc.) is not 
declarative, but specified in terms of when and how the 
code will be executed. Any code-fragment (statement) 
specifies how it is to be executed, i.e. what memory to use, 
the order of execution, and the next statement to be 
executed. 

A workframe has variables, which look like imperative 
constructs, however a Brahms variable is not an assignment 
of data to a memory location. Instead, it represents a binding 
(instantiation) of a concept (i.e., a value, either an object or 
an agent), based on the matching of a condition to the 
agent’s belief memory. Secondly, the set of statements in 
the body of a workframe is declarative in the sense that it 
only states what the ordering relation is between two or 
more activities. It does not state how these activities will be 

executed, because each activity is decomposed into  
another set of declarative workframes. A workframe can be 
interrupted, impassed, stopped, etc, based on beliefs that the 
agent can acquire through communication, detections, and 
other workframes and thoughtframes. 

3.2 Comparison with multi-agent programming 
languages 

In this section we compare Brahms briefly with other  
multi-agent programming languages and with agent-based  
cognitive architectures. For an introduction to multi-agent 
systems we refer the reader to Wooldridge (2002). 

As mention above, Brahms is a type BDI system 
conceived of and developed in 1992, before many of today’s 
multi-agent languages. Unlike today’s BDI agent languages, 
Brahms is inspired most strongly by Brooks’ (1986, 1999) 
biologically inspired reactive robot architectures and Cohen 
et al.’s (1989) simulation of located team communications. 
For a more complete description of different multi-agent 
languages see Bordini et al. (2005). 

We categorise multi-agent languages as follows  
(Table 1): Java-based Agent Languages (BDI-based and 
Imperative) and BDI Languages (Goal-based and 
Subsumption-based), and Agent Simulation Languages 
(BDI-based and Imperative). 

Table 1 Agent oriented languages comparison 

Java-based 
agent languages  BDI languages  

Agent simulation 
languages 

 
BDI-
based Imperative

Goal-
based 

Subsumption-
based 

BDI-
based Imperative

Brahms    X X  

Jason   X    

Agents 
speak 

  X    

Jade  X     

Jack X      

Jadex X      

Swarm      X 

Repast      X 

Brahms uniquely combines a subsumption-based 
architecture (Brooks, 1986) with a BDI-based agent-
oriented language (see Section 4.5.3). In contrast, Swarm 
(Minar et al., 1996), an often-used language for modelling 
and simulating social and economic behaviour of large 
agent societies (Luna and Perrone, 2002), is not based on 
any particular human behaviour theory and is not an  
agent-oriented language in the strict sense. Rather, Swarm 
extends an imperative language in the form of object 
libraries for Objective-C (an object-oriented programming 
language) (Terna, 1998). Swarm agents are not BDI agents, 
but objects with inherited imperative methods that are called 
by a higher-level schedule object in the model. In contrast, 
in Brahms agent actions are not scheduled by an overall 
scheduler, but by each agent’s individual inference engine 
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that schedules and executes the agent’s activities  
based on the agent’s plans, beliefs, desires and intentions 
(see Figure 2). 

Figure 2 Brahms BDI agent 

 
Source: Adapted from Figure 4.5  

in Woodridge (2002) 

However, Brahms is a multi-agent language allowing  
agents to communicate beliefs to one another. Agents can 
also change and detect facts of the world state. Both the 
communication of beliefs and creation and detection of facts 
are scheduled for all agents based on the simulation clock 
(see Figure 3). 

Figure 3 Brahms multi-agent virtual machine 

 

Recent research in the agent community recognises the 
environment as a first-order abstraction in Multi-Agent 
Systems (MAS). Researchers in this newly created subfield 
of MAS (see E4MAS workshops)6 recognise that several 
aspects of MAS are part of the environment and should be 
included as a separate first-order entity (Omicini et al., 
2004). In modelling work practice we have recognised the 
importance of modelling the environment from the onset.  
In Brahms the environment is modelled with specialised 
object types (see sections The Object Model and  
The Geography Model). 

4 An example model: simulating a robotic 
mission to the Moon 

Sending robots to the Moon (or Mars) is a difficult task, one 
that mission designers at the Jet Propulsion Laboratory 
(JPL) in Pasadena, CA devoted years to design and 

implement. Understanding how scientists and engineers 
work together during a mission, and also how people 
communicate with robots on a planetary surface is a 
research topic for designing better mission operations 
(Sierhuis et al., 2003a, 2003b). We use our work in 
modelling mission operations for planetary robotic missions 
as an example to explain the Brahms language and its 
representation capabilities. In particular, the Victoria model 
is a Brahms model of the mission operations for a proposed 
robotic mission to the Moon. The model simulates  
the mission operations concept for the mission in such  
detail that the model allows for the understanding of the 
relationship between mission and science support on the 
ground and the efficiency of the robot in exploring the lunar 
surface for water ice (Sierhuis, 2001; Sierhuis et al., 2003a). 

4.1 Model skeleton 

A Brahms model consists of several model files. Brahms 
model files are ASCII-files ending in a .b extension and 
consisting of legal Brahms syntax. Good modelling practice 
is to create a separate source file for each Brahms model 
element, such as groups and agents, classes and objects, 
although one can write a Brahms model completely in one 
source code file. Our convention is to create one main 
model file that imports all other model files. Since Brahms 
does not have an initialisation function, such as the ‘main’ 
function in the C program language (Kernighan and  
Ritchie, 1988), the main model file simply contains import 
statements for the agents and objects in the model.  
Excerpt 1 shows the main model file for the Victoria 
mission operations model. 

Excerpt 1 Model file 

 

The package statement declares that the model exists as a 
package called Victoria. A package is a directory file 
structure allowing the modeller to compartmentalise  
the model into appropriate sub-directories. The import 
statement loads in the needed model files. Excerpt 1 shows 
that the model is loading all .b files in the MyBase  
sub-directory of the Victoria package, as well as all the .b 
files in the Victoria package’s root directory (*). To start a 
simulation, a compiled version of this model file is  
first loaded into the Brahms Virtual Machine (BVM).  
The Brahms compiler compiles each .b file separately  
into a Brahms ‘byte-code’ file. The ‘byte-code’ language  
for Brahms is an XML data definition language, making 
each compiled Brahms model file a Brahms XML file that 
can be loaded and executed by the BVM. 

In developing a Brahms model, we conceptually divide 
the system to be modelled into a number of more or  
less interdependent sub-models: the Agent, Object, 
Geography, Knowledge, Activity and Communication 
model. The Brahms model development environment, the 
Composer, supports this model-based approach, and allows 
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the modeller to create language constructs within these  
sub-models using a graphical user interface. 

4.2 Agent model 

When developing a Brahms model we first design an Agent 
Model. The Agent Model systematically relates groups, 
agent beliefs, and facts about agents. 

4.2.1 Group hierarchy 

The agent model consists of a group hierarchy representing 
the social, organisational or functional groups of which 
agents are members. In the mission operations domain we 
can represent the mission operation workers according to 
their functional roles, such as the science team. Members of 
the science team are responsible for the science deliverables 
of the mission. The science team members are all top 
scientists in their field, and specialise in different scientific 
disciplines. For example, some science team members 
specialise in the science instruments that are carried onboard 
the robot. The science team members are divided into 
science theme groups that represent the functional roles 
during the mission, such as the ‘instrument synergy team’, 
the “science operations team’ and the ‘data analysis and 
interpretation team”. Excerpt 2 shows the definition of some 
of the groups in Brahms source code (the excerpt shows 
partial source code; ‘…’ means that source code is omitted): 

Excerpt 2 Partial agent model 

 

We will go step-by-step through the source code of  
Excerpt 2 explaining how groups and agents are defined. 
Note that this excerpt describes the definition of four groups 
and one agent. The bold characters show Brahms language 
keywords. Every Brahms language element definition is 
actually placed in a separate source code file, but is shown 
here as if it were part of one file. 

The first two groups are MyBaseGroup and 
VictoriaTeam. MyBaseGroup is a group defined by the 
modeller. It is a non-domain specific ‘root’ of the group 
hierarchy, used by the modeller to define common group 
properties. MyBaseGroup and VictoriaTeam are both 
members of the group BaseGroup, which is the root of all 
groups and is part of a base library that comes with the 
Brahms language, with certain predefined standard 
attributes. Here the MyBaseGroup group defines a common 
attribute for all groups, i.e., the groupMembership attribute. 
The groupMembership attribute is used in the model  
to allow agents to know to what group they belong.  
The third group that is defined is ScienceTeam. The group 
ScienceTeam is a member of two parent groups, 
VictoriaTeam and MyBase. 

This example shows that Brahms supports multiple 
inheritance for groups and agents. Group inheritance  
means that the subgroups and/or agents inherit all the 
elements defined in the parent group. The Brahms compiler 
will recognise naming conflicts in multiple inheritance  
and will report these at compile time. Brahms does not  
support ‘late-binding’, and thus there are no possible 
inheritance conflicts at run-time. Next, the group 
ScienceOperationsTeam is defined as a member of the 
ScienceTeam group. Last, but not least, is the definition of 
an actual agent. The keyword agent declares agents, and in 
this example Agent1 is an agent that is a member of the 
ScienceOperationsTeam group. Thus, the definition of 
groups and agents in Excerpt 2 explicitly defines the group 
hierarchy in Figure 4. 

Figure 4 Group hierarchy from Excerpt 2 

 

4.2.2 Agent beliefs 

Intentional agents are entities whose behaviour can be 
predicted by the method of attributing belief, desire  
and acumen (Dennett, 1987; Wooldridge, 2002). This 
philosophical stance has resulted in representing 
intentionality as a logical framework in which agents have 
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beliefs and a deduction model indicating how beliefs  
change (Bratman, 1999; Cohen and Levesque, 1990b; 
Konolige, 1986). Brahms agents are intentional and 
represent this intentionality as the set of beliefs at time t and 
the set of rules (workframes and thoughtframe) that can be 
used to act in the world and deduce new beliefs. Beliefs  
are represented as first-order logic propositions. An agent’s 
belief-set changes over time based on actions in the world, 
communication with other agents, world fact detection and 
reasoning. As the belief-set of an agent changes, the 
behaviour of the agent can change. In other words, there is a 
logical relationship between an agent’s intention and its 
action in the world. 

An agent’s beliefs are Object- or Agent-attribute-Value 
triplets (OAV). The modeller can specify initial beliefs  
for an agent. Initial beliefs are beliefs that the agent  
receives at initialisation. Initial beliefs specify the initial 
belief-set of an agent in the model and are a way to define 
initial scenarios for a simulation run. Excerpt 2 shows  
that Agent1 will have two beliefs in its initial belief-set.  
The first is an initial-belief that is declared at the  
agent-level (i.e., in Agent1). The standard form of beliefs is 
(AgentOrObject.attributename = value). The initial belief in 
Agent1 states that the agent belongs to the group 
ScienceOperationsTeam (the keyword current represents the 
agent itself, and is bound at run-time for each agent).  
The second belief of Agent1 is inherited from the 
ScienceTeam group. Excerpt 2 shows an initial-belief 
declared in the ScienceTeam group. This belief states that 
the VictoriaRover agent is located at the shadow-edge  
of crater SN1. 

Beliefs are represented as values for attributes of  
agents or objects. Brahms is a strongly typed language, 
which means that every attribute value or parameter is  
type-checked during compile- and runtime. In order for an 
agent to get a specific belief, the attribute and its type needs 
to have been defined. In Excerpt 2 the declaration of the 
groupMembership attribute is shown in the MyBaseGroup 
group as an attribute of type symbol. Agent1 inherits this 
attribute and thus any agent can have a belief about the 
group membership of Agent1 (not only those that inherit this 
attribute). The initial-belief in Agent1 declares this belief for 
Agent1, but other agents can have this belief as well  
(this is not shown in Excerpt 2). Since beliefs are OAVs, 
another agent can have a different belief about Agent1’s 
group membership, e.g., agent Agent2 can belief that Agent1 
is a member of the InstrumentEnergyTeam. Thus, it is 
possible that different agents have either similar or different 
beliefs about aspects of the world, allowing similar type 
agents to have a different belief-set and thus behave 
differently (see Section 4.5). 

4.2.3 World facts 

If agents can have different beliefs about attributes of agents 
or objects, how can we represent the actual state of the 
environment in which agents are located? Brahms 
operationalises the second world-view from Winograd and 
Flores (1986) by representing ‘objective facts’ about the 

world as facts in the simulated environment, similarly as 
beliefs. In some sense we can see the environment as an 
implicit object (the World object) with a fact-set. Agents 
and objects can create facts in the world either by acting in 
the world or as initial-facts, similar as initial-beliefs  
(see Section 4.2.3). Excerpt 2 shows that at initialisation 
Agent1 creates a fact about its group membership.  
The meaning of the declaration of the same initial-belief and 
initial-fact is that not only does Agent1 believes it is a 
member of the ScienceTeam group, it is also a true fact in 
the simulated world. Whereas beliefs are local to an agent, 
facts are not, and thus we could have also represented that 
the fact is that the agent is a member of the science team, 
but the agent is simply not aware of that fact (i.e., it does not 
have the belief). Thus, facts in the model represent the 
objective truth (from the modeller’s perspective) about the 
state of the simulated world. 

4.3 Object model 

Similar to the agent model, the object model defines the 
objects in the world. There are two types of objects, data 
and physical artifacts with or without behaviour – plainly 
called objects – and concepts represented as conceptual 
objects with attributes. Using these two distinct object types 
we can both represent the behaviour of physical objects in 
the world (e.g., computer, spacecraft, science instruments, 
etc.) or a concept – a non-physical entity – of which an 
agent can have beliefs. Objects can have beliefs and create 
facts, similarly as agents, however, conceptual objects  
can not. The notion that objects can have beliefs might,  
at first thought, seem problematic. However, beliefs are 
nothing more than first-order propositions. In objects such 
propositions represent information held by the object;  
that is, like the beliefs of agents they are representations of 
the state of the world. 

Objects and conceptual objects can be part of a class 
inheritance hierarchy, similar to other object-oriented 
programming languages (see Figure 5), a screenshot of the 
MyBaseClass from the Brahms development environment. 

Figure 5 Class hierarchy 

 

4.4 Knowledge model 

The knowledge model consists of production rules for 
agents and objects. Production rules in Brahms are forward 
chaining inference rules associated with groups and agents, 
acting on the beliefs of an agent. These rules are called 
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thoughtframes. Each agent and object can have a set of 
thoughtframes locally declared and/or inherited from a 
group or class. For example, Excerpt 3 shows the 
declaration of the CalculateEnergyLevel thoughtframe in 
the Rover group. 

Excerpt 3 Partial knowledge model for Rover group 

 

A thoughtframe (TFR) consists of a number of elements 
which we will describe using Excerpt 3. First of all, a TFR 
is used to infer new beliefs based on current beliefs in the 
belief-set of the agent. The conclude statement in the  
do-part or body of the TFR creates a new belief for the 
agent. Excerpt 3 shows four such conclude statements,  
each of the form (Ο.Α = ν), where Ο = ‘current’,  
Α = [an attribute of the Rover group] and ν is the outcome 
of a numerical expression that is evaluated before the belief 
is created. 

Expression ν is evaluated as follows; ν ::= Operand-1 
Operator Operand-2. In all four conclude statements in 
Excerpt 3, Operand-1 is of the form Ο.Α, where 
Ο = ‘current’ and Α = [an attribute of the Rover group]. 
Operand-2 is not of the same form as Operand-1.  
In this case, Operand-2 is the name of a variable of type 
double declared in the TFR (i.e., energyused). Because of 
the forward chaining inference mechanism, the value of this 
variable had to be bound in the precondition before  
the TFR can ‘fire’. The precondition is the when-part  
of the TFR in Excerpt 3. To explain how the variable gets  
its value, we need to explain how the precondition of a TFR 
is matched. 

Let us investigate the matching of the first precondition 
from Excerpt 3, knownval(current.energyUsedInActivity 
= energyused). The knownval keyword means that the 
agent’s inference engine needs to find a belief in the  
belief-set of the agent of the form given in between  
the round brackets. The inference engine will pattern-match 
on the left-hand side (lhs) of the belief-pattern. First, the 
value of the variable current is bound to the current agent 
for which the TFR is being executed (e.g., Rover-1).  

The pattern-matching algorithm finds all beliefs that match 
the lhs (e.g., Rover-1.energyUsedInActivity), potentially 
returning a list of beliefs matching this pattern. Next, the 
RHS of the precondition is evaluated and the result matched 
against the list of beliefs returned by this initial pattern 
matching. In this case the evaluation is simple, because the 
rhs consists solely of a forone variable declared in the TFR. 
A forone variable means that it can have one and only one 
value (there are also foreach and collectall type variables, 
which are not explained further). The result of this is that 
the second step in the pattern-matching process returns the 
rhs-value of the first belief in the previously matched set of 
beliefs. If this previously matched set is empty the knownval 
function returns false, and the precondition fails and the 
TFR is thus not ‘fired’. However, in case there is a matching 
belief true is returned and as a side effect of the pattern 
matching the variable energyused is now bound to the  
rhs-value of the matched belief. The variable stays bound to 
this value for the duration of the TFR execution, and can 
thus be used in subsequent TFR statements, such as in the 
conclude statements. 

Every precondition in the when-part of the TFR is 
evaluated, as long as the previous precondition returns  
true. If one of the preconditions evaluates to false the TFR is 
abandoned and the do-part is not executed.7 Thus, in 
conclusion, when the agent has one or more beliefs that are 
matching all the preconditions, the TFR is immediately 
executed. Using this approach we can represent the  
forward-reasoning behaviour of an agent; the conclude 
statement in one TFR can trigger the execution of a 
subsequent TFR, thus creating a ‘forward chaining’ of 
belief-set changes simulating the reasoning behaviour of a 
person. Every time the agent gets a new belief, only those 
TFRs are evaluated that have a precondition that is a 
potential match on the newly created belief. This makes the 
reasoning behaviour efficient, because at every belief 
change event in an agent only a small number of 
preconditions have to be evaluated (Forgy, 1982). 

4.5 Activity model 

The activity model consists of the possible activity 
behaviour for an agent. This is the heart of a Brahms model, 
because modelling work practice is about the representation 
of people’s activity behaviour over time, and performing 
these activities based on their beliefs. The activity model 
consists of two elements, activities and workframes.  
We explain these two important Brahms concepts using  
the source code in Excerpt 4 as the example. The activity 
and workframe from Excerpt 4 is from the Science 
OperationsTeam group. The source code specifies a group 
member’s behaviour during the rover activity of “finding 
water-ice in a specific crater on the Moon”. As mentioned 
before, there are two parts to the encoding of such 
behaviour. First, we need to encode what a science 
operations team member does (i.e., what activities he or she 
is engaged in) while the rover is in the activity of finding 
water-ice in a crater. Secondly, we need to specify when this 
is done. In the Brahms language the first part is encoded  
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in a composite-activity, while the second part is encoded  
in a workframe; a similar production rule-like construct as  
a thoughtframe. 

Excerpt 4 Partial activity model for the ScienceOperationTeam 
group 

 

4.5.1 Workframes 

In Excerpt 4, there are two workframes shown: a  
‘high-level’ workframe called wf_SearchForWaterIce  
(at the end of the excerpt), and a workframe part of  
the FindingWaterIce activity called wf_WaitingForData. 
Workframes work similar as thoughtframes, but the 
important difference is that workframes allow for the 
execution of activities. While thoughtframes represent an 
agent’s reasoning, a workframe represents an agent’s 
activity execution. A difference between a workframe and a 
thoughtframe is that a thoughtframe does not have duration, 
while a workframe has duration based on the duration of the 
activities within it (see explanation of activities below. 
Workframes ‘fire’ according to the same pattern-matching 
process explained for thoughtframes (see section 

Knowledge Model). Thus, workframe preconditions are 
tested in the same way as thoughtframe preconditions and 
workframe variables are bound in the same way. The body 
of a workframe (i.e., the do-part) can have conclude 
statements, similar to thoughtframes, however the body of 
workframes can also contain activity calls. Conclude 
statements in workframes represent the belief-state of the 
agent in relation to the activity that is going to be executed 
(i.e., before the activity call) or has finished executing  
(i.e., after the activity call). Recall that the reasoning of the 
agent is represented by thoughtframes. 

One way of thinking about the role of workframes  
is to view them as constraints on when an agent can perform 
an activity. Workframe (WFR) wf_SearchForWaterIce 
constrains when the agent can perform the FindingWaterIce 
activity. The constraints are represented as the preconditions 
of the workframe. The preconditions encode what beliefs 
the agent needs to have in its belief-set to enable it to 
perform the activity or activities (there can be more than  
one activity call in the workframe body). In plain English 
wf_SearchForWaterIce says: 

“When I believe that the VictoriaRover is currently in the 
activity SearchForWaterIce and I believe that the 
VictoriaRover is currently located in a crater, first bind the 
name of the crater to the variable rover-loc, then execute 
the workframe body with priority zero” (Brahms allows for 
parallel execution of workframes, but uses a ‘time-sharing’ 
approach using priorities, see Activities section for 
explanation). 

Note also that wf_SearchForWaterIce has the repeat:false 
statement at the top. This means that this workframe will 
only fire once for a particular set of beliefs that match  
all its preconditions. The result is that the agent will only 
execute wf_SearchForWaterIce once for any crater the 
VictoriaRover visits. 

When the agent’s inference engine has determined that 
the preconditions of wf_SearchForWaterIce are satisfied 
(due to finding matching beliefs in the agent’s belief-set) 
and it is the WFR with the highest priority, the agent will 
start executing the first statement in the body of the WFR, 
which in Excerpt 4 is the conclude statement that creates the 
belief for the agent that says that its current activity is 
SearchForWaterIce. This represents that the agent knows 
that it is currently in the activity of searching for water ice. 
Next, the engine calls the activity FindingWaterIce.  
We next explain how this works. It should first be 
emphasised that the process presented so far – that is, 
matching of beliefs to preconditions, binding variables and 
firing the workframe, executing the conclude statement and 
calling the activity SearchForWaterIce – is all done in the 
same simulation time-event. Thus, although these processes 
take actual CPU time, they do not take any simulation time 
for the agent. 

4.5.2 Activities 

Activities are the most important construct in the  
Brahms language. All agent behaviour has to be modelled  
as an activity. There are three different types: primitive, 
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composite and Java activities. All activities have a  
user-defined name representing a behaviour defined  
by the modeller. According to our theory of activities 
(Clancey, 2002), the name of an activity should be the name 
of an observed behaviour of a person in the real-world  
that the agent represents. But there is no rule in Brahms that 
states that the agent has to represent a person and that this 
has to be a person in the real world. It is the responsibility of 
the modeller to decide the relevance of the model to the  
system behaviour that is being modelled. This allows the 
use of the Brahms language in any domain and for any 
purpose, including, but not restricted to, modelling social 
phenomena, human behaviour, and software agent 
behaviour. 

In Excerpt 4, the name of the activity that is called  
in WFR wf_SearchForWaterIce is SearchForWaterIce.  
It represents what the agent – a member of the science  
team – is doing while the rover is searching for water ice in 
a crater on the Moon. 

Activities can have parameters that are passed as 
bounded variables into the activity when it is called  
in a workframe. In WFR wf_SearchForWaterIce the 
parameter-values that are passed are the value of the  
rover-loc variable, bound in the precondition as the crater in 
which the rover is searching for water ice, and an activity 
priority value of zero. 

The activity SearchForWaterIce called in the WFR 
wf_SearchForWaterIce is declared at the top of  
Excerpt 4. This activity is of type composite_activity. 
Composite activities are activities that are decomposed into 
lower-level subactivities, workframes and thoughtframes. 
Excerpt 4 shows only a partial implementation of the 
SearchForWaterIce activity. It shows the declaration of  
one subactivity called WaitingForData, and one workframe 
called wf_WaitingForData. In general, thoughtframes in a 
composite activity can be used to model reasoning within 
the context of a specific activity. Activity WaitingForData 
is a primitive_activity type. 

A primitive activity is an activity that is not further 
decomposed. It can be used to represent an operation  
(as in activity theory) or an action in the world that is not 
further decomposed. Primitive activities have a specified 
maximum or a random duration. This is different from a 
composite_activity in that it has a pre-specified duration.  
In contrast, the duration of a composite activity depends on 
the duration of the subactivities executed within it  
(note again that thoughtframes have no duration). 

Primitive activity duration is determined at the start of 
its execution – either randomly chosen between a given 
min-max duration interval, or given as a max duration – but 
is not necessarily the actual duration of the activity.  
The actual duration of an activity depends on the state of the 
Workframe Instance8 (WFI) in which the activity is being 
called. Each WFI is in one of the states shown in Figure 6. 
The state of an agent’s activity behaviour is defined by the 
combined sets of available, working, interrupted, and 
interrupted-with-impasse WFIs at any moment in time. 
 

Figure 6 State transition diagram for workframe instances 

 

There can only be one current activity for an agent.  
The time an activity has been active can only change when 
the activity is the current activity. Therefore, when an 
activity is in a non-active state its active time is not 
increasing, although simulation time is always increasing. 
Which activity is the current activity depends on which WFI 
is in the working state and the execution of the WFI-body. 

There are different ways a WFI can change state.  
One way is through the use of priorities. Every time a 
workframe fires the created WFIs receive a priority, based 
on the prioriy of the workframe, if given, or the highest 
priority of the activities called within the workframe body. 
The default priority is always zero. The agent’s inference 
engine determines which of the available, working and 
interrupted WFIs have the highest priority. This one is 
moved to the working state. Every time a new WFI becomes 
available, there exist the potential that the working WFI is 
interrupted by a higher-priority WFI. In that case the current 
working instance is moved to the interrupted state, and the 
new instance with the highest priorities is moved to the 
working state, and thus becomes the current WFI the agent 
is executing. 

There are other ways for an activity to change from a 
working state. The state change described above is based on 
other ‘independent’ workframes firing. However, a WFI can 
change its own state. The default way for a WFI to change 
its working state is when the body is finished executing.  
At that moment the WFI automatically moves from the 
working state to the done state and there it gets deleted, or 
moved to the not-available state if the repeat-clause is set to 
true. However, there are other state-changing events that 
can be represented inside a workframe. This is done using a 
detectable. 

Excerpt 4 shows the declaration of the Receive 
HydrogenData detectable. A detectable defines that if the 
agent detects a fact in the world this fact becomes a belief of  
 



 Brahms: a multi-agent modelling environment for simulating work processes and practices 145 

the agent. The belief is then matched to the detect condition 
in the detectable. If the agent has a belief that matches the 
condition the body of the detectable is executed. The body 
of a detectable can contain one specific action: abort, 
complete, impasse or continue. The ReceiveHydrogenData 
detectable specifies an abort action. The detectable says that 
if the agent gets a belief (either through the detection of a 
fact in the world, or through other means) that the 
VictoriaRover’s next subactivity is to drill in the lunar 
surface, it will abort the working workframe, which means it 
will end the activity WaitingForData. 

The actual behaviour of the agent is thus dependent  
on which of its workframes fire, and when. Firing of 
workframes depends on the beliefs of the agent at every 
moment in time. The beliefs in the belief-set of the  
agent depend on the initial-beliefs, conclude statements in 
thoughtframes and workframes that fire, communication 
with other agents (see section Communication Model), and 
detection of facts in the world. The behaviour of the agents 
is therefore situation-specific and it is not only dependent on 
its internal reasoning (using thoughtframes), but also 
determined by the interaction of the agent with other agents 
and with the modelled environment. We refer to the Brahms 
modelling paradigm as a situated activity paradigm. 

4.5.3 Activity subsumption architecture 

A good definition of a subsumption architecture is given in 
Travers (1996), also see Brooks (1986): 

“A subsumption program consists of a number of modules 
connected in a network, usually arranged in a layered 
fashion, with each layer capable of controlling action 
independently. Higher-level layers are capable of 
preempting lower-level ones using a scheme based on 
fixed priority gates that make up the network. Each module 
is an autonomous augmented finite-state machine, which 
can communicate with the outside world through sensors, 
to other modules through the network, and to itself through 
a small set of registers. Modules typically implement fairly 
simple behavioural control rules, sometimes augmented 
with state. Goals are implicit rather than explicit, and 
conflict between modules is handled by hardwired 
priorities in the connections between the modules and the 
network.” 

Each Brahms agent’s engine independently operates 
according to a subsumption algorithm. An agent’s activities 
are like ‘modules connected in a network’. Activities are 
decomposed in lower-level activities. The higher-level 
activities preempt the lower-level ones using a dynamic 
priority-based scheme that selects the one activity being 
executed at any one time. Each activity can be seen as an 
independent finite-state machine with workframes and 
thoughtframes making up the network. Goals are implicit 
and the conflicts between activities are handled by dynamic 
priorities that are passed as parameters. Activities can 
change state (i.e., beliefs) of an agent, creating simple 
behavioural situated-action rules. 

An important aspect of the Brahms activity paradigm  
is that activities are not the same as subroutines and  
co-routines in imperative languages (Pratt and Zelkowitz, 

1996). Imperative languages use a computer memory-based 
program stack to keep track of subroutine calls. When a 
subroutine is executed, its context is ‘popped’ onto the 
program stack. When in a subroutine the program is not also 
still in the context of the parent routine. The program  
can not move execution back and forth between a 
subroutine and its subsequent subroutines. Subroutine 
execution is sequential and can not be interrupted until it 
exits. Some high-level imperative languages have solved  
the problem of subroutine exit and reentrance with  
co-routines. Co-routines generalise subroutines to allow 
multiple entry points, enabling suspending and resuming of 
execution at certain locations. However, co-routines are still 
imperative constructs with a pre-defined deterministic  
order of execution. Although co-routines can be interrupted 
and resumed, this can only happen at pre-defined points,  
so-called yield statements in the co-routine. The parent or 
any other routine can not control co-routine interruption.  
It is the yield statement within the co-routine itself that 
relinquishes program control to its calling routine. 

In contrast, in Brahms all workframes can interrupt the 
current workframe and activity at any point during 
execution. There is no yield statement necessary inside  
the current workframe. It only depends on the whether  
the preconditions are satisfied and the priority of the 
interrupting workframe is higher that the current one, if a 
current activity is to be interrupted by another activity.  
In short, the interruption is done from outside the current 
workframe and activity, whereas in a co-routine it is done 
from within the co-routine. Importantly, when a co-routine 
is interrupted its context is not active and no statement 
inside it can be evaluated. Interruption of a co-routine thus 
means it is made inactive. In contrast, Brahms impassed 
workframes and activities are still executing detectables, 
while they are impassed. 

If an activity in a workframe of a composite activity is 
executed, the context of the parent composite activity is also 
still active (see Figure 7). All workframes, thoughtframes 
and detectables in the parent activity are still being 
evaluated while the agent is executing the subactivity.  
This is the essence of the Brahms subsumption architecture 
(Brooks, 1991), and is based on the principle that humans 
are always multi-tasking by being in multiple subsumed 
activity hierarchies at the same time. For example, the 
science team member from Excerpt 4 is also still in the 
activity of finding water ice when it is in the activity of 
waiting for data to be returned by the rover. Thus, every 
workframe, thoughtframe or detectable in the current 
activity hierarchy is part of the agent’s context, and can be 
fired at any moment, changing the belief and behavioural 
state of the agent. 

In Brahms, an agent may engage in multiple activities at 
any given time, but only one activity in one workframe is 
working at any one time. At each event, the simulation 
engine determines which workframe should be selected as 
the current working, based on the priorities of available, 
current, interrupted and impassed work (see Figure 6).  
The state of an interrupted or impassed workframe is saved, 
so that the agent will continue an interrupted workframe 
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with the activity that it was performing at the moment it  
was interrupted. There is no need for a yield statement 
relinquishing control to the interrupting activity. Unlike  
co-routines, it is not the current activity deciding to interrupt 
its execution, instead it is the agent’s reasoning engine 
determining which active workframe and activity has the 
highest priority. It is the highest priority activity that 
interrupts the current activity. 

Figure 7 Workframe-activity hierarchy 

 

An important consequence and benefit of this subsumption 
architecture is that all of the workframes of a model  
are simultaneously competing and active, and the  
selection of a workframe to execute is made without a  
stack for workframe and activity execution. A stack would 
only allow those workframes at the level of the current 
active workframe on the stack to be considered for 
execution. Instead all workframes at all levels are always 
activated. 

An illustration of multi-tasking is given in Figure 8.  
An agent (not shown) in a running model may have multiple 
competing general activities in process: Activities 1, 3, and 
4. Activity 1 has led the agent (through workframe WF1) to 
begin a subactivity, Activity 2, which has led (through 
workframe WF2) to a primitive activity Action X. When 
Activity 2 is complete, WF1 will lead the agent to do other 
activities. Meanwhile, other workframes are competing for 
attention in Activity 1. Activity 2 similarly has competing 
workframes. Priority rankings led this agent to follow the 
path to Action X, but interruptions or reevaluations may 
occur at any time. Activity 3 has a workframe that is 
potentially active, but the agent is not doing anything with 
respect to this activity at this time. The agent is doing 
Activity 4, but reached an impasse in workframe WF4 and 
has begun an alternative approach (or step) in workframe 
WF5. This produced a subactivity, Activity 6, which has 
several potentially active workframes, all having less 
priority at this time than WF2. 
 

Figure 8 Multi-tasking in Brahms 

 

The Brahms subsumption architecture allows two forms of 
multi-tasking. The first form is inherent in the activity 
paradigm; Brahms can simulate reactive situated behaviour 
of humans. An agent’s context forces it to be active in only 
one low-level activity. However, at any moment an agent 
can change focus and start working on another competing 
activity, while queuing others. Having the simulation  
engine switch between current and interrupted work for 
each agent, simulates this type of multi-tasking behaviour  
as represented in Figure 8. The second form is subtler.  
People can be working concurrently on many high- and 
medium-level activities in a workframe-activity hierarchy. 
Although an agent can only execute one primitive activity in 
the hierarchy at a time (e.g., ACTION X in Figure 8), the 
agent is concurrently within all the higher-level activities in 
the workframe-activity hierarchy. For example, the agent in 
Figure 8 is concurrently within Activity 1, Activity 2, and 
primitive activity Action X. It should be noted that while a 
workframe, and its associated activities are interrupted or 
impassed, the agent is still considered to be in the activity. 
The agent is conceptually executing all current, interrupted 
and impassed activities. 

4.5.4 Java activities 

A special type of activity is the Java activity. A Java activity 
is a primitive activity that is declared similar as other 
primitive activities, but is implemented in the Java 
programming language. Java activities are helpful if the 
agent or object needs to perform complicated calculations 
that can easier be done in the Java language, or if the agent 
needs to interact with systems outside of the Brahms 
language (As shown in Figure 3, Brahms also allows an 
agent to be completely written in Java, allowing external 
programs to be ‘wrapped’ as Brahms agents). The Java 
activity specifies the fully qualified name of the Java class 
that either implements the IExternalActivity interface or 
extends the AbstractExternalActivity class. The interface 
and class are specified in the Brahms Java Application 
Interface (JAPI). When the java activity is executed an  
instance of the class is created and the Java code executed.  
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If the class extends the AbstractExternalActivity class,  
the java code has access – using the JAPI methods  
available – to the parameters passed into the activity, the 
belief-set of the agent or object, as well as the fact-set  
of the world. The java activity is also able to conclude  
new beliefs and facts, create new agents and objects, as well 
as communicate with other agents and objects in the  
Brahms model. In other words, for any built-in activity 
allowed in the body of a workframe there exists a JAPI 
method equivalent. 

Excerpt 5 gives an example of a Java activity.  
The getCurrentTime Java activity is part of the 
CalendarUtil group and class in the Brahms base library. 
The calendar utility implements a calendar object that 
allows agents to deal with the Gregorian calendar and 
concepts such as ‘yesterday’, ‘tomorrow’, ‘last week’,  
‘last month’, etc. The implementation of this Java activity is 
located in the brahms.base.util.GetCurrentTimeActivity java 
class in the Brahms common.jar file, which is loaded at the 
start of the BVM. 

Excerpt 5 Java activity example 

 

4.6 Communication model 

One of the most important aspects of modelling human 
behaviour is the interaction with other people and  
systems. Brahms supports representing human-human 
communication, as well as human-machine communication 
using the concept of communication as an activity.  
The communication model consists of a definition of 
communication activities between agents and objects.  
In Brahms, communication is defined as the transfer of 
beliefs between agents and/or objects. Just as in human 
communication, communicating takes time and is situated in 
an activity. In order to model human communication we 
thus have to represent the time it takes to communicate, 
either between people, systems, or between people and 
systems. To do this there is a special type of primitive 
activity called a communication activity. An agent or object 
can perform a communication activity like any other 
primitive activity. However, a communication activity has a 
‘side effect’, namely that when the agent (or object) 
performs the activity it can send (i.e., tell) beliefs to agents 
(or objects) it is communicating with, or it can receive  
(i.e., ask) beliefs from an agent (or object). There is an 
obvious catch: an agent (or object) can only send beliefs in 
its belief-set, however an agent/object can receive missing 
beliefs by asking. 

Modelling work practice of people means that we  
are interested in modelling how communication actually 
happens in the real world. Therefore, in Brahms we  
usually represent the media and path of the communication.  
For example, when we model an organisation of 

communicating people we represent the communication 
tools that are used (e.g., e-mail, telephones or faxes).  
We have even modelled the operation of the telephone 
system with voice mail capability. Accordingly, we can 
represent how communication occurs and how long it 
requires. For example, this includes the practice by which a 
phone number is known, such as looking it up in an 
computerised address book. If a person calls another person 
who is not available at that moment, the caller might  
(or might not) leave a voice mail. It will depend on the 
receiver’s activity of listening to his or her voice mail for 
the content of the message to actually be transferred.  
To model this, we model the telephones (as objects) and 
their voice mail capability with activities, the location of 
telephones (see section Geography Model), as well as the 
agents’ activities of calling someone via the telephone, the 
telephone object transferring the communicated beliefs to 
the receiver’s voice mail (in case the receiver is not 
answering the phone), and the receiver’s activity of listening 
to its voice mail and responding back to the caller if 
necessary. This level of detail is not required to model 
communication, but it may be important to explain how 
work gets done (or is delayed). 

Excerpt 6 shows a communication example between 
members of the VictoriaTeam group. In this example the 
communication model is abstracted to a simple transfer of 
beliefs, without the complicated model of a communication 
tool used. 

Excerpt 6 Communication activity example 
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By now the reader should be familiar enough  
with the Brahms language constructs of workframe, 
preconditions, conclude commands and activity calls.  
Here we explain the new properties of the communication 
activity ComAct_NextRoverActivity in Excerpt 6. Every 
communication activity has a with property. This property 
declares with which agents or objects the communication is 
held. In the example, the value of the with property is the 
rcvr parameter. This parameter is of type VictoriaTeam, 
which means it can thus have one or more agents that are a 
member of VictoriaTeam as its bounded value. If we look in 
WFR wf_CommunicateDoDrillActivity we see that the rcvr 
parameter is bound to the agent VehicleAndSpacecraft 
OpsTeam (see the ComAct_NextRoverActivity activity call 
in the body of the workframe). In this example, the 
communication receiver is one agent that represents a  
whole team of people, which means the model is not 
concerned with the detail of individual agents and their use 
of communication tools. 

Another communication activity property is about.  
This property specifies the possible content of the 
communication. If during the execution of the 
ComAct_NextRoverActivity the performing agent does not 
have any of the beliefs that match the send transfer 
definition in the about property, the belief–transfer can not 
take place. 

The last property for communication activities is when. 
This property can have two values, start or end. This 
property specifies when during the activity the beliefs are 
actually transferred. Imagine we want to model that the 
communication of a message takes some time, and we do 
not want the receiver to act on this communication until the 
end of the communication activity. In that case we would 
model this using a when:end value. On the other hand, if we 
want to model that the receiver acts on the message during 
the communication activity we would model this with a 
when:start value. Note that to model the actual transfer of 
beliefs using some kind of timed distribution of actual 
transfer of beliefs during the activity, we would represent a 
number of sequential communication activities, such as 
parts of a conversation. 

4.7 Geography model 

The Geography Model consists of declaration of areas 
(a.k.a. locations) where agents and objects can be placed. 
Areas can represent a conceptual hierarchical organisation 
of locations. Figure 9 presents the partial geography model 
of the Moon. 

Areas are instances of classes called AreaDefinitions 
(areadefs). Figure 9 shows the MoonArea areadef. As with 
any other type of object or class, areas and areadefs can 
have attributes and be hierarchically organised. Using the 
area attributes, agents can have beliefs about areas (e.g., the 
temperature in a Building area). The MoonArea areadef has 
six instances (i.e., area objects). 

Related, in an associated project, called BrahmsVE, we 
map the Brahms geography model onto a three-dimensional 
virtual reality model, which can be used to model and 

visualise the physics of the world, including line of sight 
and obstacles during movements (Clancey et al., 2005b). 

Figure 9 Partial geography model of the moon 

 

4.7.1 Location facts and beliefs 

Each area can have a number of relationships associated 
with it: parent, partof, parts, paths and inhabitants.  
As shown in Figure 9, the ShadowEdgeInCraterSN1 has the 
following relationships; First off, this area is part of the 
Moon area (i.e., the crater area is located on the Moon).  
The partof relation is important for the localisation of  
agents and objects. That is, when an agent or object is 
located in an area (i.e., is an inhabitant), it is automatically 
also located in the area of which this area is part.  
For example, Figure 9 shows that the VictoriaRover  
agent is an inhabitant of area ShadowEdgeInCraterSN1. 
ShadowEdgeInCraterSN1 is part of the Moon area,  
and thus the VictoriaRover is both located in the 
ShadowEdgeInCraterSN1 area and in the Moon area. 

Location of agents and objects has a special semantics in 
Brahms. When an agent or object is located in an area  
(i.e., is an inhabitant), a number of facts and beliefs are 
automatically updated by the simulation engine. First, 
localisation is a fact in the world and the engine 
automatically generates a location fact for each inhabitant. 
Thus, for the model in Figure 9 the engine generates  
the following fact: (VictoriaRover.location = ShadowEdge 
InCraterSN1). Second, every agent that is an inhabitant of 
an area gets a belief about its location, as well as that  
of all co-inhabitants in that area. Thus an agent always 
knows the location of all other agents and objects in its 
location – i.e., agents have perfect perception. It is possible 
for an agent to simulate imperfect perception by changing 
its gotten location beliefs in three ways: 

• a location conclude statement in a workframe 

• a location conclude statement in a thoughtframe 

• through a communication about the location with 
another agent/object (send or receive). 



 Brahms: a multi-agent modelling environment for simulating work processes and practices 149 

The agent’s inference engine dynamically updates the 
agent’s location-fact and -belief when the agent moves from 
one area to another. The agents still located in the old area 
have the location-belief of the moved agent retracted  
so that they know the agent has moved. Next, all agents that 
are inhabitants of the newly move-to location receive a 
location-belief for the arrived agent. In short, agents always 
know where they are and also always know which other 
objects and agents are in their location. 

4.7.2 Movement 

As mentioned above, agents and objects can move between 
areas; this occurs in a move activity, which like all activities 
takes time. There are two important notions about 
representing movement that need to be kept in mind, 
moving with a specific duration and moving along a defined 
path. Excerpt 7 shows an example of a Rover agent’s ability 
to execute the TraverseToLocation activity in a workframe. 
Moving is constrained, similar to any other activity, by the 
beliefs of the agent matching the precondition of a 
workframe calling a move activity. 

Excerpt 7 Rover moving activity example 

 

Excerpt 7 shows an example of movement with a  
specific duration. When the preconditions of the WFR 
wf_TraverseToLocationInShadowArea match the beliefs of 
the agent VictoriaRover, the rover calls the move activity 
TraverseToLocation with two parameters: the duration of 
the move activity (i.e., the value of the variable drivingtime) 
and the location to which the rover needs to move  
(i.e., the value of the variable loc). In this example the rover  
 
 

moves from its current location to the gotoLocation in the 
given time drivingtime (as long as the rover is not already in 
the gotoLocation). This workframe represents the rover’s 
generic capability to execute a command driving to a 
location with a certain speed (speed is modelled as an 
implicit calculation based on time and distance). 

Another way of modelling movement duration of an 
agent or object is by pre-specifying the paths that  
can be taken from one location to another. Paths are  
objects that specify two end locations (i.e., area objects) and 
duration. Figure 9 shows that the geography model specifies 
that there exists a path SAICSN1_to_from_SEICSN1 
between the areas SunlitAreaInCraterSN1 and ShadowEdge 
InCraterSN1, and that the distance (specified in time) is a 
100 simulation clock-ticks. With a clock grain-size of 
1 second and a rover speed of 1 m/sec, the length of the path 
is 100 meters. Excerpt 8 shows the declaration of this path 
in source code. 

Excerpt 8 Path declaration from Figure 9 

 

The use of paths in move activities occurs as follows: when 
an agent or object performs a move activity without a 
duration and there is a path defined from the current 
location to the ‘move to’ location, the duration of the move 
is determined from the duration of the path. In case of 
multiple possible paths the engine calculates the shortest 
route9 and uses that as the duration of the move activity. 

5 Discussion 

After the detailed description of the Brahms language, its 
human behaviour modelling capabilities and the workings 
of the simulation engine, we now turn to the use of Brahms 
as a modelling and simulation tool for the organisational 
process simulation community. 

The Brahms tool was originally developed to model 
work processes at the work practice level to include the 
‘social systems of work’ in a simulation of work process in 
human organisations. Our research over the past decade has 
shown that, discounting the difficulties of modelling human 
behaviour with all the representational limitations, Brahms 
allows the detailed modelling of work practice at a level of 
detail that enables 

• researchers to get insight into the way people actually 
work in an organisation 

• system developers to use these models to develop 
computer software that, at a minimum, has a better 
representation of the user and its environment. 
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In this paper we have argued that the Brahms language is 
suitable for studying kinds of social and work practice 
phenomena of interest to the organisational process 
simulation community. Our experience and results in 
modelling work practice suggests that larger social 
phenomena can also be modelled. The Brahms modelling 
language has great advantages for the researcher, because 
compared to other tools, such as Swarm, the language 
allows for a more ‘natural’ representation of human 
behaviour at the level of activities, reasoning, 
communication, interaction with objects and movement in 
the world (a level we might call the meso-level of human 
systems (Carley and Prietula, 1994)). Our experience 
indicates that when the objective is to analyse or predict 
organisational behaviour at the macro system level, an 
activity-based simulation of individual behaviour captures a 
level of detail about information flow and tool use  
that is useful for explaining the quality and timing of work 
processes. 

Activity-scanning is a known simulation method for 
modelling work processes. Activity-scanning models 
represent how activities are performed, based on the 
resources needed and the conditions under which they are 
performed (Ioannou and Martinez, 1999). Although at first 
glance activity-scanning looks similar to our definition of 
activities, an activity-scanning model only includes tasks 
and queues of resources as input and output to activities.  
The model is a functional activity-resource network and 
operates similarly to a Petri-Net model (Aalst, 2003) in that 
resources flow through the model as constraints on when 
activities can be executed. People are equal to other 
resources and seen as resources consumed or created by an 
activity. This model is 

• not an agent-based model 

• does not deal with agent beliefs (BDI) 

• does not include agent communication and interaction 

• does not allow agent reasoning 

• also does not have any model of the 
environmental/geography that influences when and how 
activities are executed. 

We argued that imperative programming languages  
suited for modelling macro-level system behaviour using an 
agent design paradigm are not flexible enough to claim a 
correspondence with actual human behaviour. Cognitive 
architectures that are suited to model single agent cognitive 
behaviour, based on a theory about how the brain actually 
stores and processes information, are too detailed to 
conveniently model human behaviour at the level of agent 
interaction with other agents and the world (e.g., the 
simulation clock grain-size in both Soar and ACT-R is in 
the 100 msec range, which makes modelling activities that 
span days, hours, or even minutes very cumbersome). 
Brahms lies between these types of modelling languages.  
 
 

Brahms is a language that allows for an easy representation  
of agent behaviour at the micro-level (i.e., reasoning 
behaviour, without the brain correspondence claim)  
and meso-level (human interaction with each other  
and the world), allowing the researcher to show the  
effects of these behaviours at the macro-level (i.e., the 
organisational process or system level). 

Brahms is a declarative language like all BDI languages. 
Brahms differs from other BDI languages in several ways: 

• Brahms is activity-based, while most other BDI 
languages are task-based 

• Brahms uses a subsumption architecture, while most 
other BDI languages use a goal-based architecture 

• Brahms allows modelling of the environment 
(geography), movement of agents in the environment, 
etc. 

• Brahms is also an object language allowing the 
representation of artefacts and data objects 

• Brahms represents a separate fact-state for modelling 
the world state outside of the agent’s belief-set, whereas 
traditionally BDI-languages only model agents with an 
independent belief-state. 

The Brahms environment is completely developed  
in the Java language and, with its language compiler,  
BVM, development environment (the Composer), and its 
simulation display environment (the AgentViewer). Brahms 
is freely available from the internet for research purposes.10 
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Notes 
1Brahms was invented at the Institute for Research on Learning 
(IRL) and NYNEX Science & Technology (the former R&D 
institute of the Baby Bell telephone company in New York,  
now Verizon); since 1998 development has occurred at NASA 
Ames Research Center, in the Work Systems Design and 
Evaluation group of the Intelligent Systems Division. 

2Based on personal e-mail correspondence with Gert Jan Hofstede. 
3The newest version of Brahms also supports the development of 
multi-agent software systems. 

4Social actions are actions in which the actor takes the reaction of 
other actors into account. The term was introduced by the 
sociologist Max Weber. 

5From http://www.answers.com/topic/imperative-programming 
and http://en.wikipedia.org/wiki/Imperative_programming, 
accessed June 14, 2006. 

6http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/, accessed 
June 14, 2006. 

7There is no logical OR-operator in preconditions. 
8When a workframe (or thoughtframe) is fired (i.e., the 
preconditions are matched against beliefs in the agent’s belief-set) 
a workframe instance is created for every workframe variable 
context that matches all preconditions. Each workframe instance 
is now an independent version of the workframe and will be 
executed independently from each other, with different variable 
bindings (the WFI-context). 

9According to Dijkstra’s shortest path algorithm (Dijkstra, 1959). 
10URL: http://www.agentisolutions.com. 




