
134 Int. J. Simulation and Process Modelling, Vol. 3, No. 3, 2007

Copyright © 2007 Inderscience Enterprises Ltd.

Brahms: a multi-agent modelling environment
for simulating work processes and practices

Maarten Sierhuis*
Research Institute for Advanced Computer Science,
NASA Ames Research Center,
Moffett Field, CA 94035-1000, USA
E-mail: Maarten.Sierhuis-1@nasa.gov
*Corresponding author

William J. Clancey
Florida Institute for Human and Machine Cognition,
NASA Ames Research Center,
Moffett Field, CA 94035-1000, USA
E-mail: William.J.Clancey@nasa.gov

Ron J.J. van Hoof
QSS Group, Inc., NASA Ames Research Center,
Moffett Field, CA 94035-1000, USA
E-mail: rvanhoof@mail.arc.nasa.gov

Abstract: Modelling and simulating work processes is often done at such an abstract level that
individual work practice – collaboration, communication, ‘off-task’ behaviours, multi-tasking,
interrupted and resumed activities, informal interactions, use of tools and movements – is left out,
making the description of how the work in an organisation actually gets done impossible.
This paper describes the Brahms modelling and simulation environment, developed at NASA
Ames Research Center. The Brahms modelling language is geared towards modelling people’s
activity behaviour, making it an ideal environment for simulating organisational processes at a
level that allows the analysis of the work practice and designing new work processes at the
implementation level.

Keywords: multi-agent; language; simulation; work practice; business process modelling.

Reference to this paper should be made as follows: Sierhuis, M., Clancey, W.J. and
van Hoof, R.J.J. (2007) ‘Brahms: a multi-agent modelling environment for simulating work
processes and practices’, Int. J. Simulation and Process Modelling, Vol. 3, No. 3, pp.134–152.

Biographical notes: Maarten Sierhuis received his PhD in Social Science Informatics at the
University of Amsterdam, The Netherlands and a BSc in Informatics from the The Hague
Polytechnic, The Netherlands. He is currently Senior Research Scientist at RIACS/NASA Ames
Research Center, Moffett Field, CA. His current research interests include multi-agent modelling
and simulation and human-agent interaction.

William J. Clancey is Chief Scientist, Human-Centred Computing in the Intelligent Systems
Division at NASA Ames Research Center. He received his PhD in Computer Science from
Stanford University, CA and a BA in Mathematical Sciences from Rice University, Houston, TX.
His current research focuses on integrating people, systems, and simulations.

Ron J.J. van Hoof is a Software Engineer for QSS Group, Inc. consulting for NASA Ames
Research Center. He received his Masters Degree in Knowledge Engineering from the University
of Middlesex, London, UK, and a BSc in Computer Science from the Hogeschool West-Brabant,
The Netherlands. His current responsibilities include the maintenance and development of the
Brahms language, virtual machines and an agent-based exploration support system.

 Brahms: a multi-agent modelling environment for simulating work processes and practices 135

1 Introduction

Since the mid-1990s, the start of Business Process
Reengineering (BPR), modelling of business processes has
become more widespread. It has been argued that some
of the early failures in BPR were due to an inability to
evaluate and predict the impact of design changes in a work
process (Hlupic and Vreede, 2005). Simulation of business
processes offers a great potential to overcome the inability
to predict the effects of BPR on an organisation.

However, predictions with the use of simulation
can be only as good as the underlying model of the
business process. The saying ‘garbage in, garbage out’ holds
especially true for the use of simulation in predicting the
impact of changes in a business process. In other words, if
the underlying model of the process is not at the level of
how people actually do the work, the prediction fails to
show how a change to the process will actually change
people’s work in the future. Therefore, it is important to
model a business process at such a level that there is a direct
correspondence with how this process is implemented.

Brahms is a modelling and simulation environment
for analysing human work practice and for developing
intelligent software agents to support work practice in
organisations. Brahms is the result of more than 50 person
years of research since 1992.1 Brahms has been used on
more than ten modelling and simulation research projects,
including simulated human-robotic science exploration on
planetary surfaces (Clancey et al., 2003, 2004, 2005a,
Clancey, 2004). Brahms can be run in different simulation
and runtime modes on distributed platforms, enabling
flexible integration of people, hardware-software systems,
and other simulations. Other publications about Brahms
have described the theoretical foundations of work practice
modelling (Clancey et al., 1998; Sierhuis, 2001; Sierhuis
and Clancey, 2002) and particular applications (Acquisti
et al., 2002; Seah et al., 2005; Sierhuis, 2000; Sierhuis et al.,
2003a). Here we present a more technical overview of the
modelling language and simulation engine.

Brahms was originally conceived as a business
process modelling and simulation tool that incorporates
the social systems of work, by illuminating how formal
process flow descriptions relate to people’s actual located
activities in the workplace. Brahms models are at the
implementation level of a work process and are especially
suitable for modelling and simulating a designed change
in a business process. Using Brahms we can predict the
impact of a process design change on its implementation
in an organisation. Predicting the impact is done by
first modelling and simulating the current implementation
of the work process, and subsequently simulating a
future implementation model that changes the current
implementation based on the new design. Our research
started in the early nineties as a reaction to experiences with
work process modelling and simulation (Sachs, 1995).
Although an effective tool for convincing management of
the potential cost-savings of the newly designed work
processes, the modelling and simulation environment

(SparksTM from Coopers & Lybrand) was only able to
describe work as an abstract, normative workflow.
However, the social systems, uncovered in work practices
studied by the design team played a significant role
in how work actually got done – actual lived work
(Button and Harper, 1996; Clancey, 2006). Multi-tasking,
informal assistance and circumstantial work interactions
could not easily be represented within a strict
workflow modelling framework. In response, we began
to develop a tool that would have the benefits of work
process modelling and simulation, but be distinctively
able to represent the relations of people, locations,
systems, artifacts, communication and information content
(Clancey et al., 1998). Thus, Brahms models work processes
at the work practice level.

Agent architectures often do not link to theories of
human behaviour, or empirical data on human behaviour
in comparable situations. The Brahms environment is based
on a number of behavioural and cognitive theories, most
importantly situated cognition (Sachs, 1995; Clancey,
1997), activity theory (Leont’ev, 1978; Vygotsky, 1978),
situated action (Suchman, 1987; Lave, 1988) and cognitive
modelling (Laird et al., 1987; Anderson and Lebiere, 1998).

Brahms has been validated as a modelling and
simulation tool for work practice design and analysis by
applying and analysing Brahms in three different uses of
modelling and simulation of work practice

• analysis of an existing work practice

• prediction of people’s practice behaviour in an existing
work system

• designing a new, not yet existing, work system.

Simulation models of the work practices of the Apollo
astronauts on the surface of the Moon have been developed,
simulated and validated with empirical Apollo mission
data available from NASA, such as video analysis, voice
transcripts and lunar surface procedures (Sierhuis, 2001), as
well as ethnographic data and video from Mars analog field
missions (Clancey et al., 2005b).

To simulate human behaviour at the work practice level,
one must model how people work together as individuals in
organisations, performing both individual and teamwork
activities. The Brahms language is unique in that it not only
models both individual agent and group behaviour, but also
systems and artifact behaviour, interpersonal interaction, as
well as interaction of people, systems and objects with the
environment. Most other multi-agent languages leave out
artifacts and the interaction with the environment, making it
difficult to develop a holistic model of real-world situations
(c.f. Wooldridge and Jennings, 1995). By incorporating an
ontology of objects, agents, groups, geography, etc. and
means to model interactions, Brahms makes it possible
to model empirical data gathered using ethnographic
observations; this facilitates involving the workers being
modelled in the simulation and work design process.

In this paper, we first review the meaning of work
practice and our theory of modelling work practice, based

136 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

on existing theories of activity theory, situated action and
distributed cognition. We then discuss the Brahms language
in detail, specifying the different conceptual models that
build up a Brahms model, providing model examples and
code fragments to explain the representational capabilities
and workings of Brahms. We end the paper with a
discussion of the use of Brahms as an organisational process
simulation tool.

2 Modelling work practice: a theoretical view

Work practice is embodied in the way people perform
their daily work activities in organisations. Our notion of
work practice modelling has been developed as a reaction to
historically conventional views of workflow modelling in
organisations. The concept of work practice originates
in the research disciplines of socio-technical systems,
business anthropology, and management science, focusing
on both the informal and formal features of work
and applying ethnography and participant observation
to the analysis and design of human-machine work systems
(Emery and Trist, 1960; Pava, 1983; Weisbord, 1987;
Ehn, 1988; Greenbaum and Kyng, 1991; Sachs, 1995;
Clancey, 1999, 2001; Sierhuis and Clancey, 2002).

Our definition of work practice is narrower than
Hofstede’s dimensions of national culture (power distance,
individualism, masculinity, uncertainty avoidance,
long-term vs. short-tem orientation) and organisational
culture or practices (process-oriented vs. results-oriented,
job-oriented vs. employee-oriented, professional vs.
parochial, open systems vs. closed systems, tightly
vs. loosely controlled, and pragmatic vs. normative).
We only intend to model the practice of people in an
organisation in terms of their activities, which narrows our
scope2 (c.f. with Hofstede and Hofstede, 2005).

We define work practice as the collective social
activities of a group of people who collaborate, cooperate,
coordinate, and communicate, while performing their
activities synchronously or asynchronously. Very often,
people view work only as the process of transforming input
to output, which is a functional, Tayloristic view.
A functional or task-oriented perspective is often useful for
work design, but such abstracted and idealised process
models do not capture how work actually gets done
‘in practice’.

Work practice is how people behave in everyday,
located, circumstantial interactions in the real world. That
is, a practice model describes behaviours (as activities); a
task model describes functional relations of processes
(Clancey, 2002). Put another way, a practice model
emphasises interactions with the environment such as
communication and movement; a task model emphasises
mental operations (inference). A practice model indicates
how information flows (e.g., by mobile phone or e-mail)
and how that choice is made circumstantially; a task model
indicates what information flows (and usually only what
tools are supposed to be used). A task model indicates what

methods are applied to transform work objects; a work
practice model emphasises who selected those methods and
how that person became involved in the work process.

To model people’s behaviour we need to include
ecological (environmental) influences on individual
activity, especially layout of facilities, tools, and perhaps
body posture. For example, it may be relevant to simulate
whether two people can hear each other speak.
The circumstantial details of work practice may
include: physically joint actions (e.g., carrying something
together), ‘off-task’ behaviours (e.g., joking), multi-tasking,
interrupted and resumed activities (e.g., answering the
phone while eating), informal or improvised interactions
(e.g., unscheduled planning conversations), work-arounds
(Clancey et al., 1998; Sierhuis, 2001).

A useful heuristic in simulating work practice is to
model communications and how they occur. Brahms has
been designed to facilitate modelling and visualising
communications over time between people and systems.
We define communication as:

“The activity (speech act) of directional transferring
of information (in the form of beliefs), held by one
individual called the sender, to one or more individuals
called the receiver(s), using a specific communication
tool (face-to-face, telephone, e-mail, fax, document, etc).
After the transfer activity is complete, and successful, the
receiver(s) will hold the same information (belief) as the
sender of the information, and can now react to it.”
(Sierhuis, 2001)

Our theory about modelling work practice is based on a
number of elements borrowed from different existing
approaches. Brahms models are models about real world
phenomena, and the model is a description of the world as
viewed by the modeller. Models of work practice are
descriptions of work practice and as abstractions do not
replicate all or even most of the aspects of human
knowledge, experience, and behaviour. For example,
situated cognition suggests that learning is always occurring
and behaviour is always adapted, but Brahms agents behave
rotely without any learning. Perception is modelled, but not
facial expressions, gaze, or emotion.

Winograd and Flores (1986) explain that just as we can
ask how interpretation plays a role in understanding text, we
can ask how it plays a role in understanding the world as a
whole. The context in which people perform real world
activities is an important aspect. A broad range of work in
psychology and anthropology has shown that to fully
understand how people work we need to study context in
order to understand the relation between individuals,
artifacts and social groups. Three approaches in the study of
context – activity theory (Vygotsky, 1978; Leont’ev, 1978),
situated action models (Clancey, 2002; Lave et al., 1984;
Lave and Wenger, 1991; Nardi, 1996; Suchman, 1987), and
distributed cognition (Hutchins, 1995a, 1995b) – have been
fundamental in the development of our theory for modelling
work practice. All these approaches use the notion of
activity as the central concept for analysing the context of
human behaviour.

 Brahms: a multi-agent modelling environment for simulating work processes and practices 137

2.1 Work activities
The key construct in the Brahms language is an
activity, which as mentioned above, is distinguished
from the traditional notion of a task – a representational
construct that describes human behaviour in terms of
problem-solving with goals and functional operators
(e.g., Newell, 1990; Anderson and Lebiere, 1998)
(cf. Clancey, 1992). While tasks are goal-driven functional
behaviour representations of planned action, an activity
is a construct that can also represent unplanned and
not goal-driven behaviour; especially those behaviours
that are based on culturally learned daily practice.

In Brahms a business process is described as the
individual activities of people in the organisation.
We describe each person’s behaviour as situated in the
organisation’s physical and conceptual context, including
location, tools, personal knowledge, interpersonal
relationships, and aspects of organisational cultural
behaviour. The question not only becomes what activities
each individual performs, but more specifically, how they
come to perform these activities at a particular time and
place with other people. As we describe work practice in
terms of activities engaged in, we also inquire how activities
subsume and thus constrain each other. For example,
although we are still parents when at work, we do not
engage in parenting activities while at work, until our child
calls us at work to ask a question, and how that call is
handled privately will blend the commitments and norms of
both the parenting and business activities. In that sense, we
are constantly managing our activities in context, which is
to say that our behaviour is situated. Viewing a work
process as the interaction of activities of people over
time leads us to conceive workflow as the interactive,
circumstantially adapted practice of people, instead of just a
flow of information by a well-defined procedure through a
hierarchical organisation.

The next section describes the Brahms language
and explains what is meant with concepts multi-agent,
rule-based and activity.

3 The Brahms language

In this section we explain the modelling concepts of the
language. For a more detailed description of the language
see Sierhuis (2001) and van Hoof and Sierhuis (2000).
Agents in Brahms are Belief-Desire-Intention (BDI) agents,
with beliefs representing the agent’s understanding
of the world and rules representing their intentions to
reason and perform activities (Bratman et al., 1988;
Cohen and Levesque, 1990a; Rao and Georgeff, 1991).
Figure 1 is a conceptual diagram of a Brahms agent showing
Situated-Action (SA) Rules in a production system, used to
represent people’s situated activities in the world.

Figure 1 Brahms situated-action rule system

SA Rules are a combination of a situated action and a
cognitive framework. P1–P3 are SA Rules. C1–C7 are
preconditions on the rules. They are matched against
elements in working memory (E1, etc.). When elements
match to all the conditions in the rules, the right hand side
of the rule is executed. In contrast with a conventional
production rule, the action of an SA rule has a duration and
may specify another activity, which is itself modelled as SA
Rules. Thus, an SA rule system adds timing to the execution
of production rules. In Figure 1, B1–B5 are new beliefs that
are created in working memory when SA rules execute.

A Brahms agent has a Thoughtframe Rule Memory
(TRM), a Workframe Rule Memory (WRM), and a Belief
Memory (BM). The BM contains a set of all beliefs of the
agent. Beliefs are first-order logic propositions (see section
for a description of beliefs).

The WRM contains a set of rules called workframes.
A workframe is a special type of production rule,
namely one that can create not only new beliefs, but also
execute activities and create facts in the World State. Each
workframe consists of a left-hand side and a Right-Hand
Side (RHS). The left-hand side is a set of preconditions that
are matched against the beliefs in the BM. RHS contains a
list of statements, including detectables (see ‘Detect F4’ in
Figure 1), activities (see ‘Activity 1(t)’ in Figure 1) and
belief or fact conclude statements (see ‘B5’ and ‘F9’ in
Figure 1). A detectable is a declarative statement that
during the execution of the workframe detects a fact
from the world state that matches its detect condition.
For example, in Figure 1 ‘Detect F4’ represents that the
agent is able to detect a fact of the form F4. When an agent
detects fact F4 in rule P1, it creates a belief from the fact
(B4) in the agent’s belief memory. This belief is now used
in the next event cycle to match against the preconditions of
all the rules.

The TRM contains a set of rules called thoughtframes.
A thoughtframe is a ‘pure’ production rule (also ‘inference
rule’), in that it can only create new beliefs. Unlike a
workframe, a thoughtframe’s application does take time; the
change in beliefs occurs immediately. The agent’s rule
engine (called the inference engine) is event-based. Events
are scheduled by the Scheduler, which in turn is based on a

138 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

simulation clock (neither the Scheduler, nor the simulation
clock are shown in Figure 1).

The work practice of a person is represented as a
combination of beliefs, thoughtframes, workframes, and
activities that can be performed by an agent representing
the person. The workframes constrain when the agent can
perform the activities. Beliefs the agent acquires by
executing workframes and thoughtframes represent the
person’s interpretation of the world. Detection of facts
represents perception in the world.

The Brahms language was primarily designed to
develop simulations of human and machine behaviour.3
To enable the modelling of human activity behaviour, the
Brahms language embodies assumptions about how to
describe social action,4 workplaces and work practice.
Brahms is an agent language that operationalises a theory
for modelling work practice, allowing a researcher to
develop models of human activity behaviour that
corresponds with how people actually behave in the real
world.

3.1 Declarative vs. imperative

In this section we discuss Brahms as a declarative language.
For completeness, we start with a definition of imperative
(a.k.a procedural) vs. declarative programming:

“In computer science, imperative programming, as
opposed to declarative programming, is a programming
paradigm that describes computation in terms of a program
state and statements that change the program state. […].
Logical programming languages, like Prolog, are often
thought of as defining ‘what’ is to be computed, rather
than ‘how’ the computation is to take place, as an
imperative programming language does.”5

Brahms is a declarative language. Brahms agents act based
on beliefs matching to preconditions on SA rules.
Workframes (SA Rules) are declarative statements about
when new beliefs can be inferred and when activities
can be performed. These are declarative statements,
because workframes do not say when and how an agent’s
behaviours (reasoning and situated-actions) will be
executed. The order of execution is dependent on the
implementation of the inference engine. In contrast, in an
imperative language, such as C, C++ or Java, the behaviour
of a piece of code (method, object, function, etc.) is not
declarative, but specified in terms of when and how the
code will be executed. Any code-fragment (statement)
specifies how it is to be executed, i.e. what memory to use,
the order of execution, and the next statement to be
executed.

A workframe has variables, which look like imperative
constructs, however a Brahms variable is not an assignment
of data to a memory location. Instead, it represents a binding
(instantiation) of a concept (i.e., a value, either an object or
an agent), based on the matching of a condition to the
agent’s belief memory. Secondly, the set of statements in
the body of a workframe is declarative in the sense that it
only states what the ordering relation is between two or
more activities. It does not state how these activities will be

executed, because each activity is decomposed into
another set of declarative workframes. A workframe can be
interrupted, impassed, stopped, etc, based on beliefs that the
agent can acquire through communication, detections, and
other workframes and thoughtframes.

3.2 Comparison with multi-agent programming
languages

In this section we compare Brahms briefly with other
multi-agent programming languages and with agent-based
cognitive architectures. For an introduction to multi-agent
systems we refer the reader to Wooldridge (2002).

As mention above, Brahms is a type BDI system
conceived of and developed in 1992, before many of today’s
multi-agent languages. Unlike today’s BDI agent languages,
Brahms is inspired most strongly by Brooks’ (1986, 1999)
biologically inspired reactive robot architectures and Cohen
et al.’s (1989) simulation of located team communications.
For a more complete description of different multi-agent
languages see Bordini et al. (2005).

We categorise multi-agent languages as follows
(Table 1): Java-based Agent Languages (BDI-based and
Imperative) and BDI Languages (Goal-based and
Subsumption-based), and Agent Simulation Languages
(BDI-based and Imperative).

Table 1 Agent oriented languages comparison

Java-based
agent languages BDI languages

Agent simulation
languages

BDI-
based Imperative

Goal-
based

Subsumption-
based

BDI-
based Imperative

Brahms X X

Jason X

Agents
speak

 X

Jade X

Jack X

Jadex X

Swarm X

Repast X

Brahms uniquely combines a subsumption-based
architecture (Brooks, 1986) with a BDI-based agent-
oriented language (see Section 4.5.3). In contrast, Swarm
(Minar et al., 1996), an often-used language for modelling
and simulating social and economic behaviour of large
agent societies (Luna and Perrone, 2002), is not based on
any particular human behaviour theory and is not an
agent-oriented language in the strict sense. Rather, Swarm
extends an imperative language in the form of object
libraries for Objective-C (an object-oriented programming
language) (Terna, 1998). Swarm agents are not BDI agents,
but objects with inherited imperative methods that are called
by a higher-level schedule object in the model. In contrast,
in Brahms agent actions are not scheduled by an overall
scheduler, but by each agent’s individual inference engine

 Brahms: a multi-agent modelling environment for simulating work processes and practices 139

that schedules and executes the agent’s activities
based on the agent’s plans, beliefs, desires and intentions
(see Figure 2).

Figure 2 Brahms BDI agent

Source: Adapted from Figure 4.5

in Woodridge (2002)

However, Brahms is a multi-agent language allowing
agents to communicate beliefs to one another. Agents can
also change and detect facts of the world state. Both the
communication of beliefs and creation and detection of facts
are scheduled for all agents based on the simulation clock
(see Figure 3).

Figure 3 Brahms multi-agent virtual machine

Recent research in the agent community recognises the
environment as a first-order abstraction in Multi-Agent
Systems (MAS). Researchers in this newly created subfield
of MAS (see E4MAS workshops)6 recognise that several
aspects of MAS are part of the environment and should be
included as a separate first-order entity (Omicini et al.,
2004). In modelling work practice we have recognised the
importance of modelling the environment from the onset.
In Brahms the environment is modelled with specialised
object types (see sections The Object Model and
The Geography Model).

4 An example model: simulating a robotic
mission to the Moon

Sending robots to the Moon (or Mars) is a difficult task, one
that mission designers at the Jet Propulsion Laboratory
(JPL) in Pasadena, CA devoted years to design and

implement. Understanding how scientists and engineers
work together during a mission, and also how people
communicate with robots on a planetary surface is a
research topic for designing better mission operations
(Sierhuis et al., 2003a, 2003b). We use our work in
modelling mission operations for planetary robotic missions
as an example to explain the Brahms language and its
representation capabilities. In particular, the Victoria model
is a Brahms model of the mission operations for a proposed
robotic mission to the Moon. The model simulates
the mission operations concept for the mission in such
detail that the model allows for the understanding of the
relationship between mission and science support on the
ground and the efficiency of the robot in exploring the lunar
surface for water ice (Sierhuis, 2001; Sierhuis et al., 2003a).

4.1 Model skeleton

A Brahms model consists of several model files. Brahms
model files are ASCII-files ending in a .b extension and
consisting of legal Brahms syntax. Good modelling practice
is to create a separate source file for each Brahms model
element, such as groups and agents, classes and objects,
although one can write a Brahms model completely in one
source code file. Our convention is to create one main
model file that imports all other model files. Since Brahms
does not have an initialisation function, such as the ‘main’
function in the C program language (Kernighan and
Ritchie, 1988), the main model file simply contains import
statements for the agents and objects in the model.
Excerpt 1 shows the main model file for the Victoria
mission operations model.

Excerpt 1 Model file

The package statement declares that the model exists as a
package called Victoria. A package is a directory file
structure allowing the modeller to compartmentalise
the model into appropriate sub-directories. The import
statement loads in the needed model files. Excerpt 1 shows
that the model is loading all .b files in the MyBase
sub-directory of the Victoria package, as well as all the .b
files in the Victoria package’s root directory (*). To start a
simulation, a compiled version of this model file is
first loaded into the Brahms Virtual Machine (BVM).
The Brahms compiler compiles each .b file separately
into a Brahms ‘byte-code’ file. The ‘byte-code’ language
for Brahms is an XML data definition language, making
each compiled Brahms model file a Brahms XML file that
can be loaded and executed by the BVM.

In developing a Brahms model, we conceptually divide
the system to be modelled into a number of more or
less interdependent sub-models: the Agent, Object,
Geography, Knowledge, Activity and Communication
model. The Brahms model development environment, the
Composer, supports this model-based approach, and allows

140 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

the modeller to create language constructs within these
sub-models using a graphical user interface.

4.2 Agent model

When developing a Brahms model we first design an Agent
Model. The Agent Model systematically relates groups,
agent beliefs, and facts about agents.

4.2.1 Group hierarchy

The agent model consists of a group hierarchy representing
the social, organisational or functional groups of which
agents are members. In the mission operations domain we
can represent the mission operation workers according to
their functional roles, such as the science team. Members of
the science team are responsible for the science deliverables
of the mission. The science team members are all top
scientists in their field, and specialise in different scientific
disciplines. For example, some science team members
specialise in the science instruments that are carried onboard
the robot. The science team members are divided into
science theme groups that represent the functional roles
during the mission, such as the ‘instrument synergy team’,
the “science operations team’ and the ‘data analysis and
interpretation team”. Excerpt 2 shows the definition of some
of the groups in Brahms source code (the excerpt shows
partial source code; ‘…’ means that source code is omitted):

Excerpt 2 Partial agent model

We will go step-by-step through the source code of
Excerpt 2 explaining how groups and agents are defined.
Note that this excerpt describes the definition of four groups
and one agent. The bold characters show Brahms language
keywords. Every Brahms language element definition is
actually placed in a separate source code file, but is shown
here as if it were part of one file.

The first two groups are MyBaseGroup and
VictoriaTeam. MyBaseGroup is a group defined by the
modeller. It is a non-domain specific ‘root’ of the group
hierarchy, used by the modeller to define common group
properties. MyBaseGroup and VictoriaTeam are both
members of the group BaseGroup, which is the root of all
groups and is part of a base library that comes with the
Brahms language, with certain predefined standard
attributes. Here the MyBaseGroup group defines a common
attribute for all groups, i.e., the groupMembership attribute.
The groupMembership attribute is used in the model
to allow agents to know to what group they belong.
The third group that is defined is ScienceTeam. The group
ScienceTeam is a member of two parent groups,
VictoriaTeam and MyBase.

This example shows that Brahms supports multiple
inheritance for groups and agents. Group inheritance
means that the subgroups and/or agents inherit all the
elements defined in the parent group. The Brahms compiler
will recognise naming conflicts in multiple inheritance
and will report these at compile time. Brahms does not
support ‘late-binding’, and thus there are no possible
inheritance conflicts at run-time. Next, the group
ScienceOperationsTeam is defined as a member of the
ScienceTeam group. Last, but not least, is the definition of
an actual agent. The keyword agent declares agents, and in
this example Agent1 is an agent that is a member of the
ScienceOperationsTeam group. Thus, the definition of
groups and agents in Excerpt 2 explicitly defines the group
hierarchy in Figure 4.

Figure 4 Group hierarchy from Excerpt 2

4.2.2 Agent beliefs

Intentional agents are entities whose behaviour can be
predicted by the method of attributing belief, desire
and acumen (Dennett, 1987; Wooldridge, 2002). This
philosophical stance has resulted in representing
intentionality as a logical framework in which agents have

 Brahms: a multi-agent modelling environment for simulating work processes and practices 141

beliefs and a deduction model indicating how beliefs
change (Bratman, 1999; Cohen and Levesque, 1990b;
Konolige, 1986). Brahms agents are intentional and
represent this intentionality as the set of beliefs at time t and
the set of rules (workframes and thoughtframe) that can be
used to act in the world and deduce new beliefs. Beliefs
are represented as first-order logic propositions. An agent’s
belief-set changes over time based on actions in the world,
communication with other agents, world fact detection and
reasoning. As the belief-set of an agent changes, the
behaviour of the agent can change. In other words, there is a
logical relationship between an agent’s intention and its
action in the world.

An agent’s beliefs are Object- or Agent-attribute-Value
triplets (OAV). The modeller can specify initial beliefs
for an agent. Initial beliefs are beliefs that the agent
receives at initialisation. Initial beliefs specify the initial
belief-set of an agent in the model and are a way to define
initial scenarios for a simulation run. Excerpt 2 shows
that Agent1 will have two beliefs in its initial belief-set.
The first is an initial-belief that is declared at the
agent-level (i.e., in Agent1). The standard form of beliefs is
(AgentOrObject.attributename = value). The initial belief in
Agent1 states that the agent belongs to the group
ScienceOperationsTeam (the keyword current represents the
agent itself, and is bound at run-time for each agent).
The second belief of Agent1 is inherited from the
ScienceTeam group. Excerpt 2 shows an initial-belief
declared in the ScienceTeam group. This belief states that
the VictoriaRover agent is located at the shadow-edge
of crater SN1.

Beliefs are represented as values for attributes of
agents or objects. Brahms is a strongly typed language,
which means that every attribute value or parameter is
type-checked during compile- and runtime. In order for an
agent to get a specific belief, the attribute and its type needs
to have been defined. In Excerpt 2 the declaration of the
groupMembership attribute is shown in the MyBaseGroup
group as an attribute of type symbol. Agent1 inherits this
attribute and thus any agent can have a belief about the
group membership of Agent1 (not only those that inherit this
attribute). The initial-belief in Agent1 declares this belief for
Agent1, but other agents can have this belief as well
(this is not shown in Excerpt 2). Since beliefs are OAVs,
another agent can have a different belief about Agent1’s
group membership, e.g., agent Agent2 can belief that Agent1
is a member of the InstrumentEnergyTeam. Thus, it is
possible that different agents have either similar or different
beliefs about aspects of the world, allowing similar type
agents to have a different belief-set and thus behave
differently (see Section 4.5).

4.2.3 World facts

If agents can have different beliefs about attributes of agents
or objects, how can we represent the actual state of the
environment in which agents are located? Brahms
operationalises the second world-view from Winograd and
Flores (1986) by representing ‘objective facts’ about the

world as facts in the simulated environment, similarly as
beliefs. In some sense we can see the environment as an
implicit object (the World object) with a fact-set. Agents
and objects can create facts in the world either by acting in
the world or as initial-facts, similar as initial-beliefs
(see Section 4.2.3). Excerpt 2 shows that at initialisation
Agent1 creates a fact about its group membership.
The meaning of the declaration of the same initial-belief and
initial-fact is that not only does Agent1 believes it is a
member of the ScienceTeam group, it is also a true fact in
the simulated world. Whereas beliefs are local to an agent,
facts are not, and thus we could have also represented that
the fact is that the agent is a member of the science team,
but the agent is simply not aware of that fact (i.e., it does not
have the belief). Thus, facts in the model represent the
objective truth (from the modeller’s perspective) about the
state of the simulated world.

4.3 Object model

Similar to the agent model, the object model defines the
objects in the world. There are two types of objects, data
and physical artifacts with or without behaviour – plainly
called objects – and concepts represented as conceptual
objects with attributes. Using these two distinct object types
we can both represent the behaviour of physical objects in
the world (e.g., computer, spacecraft, science instruments,
etc.) or a concept – a non-physical entity – of which an
agent can have beliefs. Objects can have beliefs and create
facts, similarly as agents, however, conceptual objects
can not. The notion that objects can have beliefs might,
at first thought, seem problematic. However, beliefs are
nothing more than first-order propositions. In objects such
propositions represent information held by the object;
that is, like the beliefs of agents they are representations of
the state of the world.

Objects and conceptual objects can be part of a class
inheritance hierarchy, similar to other object-oriented
programming languages (see Figure 5), a screenshot of the
MyBaseClass from the Brahms development environment.

Figure 5 Class hierarchy

4.4 Knowledge model

The knowledge model consists of production rules for
agents and objects. Production rules in Brahms are forward
chaining inference rules associated with groups and agents,
acting on the beliefs of an agent. These rules are called

142 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

thoughtframes. Each agent and object can have a set of
thoughtframes locally declared and/or inherited from a
group or class. For example, Excerpt 3 shows the
declaration of the CalculateEnergyLevel thoughtframe in
the Rover group.

Excerpt 3 Partial knowledge model for Rover group

A thoughtframe (TFR) consists of a number of elements
which we will describe using Excerpt 3. First of all, a TFR
is used to infer new beliefs based on current beliefs in the
belief-set of the agent. The conclude statement in the
do-part or body of the TFR creates a new belief for the
agent. Excerpt 3 shows four such conclude statements,
each of the form (Ο.Α = ν), where Ο = ‘current’,
Α = [an attribute of the Rover group] and ν is the outcome
of a numerical expression that is evaluated before the belief
is created.

Expression ν is evaluated as follows; ν ::= Operand-1
Operator Operand-2. In all four conclude statements in
Excerpt 3, Operand-1 is of the form Ο.Α, where
Ο = ‘current’ and Α = [an attribute of the Rover group].
Operand-2 is not of the same form as Operand-1.
In this case, Operand-2 is the name of a variable of type
double declared in the TFR (i.e., energyused). Because of
the forward chaining inference mechanism, the value of this
variable had to be bound in the precondition before
the TFR can ‘fire’. The precondition is the when-part
of the TFR in Excerpt 3. To explain how the variable gets
its value, we need to explain how the precondition of a TFR
is matched.

Let us investigate the matching of the first precondition
from Excerpt 3, knownval(current.energyUsedInActivity
= energyused). The knownval keyword means that the
agent’s inference engine needs to find a belief in the
belief-set of the agent of the form given in between
the round brackets. The inference engine will pattern-match
on the left-hand side (lhs) of the belief-pattern. First, the
value of the variable current is bound to the current agent
for which the TFR is being executed (e.g., Rover-1).

The pattern-matching algorithm finds all beliefs that match
the lhs (e.g., Rover-1.energyUsedInActivity), potentially
returning a list of beliefs matching this pattern. Next, the
RHS of the precondition is evaluated and the result matched
against the list of beliefs returned by this initial pattern
matching. In this case the evaluation is simple, because the
rhs consists solely of a forone variable declared in the TFR.
A forone variable means that it can have one and only one
value (there are also foreach and collectall type variables,
which are not explained further). The result of this is that
the second step in the pattern-matching process returns the
rhs-value of the first belief in the previously matched set of
beliefs. If this previously matched set is empty the knownval
function returns false, and the precondition fails and the
TFR is thus not ‘fired’. However, in case there is a matching
belief true is returned and as a side effect of the pattern
matching the variable energyused is now bound to the
rhs-value of the matched belief. The variable stays bound to
this value for the duration of the TFR execution, and can
thus be used in subsequent TFR statements, such as in the
conclude statements.

Every precondition in the when-part of the TFR is
evaluated, as long as the previous precondition returns
true. If one of the preconditions evaluates to false the TFR is
abandoned and the do-part is not executed.7 Thus, in
conclusion, when the agent has one or more beliefs that are
matching all the preconditions, the TFR is immediately
executed. Using this approach we can represent the
forward-reasoning behaviour of an agent; the conclude
statement in one TFR can trigger the execution of a
subsequent TFR, thus creating a ‘forward chaining’ of
belief-set changes simulating the reasoning behaviour of a
person. Every time the agent gets a new belief, only those
TFRs are evaluated that have a precondition that is a
potential match on the newly created belief. This makes the
reasoning behaviour efficient, because at every belief
change event in an agent only a small number of
preconditions have to be evaluated (Forgy, 1982).

4.5 Activity model

The activity model consists of the possible activity
behaviour for an agent. This is the heart of a Brahms model,
because modelling work practice is about the representation
of people’s activity behaviour over time, and performing
these activities based on their beliefs. The activity model
consists of two elements, activities and workframes.
We explain these two important Brahms concepts using
the source code in Excerpt 4 as the example. The activity
and workframe from Excerpt 4 is from the Science
OperationsTeam group. The source code specifies a group
member’s behaviour during the rover activity of “finding
water-ice in a specific crater on the Moon”. As mentioned
before, there are two parts to the encoding of such
behaviour. First, we need to encode what a science
operations team member does (i.e., what activities he or she
is engaged in) while the rover is in the activity of finding
water-ice in a crater. Secondly, we need to specify when this
is done. In the Brahms language the first part is encoded

 Brahms: a multi-agent modelling environment for simulating work processes and practices 143

in a composite-activity, while the second part is encoded
in a workframe; a similar production rule-like construct as
a thoughtframe.

Excerpt 4 Partial activity model for the ScienceOperationTeam
group

4.5.1 Workframes

In Excerpt 4, there are two workframes shown: a
‘high-level’ workframe called wf_SearchForWaterIce
(at the end of the excerpt), and a workframe part of
the FindingWaterIce activity called wf_WaitingForData.
Workframes work similar as thoughtframes, but the
important difference is that workframes allow for the
execution of activities. While thoughtframes represent an
agent’s reasoning, a workframe represents an agent’s
activity execution. A difference between a workframe and a
thoughtframe is that a thoughtframe does not have duration,
while a workframe has duration based on the duration of the
activities within it (see explanation of activities below.
Workframes ‘fire’ according to the same pattern-matching
process explained for thoughtframes (see section

Knowledge Model). Thus, workframe preconditions are
tested in the same way as thoughtframe preconditions and
workframe variables are bound in the same way. The body
of a workframe (i.e., the do-part) can have conclude
statements, similar to thoughtframes, however the body of
workframes can also contain activity calls. Conclude
statements in workframes represent the belief-state of the
agent in relation to the activity that is going to be executed
(i.e., before the activity call) or has finished executing
(i.e., after the activity call). Recall that the reasoning of the
agent is represented by thoughtframes.

One way of thinking about the role of workframes
is to view them as constraints on when an agent can perform
an activity. Workframe (WFR) wf_SearchForWaterIce
constrains when the agent can perform the FindingWaterIce
activity. The constraints are represented as the preconditions
of the workframe. The preconditions encode what beliefs
the agent needs to have in its belief-set to enable it to
perform the activity or activities (there can be more than
one activity call in the workframe body). In plain English
wf_SearchForWaterIce says:

“When I believe that the VictoriaRover is currently in the
activity SearchForWaterIce and I believe that the
VictoriaRover is currently located in a crater, first bind the
name of the crater to the variable rover-loc, then execute
the workframe body with priority zero” (Brahms allows for
parallel execution of workframes, but uses a ‘time-sharing’
approach using priorities, see Activities section for
explanation).

Note also that wf_SearchForWaterIce has the repeat:false
statement at the top. This means that this workframe will
only fire once for a particular set of beliefs that match
all its preconditions. The result is that the agent will only
execute wf_SearchForWaterIce once for any crater the
VictoriaRover visits.

When the agent’s inference engine has determined that
the preconditions of wf_SearchForWaterIce are satisfied
(due to finding matching beliefs in the agent’s belief-set)
and it is the WFR with the highest priority, the agent will
start executing the first statement in the body of the WFR,
which in Excerpt 4 is the conclude statement that creates the
belief for the agent that says that its current activity is
SearchForWaterIce. This represents that the agent knows
that it is currently in the activity of searching for water ice.
Next, the engine calls the activity FindingWaterIce.
We next explain how this works. It should first be
emphasised that the process presented so far – that is,
matching of beliefs to preconditions, binding variables and
firing the workframe, executing the conclude statement and
calling the activity SearchForWaterIce – is all done in the
same simulation time-event. Thus, although these processes
take actual CPU time, they do not take any simulation time
for the agent.

4.5.2 Activities

Activities are the most important construct in the
Brahms language. All agent behaviour has to be modelled
as an activity. There are three different types: primitive,

144 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

composite and Java activities. All activities have a
user-defined name representing a behaviour defined
by the modeller. According to our theory of activities
(Clancey, 2002), the name of an activity should be the name
of an observed behaviour of a person in the real-world
that the agent represents. But there is no rule in Brahms that
states that the agent has to represent a person and that this
has to be a person in the real world. It is the responsibility of
the modeller to decide the relevance of the model to the
system behaviour that is being modelled. This allows the
use of the Brahms language in any domain and for any
purpose, including, but not restricted to, modelling social
phenomena, human behaviour, and software agent
behaviour.

In Excerpt 4, the name of the activity that is called
in WFR wf_SearchForWaterIce is SearchForWaterIce.
It represents what the agent – a member of the science
team – is doing while the rover is searching for water ice in
a crater on the Moon.

Activities can have parameters that are passed as
bounded variables into the activity when it is called
in a workframe. In WFR wf_SearchForWaterIce the
parameter-values that are passed are the value of the
rover-loc variable, bound in the precondition as the crater in
which the rover is searching for water ice, and an activity
priority value of zero.

The activity SearchForWaterIce called in the WFR
wf_SearchForWaterIce is declared at the top of
Excerpt 4. This activity is of type composite_activity.
Composite activities are activities that are decomposed into
lower-level subactivities, workframes and thoughtframes.
Excerpt 4 shows only a partial implementation of the
SearchForWaterIce activity. It shows the declaration of
one subactivity called WaitingForData, and one workframe
called wf_WaitingForData. In general, thoughtframes in a
composite activity can be used to model reasoning within
the context of a specific activity. Activity WaitingForData
is a primitive_activity type.

A primitive activity is an activity that is not further
decomposed. It can be used to represent an operation
(as in activity theory) or an action in the world that is not
further decomposed. Primitive activities have a specified
maximum or a random duration. This is different from a
composite_activity in that it has a pre-specified duration.
In contrast, the duration of a composite activity depends on
the duration of the subactivities executed within it
(note again that thoughtframes have no duration).

Primitive activity duration is determined at the start of
its execution – either randomly chosen between a given
min-max duration interval, or given as a max duration – but
is not necessarily the actual duration of the activity.
The actual duration of an activity depends on the state of the
Workframe Instance8 (WFI) in which the activity is being
called. Each WFI is in one of the states shown in Figure 6.
The state of an agent’s activity behaviour is defined by the
combined sets of available, working, interrupted, and
interrupted-with-impasse WFIs at any moment in time.

Figure 6 State transition diagram for workframe instances

There can only be one current activity for an agent.
The time an activity has been active can only change when
the activity is the current activity. Therefore, when an
activity is in a non-active state its active time is not
increasing, although simulation time is always increasing.
Which activity is the current activity depends on which WFI
is in the working state and the execution of the WFI-body.

There are different ways a WFI can change state.
One way is through the use of priorities. Every time a
workframe fires the created WFIs receive a priority, based
on the prioriy of the workframe, if given, or the highest
priority of the activities called within the workframe body.
The default priority is always zero. The agent’s inference
engine determines which of the available, working and
interrupted WFIs have the highest priority. This one is
moved to the working state. Every time a new WFI becomes
available, there exist the potential that the working WFI is
interrupted by a higher-priority WFI. In that case the current
working instance is moved to the interrupted state, and the
new instance with the highest priorities is moved to the
working state, and thus becomes the current WFI the agent
is executing.

There are other ways for an activity to change from a
working state. The state change described above is based on
other ‘independent’ workframes firing. However, a WFI can
change its own state. The default way for a WFI to change
its working state is when the body is finished executing.
At that moment the WFI automatically moves from the
working state to the done state and there it gets deleted, or
moved to the not-available state if the repeat-clause is set to
true. However, there are other state-changing events that
can be represented inside a workframe. This is done using a
detectable.

Excerpt 4 shows the declaration of the Receive
HydrogenData detectable. A detectable defines that if the
agent detects a fact in the world this fact becomes a belief of

 Brahms: a multi-agent modelling environment for simulating work processes and practices 145

the agent. The belief is then matched to the detect condition
in the detectable. If the agent has a belief that matches the
condition the body of the detectable is executed. The body
of a detectable can contain one specific action: abort,
complete, impasse or continue. The ReceiveHydrogenData
detectable specifies an abort action. The detectable says that
if the agent gets a belief (either through the detection of a
fact in the world, or through other means) that the
VictoriaRover’s next subactivity is to drill in the lunar
surface, it will abort the working workframe, which means it
will end the activity WaitingForData.

The actual behaviour of the agent is thus dependent
on which of its workframes fire, and when. Firing of
workframes depends on the beliefs of the agent at every
moment in time. The beliefs in the belief-set of the
agent depend on the initial-beliefs, conclude statements in
thoughtframes and workframes that fire, communication
with other agents (see section Communication Model), and
detection of facts in the world. The behaviour of the agents
is therefore situation-specific and it is not only dependent on
its internal reasoning (using thoughtframes), but also
determined by the interaction of the agent with other agents
and with the modelled environment. We refer to the Brahms
modelling paradigm as a situated activity paradigm.

4.5.3 Activity subsumption architecture

A good definition of a subsumption architecture is given in
Travers (1996), also see Brooks (1986):

“A subsumption program consists of a number of modules
connected in a network, usually arranged in a layered
fashion, with each layer capable of controlling action
independently. Higher-level layers are capable of
preempting lower-level ones using a scheme based on
fixed priority gates that make up the network. Each module
is an autonomous augmented finite-state machine, which
can communicate with the outside world through sensors,
to other modules through the network, and to itself through
a small set of registers. Modules typically implement fairly
simple behavioural control rules, sometimes augmented
with state. Goals are implicit rather than explicit, and
conflict between modules is handled by hardwired
priorities in the connections between the modules and the
network.”

Each Brahms agent’s engine independently operates
according to a subsumption algorithm. An agent’s activities
are like ‘modules connected in a network’. Activities are
decomposed in lower-level activities. The higher-level
activities preempt the lower-level ones using a dynamic
priority-based scheme that selects the one activity being
executed at any one time. Each activity can be seen as an
independent finite-state machine with workframes and
thoughtframes making up the network. Goals are implicit
and the conflicts between activities are handled by dynamic
priorities that are passed as parameters. Activities can
change state (i.e., beliefs) of an agent, creating simple
behavioural situated-action rules.

An important aspect of the Brahms activity paradigm
is that activities are not the same as subroutines and
co-routines in imperative languages (Pratt and Zelkowitz,

1996). Imperative languages use a computer memory-based
program stack to keep track of subroutine calls. When a
subroutine is executed, its context is ‘popped’ onto the
program stack. When in a subroutine the program is not also
still in the context of the parent routine. The program
can not move execution back and forth between a
subroutine and its subsequent subroutines. Subroutine
execution is sequential and can not be interrupted until it
exits. Some high-level imperative languages have solved
the problem of subroutine exit and reentrance with
co-routines. Co-routines generalise subroutines to allow
multiple entry points, enabling suspending and resuming of
execution at certain locations. However, co-routines are still
imperative constructs with a pre-defined deterministic
order of execution. Although co-routines can be interrupted
and resumed, this can only happen at pre-defined points,
so-called yield statements in the co-routine. The parent or
any other routine can not control co-routine interruption.
It is the yield statement within the co-routine itself that
relinquishes program control to its calling routine.

In contrast, in Brahms all workframes can interrupt the
current workframe and activity at any point during
execution. There is no yield statement necessary inside
the current workframe. It only depends on the whether
the preconditions are satisfied and the priority of the
interrupting workframe is higher that the current one, if a
current activity is to be interrupted by another activity.
In short, the interruption is done from outside the current
workframe and activity, whereas in a co-routine it is done
from within the co-routine. Importantly, when a co-routine
is interrupted its context is not active and no statement
inside it can be evaluated. Interruption of a co-routine thus
means it is made inactive. In contrast, Brahms impassed
workframes and activities are still executing detectables,
while they are impassed.

If an activity in a workframe of a composite activity is
executed, the context of the parent composite activity is also
still active (see Figure 7). All workframes, thoughtframes
and detectables in the parent activity are still being
evaluated while the agent is executing the subactivity.
This is the essence of the Brahms subsumption architecture
(Brooks, 1991), and is based on the principle that humans
are always multi-tasking by being in multiple subsumed
activity hierarchies at the same time. For example, the
science team member from Excerpt 4 is also still in the
activity of finding water ice when it is in the activity of
waiting for data to be returned by the rover. Thus, every
workframe, thoughtframe or detectable in the current
activity hierarchy is part of the agent’s context, and can be
fired at any moment, changing the belief and behavioural
state of the agent.

In Brahms, an agent may engage in multiple activities at
any given time, but only one activity in one workframe is
working at any one time. At each event, the simulation
engine determines which workframe should be selected as
the current working, based on the priorities of available,
current, interrupted and impassed work (see Figure 6).
The state of an interrupted or impassed workframe is saved,
so that the agent will continue an interrupted workframe

146 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

with the activity that it was performing at the moment it
was interrupted. There is no need for a yield statement
relinquishing control to the interrupting activity. Unlike
co-routines, it is not the current activity deciding to interrupt
its execution, instead it is the agent’s reasoning engine
determining which active workframe and activity has the
highest priority. It is the highest priority activity that
interrupts the current activity.

Figure 7 Workframe-activity hierarchy

An important consequence and benefit of this subsumption
architecture is that all of the workframes of a model
are simultaneously competing and active, and the
selection of a workframe to execute is made without a
stack for workframe and activity execution. A stack would
only allow those workframes at the level of the current
active workframe on the stack to be considered for
execution. Instead all workframes at all levels are always
activated.

An illustration of multi-tasking is given in Figure 8.
An agent (not shown) in a running model may have multiple
competing general activities in process: Activities 1, 3, and
4. Activity 1 has led the agent (through workframe WF1) to
begin a subactivity, Activity 2, which has led (through
workframe WF2) to a primitive activity Action X. When
Activity 2 is complete, WF1 will lead the agent to do other
activities. Meanwhile, other workframes are competing for
attention in Activity 1. Activity 2 similarly has competing
workframes. Priority rankings led this agent to follow the
path to Action X, but interruptions or reevaluations may
occur at any time. Activity 3 has a workframe that is
potentially active, but the agent is not doing anything with
respect to this activity at this time. The agent is doing
Activity 4, but reached an impasse in workframe WF4 and
has begun an alternative approach (or step) in workframe
WF5. This produced a subactivity, Activity 6, which has
several potentially active workframes, all having less
priority at this time than WF2.

Figure 8 Multi-tasking in Brahms

The Brahms subsumption architecture allows two forms of
multi-tasking. The first form is inherent in the activity
paradigm; Brahms can simulate reactive situated behaviour
of humans. An agent’s context forces it to be active in only
one low-level activity. However, at any moment an agent
can change focus and start working on another competing
activity, while queuing others. Having the simulation
engine switch between current and interrupted work for
each agent, simulates this type of multi-tasking behaviour
as represented in Figure 8. The second form is subtler.
People can be working concurrently on many high- and
medium-level activities in a workframe-activity hierarchy.
Although an agent can only execute one primitive activity in
the hierarchy at a time (e.g., ACTION X in Figure 8), the
agent is concurrently within all the higher-level activities in
the workframe-activity hierarchy. For example, the agent in
Figure 8 is concurrently within Activity 1, Activity 2, and
primitive activity Action X. It should be noted that while a
workframe, and its associated activities are interrupted or
impassed, the agent is still considered to be in the activity.
The agent is conceptually executing all current, interrupted
and impassed activities.

4.5.4 Java activities

A special type of activity is the Java activity. A Java activity
is a primitive activity that is declared similar as other
primitive activities, but is implemented in the Java
programming language. Java activities are helpful if the
agent or object needs to perform complicated calculations
that can easier be done in the Java language, or if the agent
needs to interact with systems outside of the Brahms
language (As shown in Figure 3, Brahms also allows an
agent to be completely written in Java, allowing external
programs to be ‘wrapped’ as Brahms agents). The Java
activity specifies the fully qualified name of the Java class
that either implements the IExternalActivity interface or
extends the AbstractExternalActivity class. The interface
and class are specified in the Brahms Java Application
Interface (JAPI). When the java activity is executed an
instance of the class is created and the Java code executed.

 Brahms: a multi-agent modelling environment for simulating work processes and practices 147

If the class extends the AbstractExternalActivity class,
the java code has access – using the JAPI methods
available – to the parameters passed into the activity, the
belief-set of the agent or object, as well as the fact-set
of the world. The java activity is also able to conclude
new beliefs and facts, create new agents and objects, as well
as communicate with other agents and objects in the
Brahms model. In other words, for any built-in activity
allowed in the body of a workframe there exists a JAPI
method equivalent.

Excerpt 5 gives an example of a Java activity.
The getCurrentTime Java activity is part of the
CalendarUtil group and class in the Brahms base library.
The calendar utility implements a calendar object that
allows agents to deal with the Gregorian calendar and
concepts such as ‘yesterday’, ‘tomorrow’, ‘last week’,
‘last month’, etc. The implementation of this Java activity is
located in the brahms.base.util.GetCurrentTimeActivity java
class in the Brahms common.jar file, which is loaded at the
start of the BVM.

Excerpt 5 Java activity example

4.6 Communication model

One of the most important aspects of modelling human
behaviour is the interaction with other people and
systems. Brahms supports representing human-human
communication, as well as human-machine communication
using the concept of communication as an activity.
The communication model consists of a definition of
communication activities between agents and objects.
In Brahms, communication is defined as the transfer of
beliefs between agents and/or objects. Just as in human
communication, communicating takes time and is situated in
an activity. In order to model human communication we
thus have to represent the time it takes to communicate,
either between people, systems, or between people and
systems. To do this there is a special type of primitive
activity called a communication activity. An agent or object
can perform a communication activity like any other
primitive activity. However, a communication activity has a
‘side effect’, namely that when the agent (or object)
performs the activity it can send (i.e., tell) beliefs to agents
(or objects) it is communicating with, or it can receive
(i.e., ask) beliefs from an agent (or object). There is an
obvious catch: an agent (or object) can only send beliefs in
its belief-set, however an agent/object can receive missing
beliefs by asking.

Modelling work practice of people means that we
are interested in modelling how communication actually
happens in the real world. Therefore, in Brahms we
usually represent the media and path of the communication.
For example, when we model an organisation of

communicating people we represent the communication
tools that are used (e.g., e-mail, telephones or faxes).
We have even modelled the operation of the telephone
system with voice mail capability. Accordingly, we can
represent how communication occurs and how long it
requires. For example, this includes the practice by which a
phone number is known, such as looking it up in an
computerised address book. If a person calls another person
who is not available at that moment, the caller might
(or might not) leave a voice mail. It will depend on the
receiver’s activity of listening to his or her voice mail for
the content of the message to actually be transferred.
To model this, we model the telephones (as objects) and
their voice mail capability with activities, the location of
telephones (see section Geography Model), as well as the
agents’ activities of calling someone via the telephone, the
telephone object transferring the communicated beliefs to
the receiver’s voice mail (in case the receiver is not
answering the phone), and the receiver’s activity of listening
to its voice mail and responding back to the caller if
necessary. This level of detail is not required to model
communication, but it may be important to explain how
work gets done (or is delayed).

Excerpt 6 shows a communication example between
members of the VictoriaTeam group. In this example the
communication model is abstracted to a simple transfer of
beliefs, without the complicated model of a communication
tool used.

Excerpt 6 Communication activity example

148 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

By now the reader should be familiar enough
with the Brahms language constructs of workframe,
preconditions, conclude commands and activity calls.
Here we explain the new properties of the communication
activity ComAct_NextRoverActivity in Excerpt 6. Every
communication activity has a with property. This property
declares with which agents or objects the communication is
held. In the example, the value of the with property is the
rcvr parameter. This parameter is of type VictoriaTeam,
which means it can thus have one or more agents that are a
member of VictoriaTeam as its bounded value. If we look in
WFR wf_CommunicateDoDrillActivity we see that the rcvr
parameter is bound to the agent VehicleAndSpacecraft
OpsTeam (see the ComAct_NextRoverActivity activity call
in the body of the workframe). In this example, the
communication receiver is one agent that represents a
whole team of people, which means the model is not
concerned with the detail of individual agents and their use
of communication tools.

Another communication activity property is about.
This property specifies the possible content of the
communication. If during the execution of the
ComAct_NextRoverActivity the performing agent does not
have any of the beliefs that match the send transfer
definition in the about property, the belief–transfer can not
take place.

The last property for communication activities is when.
This property can have two values, start or end. This
property specifies when during the activity the beliefs are
actually transferred. Imagine we want to model that the
communication of a message takes some time, and we do
not want the receiver to act on this communication until the
end of the communication activity. In that case we would
model this using a when:end value. On the other hand, if we
want to model that the receiver acts on the message during
the communication activity we would model this with a
when:start value. Note that to model the actual transfer of
beliefs using some kind of timed distribution of actual
transfer of beliefs during the activity, we would represent a
number of sequential communication activities, such as
parts of a conversation.

4.7 Geography model

The Geography Model consists of declaration of areas
(a.k.a. locations) where agents and objects can be placed.
Areas can represent a conceptual hierarchical organisation
of locations. Figure 9 presents the partial geography model
of the Moon.

Areas are instances of classes called AreaDefinitions
(areadefs). Figure 9 shows the MoonArea areadef. As with
any other type of object or class, areas and areadefs can
have attributes and be hierarchically organised. Using the
area attributes, agents can have beliefs about areas (e.g., the
temperature in a Building area). The MoonArea areadef has
six instances (i.e., area objects).

Related, in an associated project, called BrahmsVE, we
map the Brahms geography model onto a three-dimensional
virtual reality model, which can be used to model and

visualise the physics of the world, including line of sight
and obstacles during movements (Clancey et al., 2005b).

Figure 9 Partial geography model of the moon

4.7.1 Location facts and beliefs

Each area can have a number of relationships associated
with it: parent, partof, parts, paths and inhabitants.
As shown in Figure 9, the ShadowEdgeInCraterSN1 has the
following relationships; First off, this area is part of the
Moon area (i.e., the crater area is located on the Moon).
The partof relation is important for the localisation of
agents and objects. That is, when an agent or object is
located in an area (i.e., is an inhabitant), it is automatically
also located in the area of which this area is part.
For example, Figure 9 shows that the VictoriaRover
agent is an inhabitant of area ShadowEdgeInCraterSN1.
ShadowEdgeInCraterSN1 is part of the Moon area,
and thus the VictoriaRover is both located in the
ShadowEdgeInCraterSN1 area and in the Moon area.

Location of agents and objects has a special semantics in
Brahms. When an agent or object is located in an area
(i.e., is an inhabitant), a number of facts and beliefs are
automatically updated by the simulation engine. First,
localisation is a fact in the world and the engine
automatically generates a location fact for each inhabitant.
Thus, for the model in Figure 9 the engine generates
the following fact: (VictoriaRover.location = ShadowEdge
InCraterSN1). Second, every agent that is an inhabitant of
an area gets a belief about its location, as well as that
of all co-inhabitants in that area. Thus an agent always
knows the location of all other agents and objects in its
location – i.e., agents have perfect perception. It is possible
for an agent to simulate imperfect perception by changing
its gotten location beliefs in three ways:

• a location conclude statement in a workframe

• a location conclude statement in a thoughtframe

• through a communication about the location with
another agent/object (send or receive).

 Brahms: a multi-agent modelling environment for simulating work processes and practices 149

The agent’s inference engine dynamically updates the
agent’s location-fact and -belief when the agent moves from
one area to another. The agents still located in the old area
have the location-belief of the moved agent retracted
so that they know the agent has moved. Next, all agents that
are inhabitants of the newly move-to location receive a
location-belief for the arrived agent. In short, agents always
know where they are and also always know which other
objects and agents are in their location.

4.7.2 Movement

As mentioned above, agents and objects can move between
areas; this occurs in a move activity, which like all activities
takes time. There are two important notions about
representing movement that need to be kept in mind,
moving with a specific duration and moving along a defined
path. Excerpt 7 shows an example of a Rover agent’s ability
to execute the TraverseToLocation activity in a workframe.
Moving is constrained, similar to any other activity, by the
beliefs of the agent matching the precondition of a
workframe calling a move activity.

Excerpt 7 Rover moving activity example

Excerpt 7 shows an example of movement with a
specific duration. When the preconditions of the WFR
wf_TraverseToLocationInShadowArea match the beliefs of
the agent VictoriaRover, the rover calls the move activity
TraverseToLocation with two parameters: the duration of
the move activity (i.e., the value of the variable drivingtime)
and the location to which the rover needs to move
(i.e., the value of the variable loc). In this example the rover

moves from its current location to the gotoLocation in the
given time drivingtime (as long as the rover is not already in
the gotoLocation). This workframe represents the rover’s
generic capability to execute a command driving to a
location with a certain speed (speed is modelled as an
implicit calculation based on time and distance).

Another way of modelling movement duration of an
agent or object is by pre-specifying the paths that
can be taken from one location to another. Paths are
objects that specify two end locations (i.e., area objects) and
duration. Figure 9 shows that the geography model specifies
that there exists a path SAICSN1_to_from_SEICSN1
between the areas SunlitAreaInCraterSN1 and ShadowEdge
InCraterSN1, and that the distance (specified in time) is a
100 simulation clock-ticks. With a clock grain-size of
1 second and a rover speed of 1 m/sec, the length of the path
is 100 meters. Excerpt 8 shows the declaration of this path
in source code.

Excerpt 8 Path declaration from Figure 9

The use of paths in move activities occurs as follows: when
an agent or object performs a move activity without a
duration and there is a path defined from the current
location to the ‘move to’ location, the duration of the move
is determined from the duration of the path. In case of
multiple possible paths the engine calculates the shortest
route9 and uses that as the duration of the move activity.

5 Discussion

After the detailed description of the Brahms language, its
human behaviour modelling capabilities and the workings
of the simulation engine, we now turn to the use of Brahms
as a modelling and simulation tool for the organisational
process simulation community.

The Brahms tool was originally developed to model
work processes at the work practice level to include the
‘social systems of work’ in a simulation of work process in
human organisations. Our research over the past decade has
shown that, discounting the difficulties of modelling human
behaviour with all the representational limitations, Brahms
allows the detailed modelling of work practice at a level of
detail that enables

• researchers to get insight into the way people actually
work in an organisation

• system developers to use these models to develop
computer software that, at a minimum, has a better
representation of the user and its environment.

150 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

In this paper we have argued that the Brahms language is
suitable for studying kinds of social and work practice
phenomena of interest to the organisational process
simulation community. Our experience and results in
modelling work practice suggests that larger social
phenomena can also be modelled. The Brahms modelling
language has great advantages for the researcher, because
compared to other tools, such as Swarm, the language
allows for a more ‘natural’ representation of human
behaviour at the level of activities, reasoning,
communication, interaction with objects and movement in
the world (a level we might call the meso-level of human
systems (Carley and Prietula, 1994)). Our experience
indicates that when the objective is to analyse or predict
organisational behaviour at the macro system level, an
activity-based simulation of individual behaviour captures a
level of detail about information flow and tool use
that is useful for explaining the quality and timing of work
processes.

Activity-scanning is a known simulation method for
modelling work processes. Activity-scanning models
represent how activities are performed, based on the
resources needed and the conditions under which they are
performed (Ioannou and Martinez, 1999). Although at first
glance activity-scanning looks similar to our definition of
activities, an activity-scanning model only includes tasks
and queues of resources as input and output to activities.
The model is a functional activity-resource network and
operates similarly to a Petri-Net model (Aalst, 2003) in that
resources flow through the model as constraints on when
activities can be executed. People are equal to other
resources and seen as resources consumed or created by an
activity. This model is

• not an agent-based model

• does not deal with agent beliefs (BDI)

• does not include agent communication and interaction

• does not allow agent reasoning

• also does not have any model of the
environmental/geography that influences when and how
activities are executed.

We argued that imperative programming languages
suited for modelling macro-level system behaviour using an
agent design paradigm are not flexible enough to claim a
correspondence with actual human behaviour. Cognitive
architectures that are suited to model single agent cognitive
behaviour, based on a theory about how the brain actually
stores and processes information, are too detailed to
conveniently model human behaviour at the level of agent
interaction with other agents and the world (e.g., the
simulation clock grain-size in both Soar and ACT-R is in
the 100 msec range, which makes modelling activities that
span days, hours, or even minutes very cumbersome).
Brahms lies between these types of modelling languages.

Brahms is a language that allows for an easy representation
of agent behaviour at the micro-level (i.e., reasoning
behaviour, without the brain correspondence claim)
and meso-level (human interaction with each other
and the world), allowing the researcher to show the
effects of these behaviours at the macro-level (i.e., the
organisational process or system level).

Brahms is a declarative language like all BDI languages.
Brahms differs from other BDI languages in several ways:

• Brahms is activity-based, while most other BDI
languages are task-based

• Brahms uses a subsumption architecture, while most
other BDI languages use a goal-based architecture

• Brahms allows modelling of the environment
(geography), movement of agents in the environment,
etc.

• Brahms is also an object language allowing the
representation of artefacts and data objects

• Brahms represents a separate fact-state for modelling
the world state outside of the agent’s belief-set, whereas
traditionally BDI-languages only model agents with an
independent belief-state.

The Brahms environment is completely developed
in the Java language and, with its language compiler,
BVM, development environment (the Composer), and its
simulation display environment (the AgentViewer). Brahms
is freely available from the internet for research purposes.10

Acknowledgement

We are grateful for the funding provided over the years by
NYNEX Science & Technology and NASA.

References
Aalst, W.v.d. (2003) ‘Putting Petri Nets to work in the workflow

arena’, in van der Aalst, J.M.C.W., Kordon, F., Kotsis, G. and
Moldt, D. (Eds.): Petri Net Approaches for Modeling and
Validation, Lincom Europa, Munich, pp.125–143.

Acquisti, A., Sierhuis, M., Clancey, W.J. and Bradshaw, J.M.
(2002) ‘Agent based modeling of collaboration and work
practices onboard the international space station’, Paper
presented at the 11th Computer-Generated Forces and
Behavior Representation Conference, Orlando, FL.

Anderson, J.R. and Lebiere, C. (1998) The Atomic Components of
Thought, Lawrence Erlbaum Associates, Mahwah, NJ.

Bordini, R.H., Dastani, M., Dix, J. and Seghrouchni, A.E.F. (Eds.)
(2005) Multi-Agent Programming: Languages, Platforms
and Applications, Springer Science + Business Media, Inc.,
New York, NY.

Bratman, M.E. (1999) Faces of Intention: Selected Essays
on Intention and Agency, Cambridge University Press,
Cambridge, UK.

 Brahms: a multi-agent modelling environment for simulating work processes and practices 151

Bratman, M.E., Israel, D.J. and Pollack, M.E. (1988) ‘Plans
and resource-bounded practical reasoning’, Computational
Intelligence, Vol. 4, pp.349–355.

Brooks, R.A. (1986) ‘A robust layered control system for a mobile
robot’, IEEE Journal of Robotics and Automation, Vol. 2,
No. 1, pp.14–23.

Brooks, R.A. (1991) ‘Intelligence without representation’,
Artificial Intelligence, Vol. 47, pp.139–159.

Button, G. and Harper, R. (1996) ‘The relevance of
‘work-practice’ for design’, Computer Supported Cooperative
Work, No. 4, pp.263–280.

Carley, K.M. and Prietula, M.J. (1994) ‘ACTS theory: extending
the model of bounded rationality’, in Carley, K.M. and
Prietula, M.J. (Eds.): Computational Organization Theory,
Lawrence Erlbaum Associates, Hillsdale, NJ.

Clancey, W.J. (1992) ‘Model construction operators’, Artificial
Intelligence, Vol. 53, No. 1, pp.1–124.

Clancey, W.J. (1997) Situated Cognition: On Human Knowledge
and Computer Representations, Cambridge University Press,
Cambridge, UK.

Clancey, W.J. (1999) ‘Human exploration ethnography of the
Haughton-Mars project 1998–99’, Paper presented at the
Mars Society Annual Meeting, Boulder, CO.

Clancey, W.J. (2001) ‘Field science ethnography: methods
for systematic observation on an expedition’, Field Methods,
Vol. 13, No. 3, pp.223–243.

Clancey, W.J. (2002) ‘Simulating activities: relating motives,
deliberation, and attentive coordination’, Cognitive Systems
Research, Vol. 3, No. 3, pp.471–499.

Clancey, W.J. (2004) ‘Roles for agent assistants in field science:
personal projects and collaboration’, IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, Vol. 34, No. 2, May, pp.125–137.

Clancey, W.J. (2006) ‘Observations of work practices in natural
settings’, in Ericsson, A., Charness, N., Feltovich, P. and
Hoffman, R. (Eds.): Cambridge Handbook on Expertise and
Expert Performance, Cambridge University Press, New York,
pp.127–145.

Clancey, W.J., Sachs, P., Sierhuis, M. and van Hoof, R. (1998)
‘Brahms: simulating practice for work systems design’,
International Journal on Human-Computer Studies, Vol. 49,
pp.831–865.

Clancey, W.J., Sierhuis, M., Kaskiris, C. and Hoof, R.v. (2003)
‘Advantages of Brahms for specifying and implementing
a multiagent human-robotic exploration system’, Paper
presented at The 16th International FLAIRS Conference 2003,
St. Augustine, FL, pp.7–11.

Clancey, W.J., Sierhuis, M., Alena, R., Crowford, S., Dowding, J.,
Graham, J., Kaskiris, C., Tyree, K.S. and Hoof, R.v. (2004)
‘The mobile agents integrated field test: Mars Dessert
Research Station 2003’, Paper presented at the FLAIRS 2004,
Miami Beach, Florida, pp.732–737.

Clancey, W.J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J.,
Graham, J.S., Tyree, K.S., Hirsh, R.L., Garry, W.B.,
Semple, A., Buckingham Shum, S.J., Shadbolt, N. and
Rupert, S. (2005a) ‘Automating CapCom using mobile
agents and robotic assistants’, American Institute of
Aeronautics and Astronautics 1st Space Exploration
Conference, 31 January – 1 February, Orlando, FL,
Available as AIAA Meeting Papers on Disc [CD-ROM]:
Reston, VA, and as an Advanced Knowledge Technologies
Project e-Print [http://eprints.aktors.org/375].

Clancey, W.J., Sierhuis, M., Damer, B. and Brodsky, B. (2005b)
‘The cognitive modeling of ‘day in the life’ social behaviors
using Brahms’, in Sun, R. (Ed.): Cognitive Modeling
and Multi-agent Interaction, Cambridge University Press,
New York, pp.151–184.

Cohen, P.R. and Levesque, H.J. (1990a) ‘Intention is choice with
commitment’, Artificial Intelligence, Vol. 42, pp.213–261.

Cohen, P.R. and Levesque, H.J. (1990b) ‘Rational interaction as
the basis for communication’, in Cohen, P.R., Morgan, J. and
Pollack, M.E. (Eds.): Intentions in Communication, The MIT
Press, Cambridge, MA, pp.221–256.

Cohen, P.R., Greenberg, M.L., Hart, D.M. and Howe, A.E. (1989)
‘Trial by fire: understanding the design requirements for
agents in complex environments’, AI Magazine, Vol. 10,
No. 3, pp.34–48.

Dennett, D.C. (1987) The Intentional Stance, Bradford Book,
MIT Press, Cambridge, MA.

Dijkstra, E.W. (1959) ‘A note on two problems in connection with
graphs’, Numerische Math, Vol. 1, pp.269–271.

Ehn, P. (1988) Work-Oriented Design of Computer Artifacts,
Arbetslivcentrum, Stockholm, Sweden.

Emery, F.E. and Trist, E.L. (1960) ‘Socio-technical systems’, in
Churchman, C.W. (Ed.): Management Sciences, Models and
Techniques, Pergamon, London.

Forgy, C.L. (1982) ‘Rete: a fast algorithm for the many
pattern/many object pattern match problem’, Artificial
Intelligence, Vol. 19, pp.17–37.

Greenbaum, J. and Kyng, M. (Eds.) (1991) Design at Work:
Cooperative Design of Computer Systems, Lawrence
Erlbaum, Hillsdale, NJ.

Hlupic, V. and Vreede, G.J.d. (2005) ‘Business process modeling
using discrete-event simulation: current opportunities and
future challenges’, International Journal of Simulation and
Process Modeling, Vol. 1, Nos. 1–2, pp.72–81.

Hofstede, G. and Hofstede, G-J. (2005) Cultures and
Organizations: Software of the Mind, 2nd ed., McGraw-Hill,
New York.

Hutchins, E. (1995a) Cognition in the Wild, MIT Press,
Cambridge, MA.

Hutchins, E. (1995b) ‘How a Cockpit remembers its speeds’,
Cognitive Science, Vol. 19, pp.265–288.

Ioannou, P.G. and Martinez, J.C. (1999) ‘Who serves whom?
Dynamic resource matching in an activity-scanning
simulation system’, Paper presented at The 1999 Winter
Simulation Conference, Squaw Peak, Phoenix, AZ.

Kernighan, B.W. and Ritchie, D.M. (1988) The C Programming
Language, 2nd ed., Prentice-Hall, Engelwood Cliffs, NJ.

Konolige, K. (1986) A Deduction Model of Belief, Morgan
Kaufmann, San Mateo, CA.

Laird, J.E., Newell, A. and Rosenbloom, P.S. (1987) ‘Soar: an
architecture for general intelligence’, Artificial Intelligence,
Vol. 33, pp.1–64.

Lave, J. (1988) Cognition in Practice, Cambridge University
Press, Cambridge, UK.

Lave, J. and Wenger, E. (1991) Situated Learning – Legitimate
Peripheral Participation, University Press, Cambridge
University Press, Cambridge, UK.

Lave, J., Murtaugh, M. and Roche, O.d.l. (1984) ‘The dialectic of
arithmetic in grocery shopping’, in Rogoff, B. and Lave, J.
(Eds.): Everyday Cognition: Its Development in Social
Context, Harvard University Press, Cambridge, MA.

152 M. Sierhuis, W.J. Clancey and R.J.J. van Hoof

Leont’ev, A.N. (1978) Activity, Consciousness and Personality,
Prentice-Hall, Englewood Cliffs, NJ.

Luna, F. and Perrone, A. (Eds.) (2002) Agent-Based Methods in
Economics and Finance: Simulations in Swarm, Kluwer
Academic Publishers, Norwell, MA.

Minar, M., Burkhart, R. and Langton, C. (1996) Swarm
Development Group, [Website], Available: http://www.
swarm.org [2003, 08/05/2003].

Nardi, B.A. (1996) Context and Consciousness: Activity Theory
and Human-Computer Interaction, The MIT Press,
Cambridge, MA.

Newell, A. (1990) Unified Theories of Cognition, Harvard
University Press, Cambridge, MA.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C.
and Tummolini, L. (2004) ‘Coordination artifacts:
environment-based coordination for intelligent agents, Paper
presented at the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, NY.

Pava, C.H.P. (1983) Managing New Office Technology: an
Organizational Strategy, The Free Press, New York.

Pratt, T.N. and Zelkowitz, M.Z. (1996) Programming Languages:
Design and Implementation, 3rd ed., Prentice-Hall,
Englewood Cliffs, NJ.

Rao, A.S. and Georgeff, M.P. (1991) ‘Modeling rational
agents within a BDI-architecture’, Paper presented at the
Proceedings of Knowledge Representation and Reasoning
(KR&R-91), San Mateo, CA.

Sachs, P. (1995) ‘Transforming work: collaboration, learning
and design’, Communications of the ACM, Vol. 38, No. 9,
pp.36–44.

Seah, C., Sierhuis, M. and Clancey, W.J. (2005) ‘Multi-agent
modeling and simulation approach for design and analysis of
MER mission operations’, SIMCHI: Human-Computer
Interface Advances For Modeling And Simulation, January,
pp.73–78.

Sierhuis, M. (2000) ‘Modeling and simulation of work practices on
the moon’, Paper presented at the Computational Analysis of
Social and Organizational Systems 2000, Carnegie Mellon
University, Pittsburgh, PA.

Sierhuis, M. (2001) Modeling and Simulating Work Practice;
Brahms: A Multiagent Modeling and Simulation Language
for Work System Analysis and Design, Unpublished
PhD Thesis, University of Amsterdam, SIKS Dissertation
Series No. 2001-10, Amsterdam, The Netherlands.

Sierhuis, M. and Clancey, W.J. (2002) ‘Modeling and
simulating work practice: a human-centered method for
work systems design’, IEEE Intelligent Systems, Vol. 17,
No. 5 (Special Issue on Human-Centered Computing),
pp.32–41.

Sierhuis, M., Bradshaw, J.M., Acquisti, A., Hoof, R.v., Jeffers, R.
and Uszok, A. (2003a) ‘Human-agent teamwork and
adjustable autonomy in practice’, Paper presented at The 7th
International Symposium on Artificial Intelligence, Robotics
and Automation in Space (i-SAIRAS), Nara, Japan.

Sierhuis, M., Clancey, W.J., Seah, C., Trimble, J.P. and
Sims, M.H. (2003b) ‘Modeling and simulation for mission
operations work system design’, Journal of Management
Information Systems, Vol. 19, No. 4, pp.85–129.

Suchman, L.A. (1987) Plans and Situated Action: The Problem of
Human Machine Communication, Cambridge University
Press, Cambridge, MA.

Terna, P. (1998) ‘Simulation tools for social scientists: building
agent based models with SWARM’, Journal of Artificial
Societies and Social Simulation, Vol. 1, No. 2, available at
http://www.soc.surrey.ac.uk/JASS/1/2/4.html.

Travers, M.D. (1996) Programming with Agents: New Metaphors
for Thinking about Computation, Unpublished PhD Thesis,
MIT, Cambridge, MA.

van Hoof, R. and Sierhuis, M. (2000) Brahms Language
Reference, http://www.agentisolutions.com/documentation/
language/ls_title.htm, Available: http://www.agentisolutions.
com/documentation/language/ls_title.htm.

Vygotsky, L.S. (1978) Mind in Society: The Development of
Higher Psychological Processes, Harvard University Press,
Cambridge, MA.

Weisbord, M.R. (1987) Productive Workplaces: Organizing
and Managing for Dignity, Meaning, and Community,
Jossey-Bass Inc., Publishers, San Francisco, CA.

Winograd, T. and Flores, F. (1986) Understanding Computers and
Cognition, Addison-Wesley Publishing Corporation, Menlo
Park, CA.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems,
John Wiley & Sons Ltd., Chichester, UK.

Wooldridge, M. and Jennings, N.R. (1995) ‘Intelligent agents:
theory and practice’, Knowledge Engineering Review,
Vol. 10, No. 2, pp.115–152.

Website
Brahms website at http://www.agentisolutions.com.

Notes
1Brahms was invented at the Institute for Research on Learning
(IRL) and NYNEX Science & Technology (the former R&D
institute of the Baby Bell telephone company in New York,
now Verizon); since 1998 development has occurred at NASA
Ames Research Center, in the Work Systems Design and
Evaluation group of the Intelligent Systems Division.

2Based on personal e-mail correspondence with Gert Jan Hofstede.
3The newest version of Brahms also supports the development of
multi-agent software systems.

4Social actions are actions in which the actor takes the reaction of
other actors into account. The term was introduced by the
sociologist Max Weber.

5From http://www.answers.com/topic/imperative-programming
and http://en.wikipedia.org/wiki/Imperative_programming,
accessed June 14, 2006.

6http://www.cs.kuleuven.ac.be/~distrinet/events/e4mas/, accessed
June 14, 2006.

7There is no logical OR-operator in preconditions.
8When a workframe (or thoughtframe) is fired (i.e., the
preconditions are matched against beliefs in the agent’s belief-set)
a workframe instance is created for every workframe variable
context that matches all preconditions. Each workframe instance
is now an independent version of the workframe and will be
executed independently from each other, with different variable
bindings (the WFI-context).

9According to Dijkstra’s shortest path algorithm (Dijkstra, 1959).
10URL: http://www.agentisolutions.com.

