
Verifying Brahms Human-Robot Teamwork Models

Richard Stocker Louise Dennis Clare Dixon Michael Fisher

Department of Computer Science, University of Liverpool, U.K.,
contact: R.S.Stocker@liverpool.ac.uk

Abstract. Collaboration between robots and humans is an increasingly impor-
tant aspect of industrial and scientific settings. In addition, significant effort is
being put into the development of robot helpers for more general use in the work-
place, at home, and in health-care environments. However, before such robots can
be fully utilised, a comprehensive analysis of their safety is necessary. Formal ver-
ification techniques are regularly used to exhaustively assess system behaviour.
Our aim is to apply such techniques to Brahms, a human-agent-robot modelling
language. We show how to translate from Brahms scenarios, using a formal se-
mantics for Brahms, into the input language of a model checker. We illustrate the
approach by defining, translating, and verifying a domestic robot helper example.

1 Introduction

As autonomous devices are increasingly being developed for, and deployed in, both do-
mestic and industrial scenarios, there is an increasing requirement for humans to at least
interact with, and often work cooperatively with, such devices. While the autonomous
devices in use at present are just simple sensors or embedded hardware, a much wider
range of systems are being developed. These consist not only of devices performing solo
tasks, such as the automated vacuum cleaners we see already, but are likely to include
robots working cooperatively with humans. For example, there will be robot ‘helpers’
to assist the elderly and incapacitated in their homes [1, 2], there will be manufacturing
robots which will help humans to make complex artifacts [3], and there will be robots
tasked with ensuring that humans working in dangerous areas remain safe. All these
are being developed, many will be with us in the next ten years, and all involve varying
degrees of cooperation and teamwork.

The above examples highlight robots deployed in both domestic and safety-critical
industrial situations where human safety can be compromised. Thus, it is vital to carry
out as much analysis as is possible not only to maximize the safety of the humans
involved, but to ascertain whether the humans and robots together ‘can’, ‘should’, or
‘will’ achieve the goals required of the team activity.

There are several challenges facing such analysis. One is to to accurately describe
human, and indeed robot, behaviour. Even when we have described such behaviours,
how can we exhaustively assess the possible interactions between the humans and
robots? While some work has been carried out on the safety analysis of low-level
human-robot interactions [4], a detailed analysis of the high-level behaviours within
such systems has not yet been achieved.



2 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

In this paper, we tackle the general problem of matching a set of requirements
(which could concern safety, capabilities, or interactions) against scenarios involving
humans, robots, and agents. Within this, we use important work on high-level modelling
of human-agent-robot teamwork that has already been carried out using the Brahms
framework [5]. Thus, we assume that the key interactions and behaviours of any human-
agent-robot scenario have been captured within a Brahms model. We also assume that
a set of informal requirements have been constructed. The work described in this paper
essentially describes the solid arrows within Fig. 1.

Brahms
Teamwork 

Model

Human-Agent-
Robot Teamwork 

Scenario

Informal 
RequirementsMatch?

Java 
Representation 

of Semantic 
Structures

Formal 
Requirements 
in Promela

Promela 
Representation of 
Teamwork Model

Automated, 
Exhaustive, 

Formal Verification 
in Spin

Alternative 
verification 

systems [Future 
Work]

Fig. 1. Overview of the processes described in this paper.

Thus, given a Brahms model of a human-agent-robot scenario, we use the formal
semantics described in [6] to generate a Java representation of the semantic structures
relevant to this scenario. We then translate these structures into Promela process de-
scriptions, which represent partial instantiations of the semantics, suitable for input to
the Spin model checker [7]. In parallel, we translate the informal requirements (where
possible) to Promela code representing these properties. Finally, we apply the Spin
model checker to the Promela descriptions and feed the results back to the high-level
scenarios for evaluation. This, then, provides a mechanism for formally verifying prop-
erties of human-agent-robot teamwork scenarios.

Our paper describes this framework and exhibits its use on a specific domestic sce-
nario, where a helper robot and a house agent work together with a person to to monitor,
remind and assist a person with their daily activities in a home environment.



Verifying Brahms Human-Robot Teamwork Models 3

2 Background

2.1 Brahms

Brahms is a multi-agent modelling, simulation and development environment devised
by Sierhuis [5] and subsequently developed at NASA Ames Research Center. Brahms
is designed to model both human and robotic activity using rational agents. Rational
agents can be seen as autonomous entities, able to make their own choices and carry
out actions in a rational and explainable way [8]. As Brahms was developed in order
to represent people’s activities in real-world contexts, it allows the representation of
artifacts, data, and concepts in the form of classes and objects. Both agents and objects
can be located in a model of the world giving agents the ability to detect both objects
and other agents, have beliefs about the objects and move between locations. For a more
detailed description of the Brahms language we refer the reader to [5] and [9]. The key
aspects of Brahms are:

– activities: actions (with durations) an agent can perform;
– beliefs: each agent’s own personal perceptions of itself, the environment and other

agents;
– facts: the actual state of the agents and the environment (which agents/objects ob-

serve using detectables);
– detectables: allowing facts to be brought into the an agent’s belief base and deter-

mining how the agent will react in response;
– workframes: sequences of events required to complete a task, together with any

belief updates resulting from the task completion;
– thoughtframes: reasoning/thought processes, e.g. “I believe it is raining therefore I

believe I need an umbrella”;
– time: Brahms models incorporate a time-line of events and belief changes.

Brahms has been judged ideal for describing human-agent-robot teamwork, for example
astronaut-robot teamwork on Mars [10].

A Brahms simulation contains a set of agents (representing robots, humans or ac-
tual agents) and a scheduling system which manages a clock recording global time
within the simulation. Since agent actions have durations, the scheduler will examine
each agent to see how much longer any action the agent is performing will take and
then advance the clock to the next significant point in time, typically when the agent
action finishes. When two agents finish actions at the same time (and at the start of the
simulation) the scheduler also manages the order in which the agents execute their rea-
soning processes in order to determine their next action. In such cases the agents have
a pre-determined order of priority within the scheduler.

2.2 Brahms Formal Semantics

In [6], we provided a formal operational semantics for Brahms. This provides the the-
oretical basis for our verification. A Brahms model is represented as a 5-tuple:

〈Ags, agi, Bξ, F, Tξ〉



4 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

Where Ags is the set of all agents, agi the agent currently under consideration, Bξ
the belief base of the system (used to synchronise the agents, e.g. agent i’s next event
finishes in 1000 seconds), F the set of facts in the environment (e.g. temperature is
20◦C) and Tξ is the current time of the system.

The agents (Ags, and agi) have a 9-tuple representation:

〈agi, T ,W, stage,B, F, T,TF ,WF 〉

Here agi is the identification of the agent; T the current thoughtframe; W the current
workframe; stage the current stage of the agent’s reasoning cycle;B the agent’s beliefs;
F the set of facts about the world; T the agent’s internal time; TF the agent’s thought-
frames; and WF is the agent’s set of workframes. In addition, stage controls which
rules in the operational semantics are currently applicable to the agent or if the agent is
in a finish (fin) or idle (idle) stage. The (operational) semantics is then represented as
a set of transition rules of the form

〈StartingTuple〉 ActionsPerformed−−−−−−−−−−−−−−−−−−−−→
ConditionsRequiredForActions

〈ResultingTuple〉

Here, ‘ConditionsRequiredForActions’ refers to conditions which must hold before
the rule can be applied, while ‘ActionsPerformed ’ represents changes to the agent,
object or system state which, for presentational reasons, can not be easily represented
in the resulting tuple. Finally, it is assumed that all agents and objects can see and access
everything in the overall system’s tuple, e.g. Tξ.

The semantics is split into two groups of rules: the first group concerns the global
system and represents the functioning of the scheduler; the other acts upon individual
agents. Rules for the scheduler act as a global arbiters instructing agents when to start,
suspend, or terminate. Rules for the individual agents choose actions and update beliefs,
etc. An agent first processes thoughtframes, then detectables (both of which may update
the beliefs), and then workframes which may initiate actions, referred to as activities.

For example, there are rules informing an agent on how to select a thoughtframe
based on whether its beliefs match the thoughtframe guard conditions and whether the
thoughtframe’s priority is sufficiently high. The rules governing activities communicate
with the system to inform it of the activity’s duration. When no agent can apply any
more operational rules, control returns to the scheduler which examines all the agents’
activities to determine which will conclude first and at what time it will finish. The
scheduler then moves the global clock forward accordingly, and hands control to the
rules governing the behaviour of the individual agents once more.

2.3 Formal Verification, Promela and SPIN

Formal verification represents a family of techniques aimed at assessing whether a sys-
tem always/ever satisfies its specification. We consider a fully automated, algorithmic
technique known as model checking [11]. A model checker takes a description of the
system together with some requirement expressed in a formal logic. The model checker
exhaustively checks the formal requirement against all paths through the system. If a
path is found in which the property does not hold then a trace of that path is provided.



Verifying Brahms Human-Robot Teamwork Models 5

In this paper we use the Spin model checker [7]. Promela (Process/Protocol
Meta Language) is the input language for Spin. Promela was designed to be a sim-
ple multi-process language, allowing the models generated to be small. Processes are
a key part of Promela. They are asynchronous and are declared by the key word
proctype. Promela provides three basic control flow constructs: case selection;
repetition; and unconditional jump.

Spin itself is an on-the-fly reachability analysis system [7]. It accepts specifications
in the form of linear temporal logic properties, which are translated into Büchi automata
— finite automata over infinite input sequences. Spin then examines all possible runs
through the Promela program, running the Büchi automaton in parallel in order to
assess whether the temporal requirements are satisfied.

3 Case Study: “Domestic Home Care”

We will describe our translation and verification procedure through the development of
one specific example; further details are available in the extended technical report [12].
We first describe the, necessarily very simple, scenario and outline its Brahms imple-
mentation. Though we can only provide an English overview here, we provide a sample
Brahms workframe in Fig. 2; the full Brahms implementation is provided in [12].

3.1 Overview of Scenario

In this scenario there is a person, a helper robot, a human care worker and a house
agent. The helper robot is mobile and can move about the house assisting the person
with various tasks. The house agent has the role of detecting information, informing
the person and issuing reminders where necessary. The care worker is called when the
robot/agent are unable to assist. Such domestic health-care scenarios typically involve
assisting the elderly or infirm; see for example [1, 2].

The helper robot: fetches drinks, cooks food, and delivers meals to the person; col-
lects dirty dishes and puts them in the dishwasher; fetches medicines; records whether
the person has taken these; informs the person of what to do in case of an emergency,
e.g. a fire; and communicates with the house agent. The house agent: informs the helper
robot of the person’s location; issues reminders to the person (e.g. to flush the toilet);
and monitors the person’s location. The care worker is called for when the person fails
to take their medication. We assume the care worker is always successful in administer-
ing the medication. The person is modelled very simply, watching TV, requesting food,
eating and going to the toilet at regular intervals.

3.2 Brahms Representation

This scenario is modelled using five agents and one object: Robot, House, Care-Worker,
Environment and Bob (our elderly person) are the agents and Clock is the object. The
Clock is used for termination of the simulation (i.e. after 20 hours) and provides the no-
tion of time used by the simulation e.g. governing when the human’s hunger increases.
The Environment is a simple agent that decides if, and when, a fire alarm will occur.



6 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

Bob’s role is to watch television and perform simple everyday tasks such as eating
and going to the toilet. Thoughtframes are used to update beliefs about how hungry he
is and how much he needs the toilet. When his hunger reaches a certain threshold a
workframe activates and Bob requests food. A similar workframe will trigger a visit to
the toilet. These workframes have a higher priority than the workframe for watching
television, so when they become active the ‘television’ workframe suspends. The work-
frame for going to the toilet activates other workframes to flush the toilet and wash his
hands once finished. Two versions of these workframes exist: representing whether or
not he remembers to perform the task, each have the same guard conditions and priority
so only one will execute at random. Bob also has workframes for taking his medication
and thoughtframes that govern whether or not he chooses to do so.

The helper Robot remains idle until it receives a command or it detects Bob re-
quires attention. When Bob requests food, the Robot prepares and delivers it. There is
a detectable in the Robot’s “wait for instructions” workframe which detects when Bob
has finished eating; this triggers a belief update which in turn triggers a workframe to
clear the plates. The Robot also has workframes to deliver medicine to Bob; activated
at pre-allocated times. The Robot places the drugs on Bob’s tray and then monitors
them hourly to check if they have been taken. The workframe governing this is shown
in Fig. 2. A detectable takenMedicationC aborts the workframe if the drugs have
been taken and then updates the Robot’s beliefs. If the drugs have not been taken the
workframe reminds Bob to take his medication. The Robot counts the number of times
it reminds Bob, and after 2 reminders it notifies the House. The Robot also instructs
Bobto evacuate the house in the case of fire and answers the door to the Care Worker.

workframe wf_checkMedicationC {
repeat: true;
priority: 3;
detectables:

detectable takenMedicationC{
when(whenever)
detect((Bob.hasMedicationC = false),
dc:100)

then abort; }
when(knownval(current.perceivedtime > 14)and

knownval(Bob.hasMedicationC = true) and
knownval(current.checkMedicationC = true))

do {
checkMedication();
remindMedicationC();
conclude((current.checkMedicationC = false));
conclude((current.missedMedicationC =
current.missedMedicationC + 1)); }}

Fig. 2. The Robot’s workframe to remind Bobabout medication



Verifying Brahms Human-Robot Teamwork Models 7

The House is ‘intelligent’. It is responsible for monitoring Bob, giving him instruc-
tions based on his location, and detecting any fire. The House’s default workframe
monitors Bob, and has detectables which update the House’s beliefs about Bob’s loca-
tion. When Bob’s location is at the toilet a new workframe is fired, containing an ‘abort’
detectable which quits the activity when Bob leaves the toilet and activates a new work-
frame which detects Bob’s location and uses this to decide whether or not Bob has left
without flushing the toilet. Bobis then reminded if necessary. The default monitoring
workframe also has a detectable for a fire, this aborts the current activity and activates
a workframe which sounds an alarm and notifies the Robot and Bob. Finally, while the
House is notified that Bob has failed to take his medicine, it informs the Care Worker.

The Care Worker performs outside activities which are abstracted into a single
“busy” activity. When the Care Worker is called he/she will only make their way to
the house once they have finished their current activity. When the Care Worker arrives
they ring the door bell. Once they have been let in by the Robot they administer the
medication and inform the Rpbpt that the patient has now taken the medication. The
Care Worker then leaves and continues with their outside activities.

Note that each of the agent’s behaviours are here deliberately chosen to to be simple.
We can, of course, add much more complex behaviour though our aim here is just to
use this scenario to exhibit the overall approach.

4 From Brahms to Promela

We automatically build a Promela version of the Brahms scenario. In practice we
translate Brahms into Java data structures corresponding to the semantic configu-
rations (i.e., the various tuples mentioned in section 2.2) [6]. This is to allow us to
(later) target several different model-checkers from the same intermediate representa-
tion. Here, however, we just discuss the final Promela code and do not detail the
intermediate Java representation. Promela’s restrictive data types and control struc-
tures make it difficult to model the operational semantics for Brahms directly. Agents,
workframes, thoughtframes and the tuples representing the system model all have to
be represented via arrays. This makes it complex to write generic code that will apply
to any model. As such we choose to generate a partial instantiation of the operational
rules tailored for a particular model of interest. This partial instantiation is generated
automatically from the Java representation.

4.1 From the Scheduler to a Promela Process

Representing the Scheduler in Promela. Given a specific model, we generate partial
instantiations of the scheduler rules which act, not on a list of unknown agents, Ags,
but upon the specific agents we know to exist in the model. The only variables used by
the scheduler are an integer to represent its current time, ‘cntEnvionment’; an enu-
meration, ‘turn’, which can be either an object/agent’s name or the Environment; and
a Boolean, ‘EnvironmentActive’, which decides when the system is to terminate.

The Promela translation imitates the Brahms system scheduler by representing
it as a proctype. The global clock is represented by an integer. Agents are also



8 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

represented using proctypes and the scheduler determines their order of execution
through ‘turn’. Once an agent has executed, ‘turn’ is re-assigned to the scheduler.

Matching the Scheduler’s Rules. The Promela code captures all the scheduler rules
in a loop containing a conditional expression with one condition representing the guard
for each rule. If the condition evaluates to true then code representing the rule’s seman-
tics is executed. We give an example of one of the scheduler rules, Sch run, and discuss
its instantiation as Promela code.

RULE: Sch run

〈Ags, agi, Bξ, F, Tξ〉
stageagi=Set Act

−−−−−−−−−−−−−−−−−−−−−−−−−→
∀ag∈Ags|stageag∈{fin,idle},(Tξ 6=−1)

〈Ags, agi, Bξ, F, Tξ〉

Sch run becomes active if all the agents are either finished (in the fin stage) or idle (the
idle stage) and the simulation hasn’t finished (Tξ 6= −1). In Promela:

– a set of Boolean variables represent when agents are idle (e.g., ‘RobotActive’) is
set to false if the Robot is idle); ’

– a set of integers representing the time remaining for each agent’s current activity are
used to judge whether an agent is in the fin stage. (e.g., if ‘Robot timeRemaining’
is zero then the Robot is in the fin stage); and

– Promela will terminate if the simulation has concluded so it isn’t necessary to
check explicitly for Tξ = −1.

The condition representing the rule’s guard checks all these variables (‘RobotActive’,
‘Robot timeRemaining’ etc.) explicitly. In the generic rule, Sch run sets the stage
of agi to Set Act. In Promela the value of the agent’s enumeration ‘turn’ represents
the agent’s stage and this is set accordingly.

4.2 From Agent Semantics to Promela Processes

Representing the Agent’s Data Structures in Promela. The components of the 9-
tuple that represent an agent are primarily represented by arrays. These arrays are re-
ferred to by name in the partial instantiations of the operational rules.

For instance, T , the agent’s current thoughtframe is represented as a one-dimensional
array and treated as a stack. The array is labelled ‘tf stack’ followed by the agent’s
name e.g. ‘tf stackRobot’. The current workframe is represented in a similar fashion.
The first six indices (three in the case of the current thoughtframe) of the array (elements
0-5) are used to store the workframe header data. Below the header information are a
stack of deeds which may represent belief updates or activities. Sets of thoughtframes
and workframes are stored in the same format but in two-dimensional arrays where the
first index represents the thoughtframe or workframe and the second represents the el-
ements of the thoughtframe or workframe. These are named ‘tf’ or ‘wf’ followed by
the name of the agent. e.g. an agent Robot may have a set of workframes as follows:



Verifying Brahms Human-Robot Teamwork Models 9

Index Workframe at index 0 index 1
0 Workframe ID number = 0 ID = 1
1 Boolean guard condition = 1 (workframe is active) Guard = 0
2 Priority of the workframe = 4 Priority = 10
3 Repeat = 3 (always repeat) Repeat = 0 (never repeat)
4 Boolean to flag a communication or move activity = 0 Comm/Move = 0
5 Boolean to flag if workframe is in impasse = 0 impasse = 1
6 Last deed on stack Last deed on stack
. . .
. . .
i Top deed on stack Top deed on stack

We do not represent the current stage of the agent’s reasoning cycle explicitly, but do
so implicitly by the order in which rules are represented in the Promela code.

Beliefs and facts in Brahms are tied to the attributes and relations of an
agent; where attributes are defined properties of agents and relations are connections
between agents. So agent Robot could believe agent Bob’s attribute AskedForFood
is true or that Bob has the relation of isPatientOf with the Carer. To model this
in Promela every agent is assigned a belief about every attibute and relation,
even if it does not own that attribute. This belief is represented as a Boolean array.
The name of the belief is the name of the agent followed by the name of the at-
tribute, e.g. RobotAskedForFood represents the Robot’s beliefs about the attribute
AskedForFood. The index of the array is the ID number of the agent whom the belief
concerns, e.g.

0 = Robot’s ID Robot believes the Robot askedForFood = false
1 = Clock’s ID Robot believes the Clock askedForFood = false
2 = Bob’s ID Robot believes that Bob AskedForFood = true
3 = House’s ID Robot believes the House AskedForFood = false

Matching the Agent’s Semantic Rules in Promela. When the scheduler’s ‘turn’
enumeration is an agent name then control passes to the agent rules. Like the sched-
uler rules these are represented by a loop that checks the rule pre-conditions in turn.
To explain how the Promela translation matches Brahms we show how one of the
operational semantic rules is represented in Promela.

RULE: Wf Select
〈agi, ∅, ∅,Wf ∗, Bi, F, Ti,TF i,WF i〉

β=Maxpri(W∈WFi|B|=Wg)
−−−−−−−−−−−−−−−−−−→

∃W∈WF i |Bi |=Wg

〈agi, ∅, β,Wf (true/false/once), Bi, F, Ti,TF i,WF i〉

Wf Select determines which workframe is to be selected. For the rule to be activated
there needs to exist a workframe in the set of workframes whose guard conditions eval-
uates to true with respect to the belief base (∃W ∈ WF i |Bi |= W g). At the start of



10 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

each cycle the agent first identifies which workframes have guard conditions that evalu-
ate to true: those which are active have a 1 entered at index 1 in the 2-dimensional array
of workframes above, those that are not have a 0. The rule also states that the “cur-
rent workframe” entry in the tuple must be empty, which is represented in Promela
by a pointer to the current workframe’s top element. If this is −1 then there is no cur-
rent workframe. If the current workframe is empty and some workframe is active then
Wf Select will be selected.

Wf Select performs a selection process to find the active workframe with the high-
est priority (β = Maxpri(W ∈ WF i|B |= W g)). The Promela translation loops
through the array of workframes, checks the guard condition and the priority of each
workframe; index 1 and 2 in the workframe array shown earlier. It builds a temporary
array of workframes that share the maximum priority among all the active workframes.
Finally the Promela code arbitrarily selects one workframe from this temporary array.
For a further comparison with the semantics rules we refer the reader to the technical
report [12].

4.3 Correctness Issues

As can be seen, we have not implemented the Brahms semantics directly in Promela.
At present, analysis of this implementation consists of an informal comparison of the
Promela arrays against the complex data structures of the semantics and an informal
analysis of the operational rules against the partial instantiations produced for the spe-
cific example of the “Home Care” system. Parts of this analysis have been reproduced
here and the full version can be found in [12]. In future work we intend to produce
a more general, though still informal, discussion of the translation mechanisms them-
selves. It should be noted that there is also no proof that the operational semantics ac-
curately capture Brahms. So both systems can be viewed separately as mechanisms for
exploring models of human-agent teamwork even if they are not provably equivalent.

5 “Home Care” Verification

We next consider the actual verification of human-agent-robot teamwork; again we fo-
cus on the “home care” scenario.

5.1 Requirements

We develop a range of logical requirements for the scenario; recall that in temporal
logic, 3φ means that “φ will be true at some moment in the future”, while 2φ means
that “φ will be true at all future moments”. We describe some of the properties verified
and classify these just by the core aspect they represent, i.e. properties labelled Fn relate
to the fire alarm; labelled by Tn relate to the toilet; Hn relate to hunger and Mn relate to
medicine. For space reasons, we only provide the temporal formulae in the case of the
fire alarm. The axioms used in the properties are all based on the beliefs of the agents
or facts in the system. We expect all of these properties to hold apart from M1.



Verifying Brahms Human-Robot Teamwork Models 11

F1: If a fire actually occurs then, eventually, House will generate a fire alarm. Logical
requirement is: 2(a⇒ 3 b) where

a = there is a fire
b = House believes there is a fire alarm

F2: If fire alarm is sounding, and Bob leaves House then fire alarm finishes. Logical
requirement is: 2((a ∧ b)⇒ 3¬a) where

a = House believes there is a fire alarm
b = Bob believes he has evacuated the house

F3: If fire alarm is sounding and Bob has not left House, then Robot reminds Bob.
Logical requirement is: 2((a ∧ b)⇒ 3¬c) where

a = House believes there is a fire alarm
b = Bob believes he has evacuated the house
c = Robot believes it has alerted Bob of the fire 0 times

T1: Eventually Bob will go to toilet.
T2: If Bob goes to the toilet he can forget to flush it and, if so, he will be reminded by

the House. So, if Bob goes the toilet then eventually he will flush the toilet.
H1: If Bob requests food then eventually Robot will deliver the food within an hour.
H2: Once Bob has finished eating, Robot will then retrieve the dishes and place in the

dishwasher.
M1: Either Bob always takes his medication or the Robot never reminds him to do so.

(This should be false since Bob may not take his medication even if reminded).
M2: If Bob has medication, but not taken it, then Robot will eventually remind Bob to

take it.
M3: Bob takes medicine or House is informed that Bob has not taken it.
M4: If Care Worker is informed that Bob has not taken his medication then the Care

Worker is with Bob within 2 hours and Bob takes his medication.

5.2 Verification Results

The properties F1, F2, F3, T1, T2, H1, H2, M2, M3 were all verified using Spin (i.e.
the property holds on all paths from every initial state) in times ranging from T1 of 29.9
seconds to H1 of 848 seconds. As expected Spin shows that the property M1 is false
and the time taken to find a trace in the model was 421 seconds. The property M4 was
run multiple times to observe how changing the duration of the Care Worker’s other
duties affected the outcome. Spin was able to verify M4 so long as the Care Worker’s
other duties took less than 2 hours.

6 Conclusions

In this paper we have presented an overview of our work in verifying human-agent
teamwork using the Spin model checker and the Brahms teamwork modelling system.
Brahms enables the description of human-agent teamwork scenarios where the defining
factors are the actions taken, their timing, duration and results. It has proven useful
in the analysis of such scenarios via simulation. By adding verification to Brahms we
extend its usefulness by allowing all possible simulations (with fixed time granularities)
to be explored, thus ensuring that undesirable outcomes can not arise within the model.



12 Richard Stocker Louise Dennis Clare Dixon Michael Fisher

A simple case study was presented, demonstrating the kind of human-agent team-
work scenarios we intend to verify. This case study included sample verified properties.
The case study demonstrates most of the core capabilities of Brahms: multi-tasking by
suspending actions in favour of higher priority ones; detecting changes in the environ-
ment; aborting actions; choosing between actions of equal priority; and communicating
to coordinate actions.

The properties we verified were necessarily simple. However, it should be clear that
as long as the properties can be represented in a straight-forward temporal language,
then model-checking can be carried out. When humans are involved, we abstract their
behaviour within the Brahms model and describe their requirements in logical terms.
Whether human participants live up to these requirements is, of course, up to others to
assess.

6.1 Related and Future Work

There are relatively few tools available for the analysis of human-agent teamwork.
Brahms is one of the few that is used in the analysis of real systems. At present Brahms
is, essentially, a testing tool and is used to examine multiple simulations of a model in
a search of undesirable outcomes (e.g. Extra Vehicular Activities in space [13, 10]).

As far as we are aware there is no tool for the formal analysis via model checking of
such scenarios. However BDI-style agent programming languages are a natural tool for
creating such models, with their emphasis on modelling the reasoning of autonomous
agents in terms of their beliefs and goals. A number of systems have been developed
for model-checking programs in agent languages [14–16] though none of these have
yet been applied to human-agent-robot teamwork.

In future we aim to improve the efficiency of the verification and to analyse more
complex scenarios with multiple agents, cooperating and coordinating efforts in a much
larger team. Scalability of the verification will be tested on these new scenarios. Sce-
narios under consideration include search and rescue; factory work; and hospitals. We
also aim to investigate the verification of Brahms models in other model checkers, par-
ticularly ones with input languages which let us capture the operational semantics in a
more intuitive fashion. This would provide a better guarantee of equivalence to Brahms
simulations and it would also provide a point of comparison for evaluating the effi-
ciency of the model checkers. The Java Pathfinder system [17] is an obvious candidate
for this, either by implementing the Brahms semantics directly in Java or by using the
AIL tool-kit for modelling agent languages and AJPF, its associated JPF based model
checker [16].

Acknowledgements This work was funded by EPSRC through EP/F033567 and
EP/F037201.

References

1. Montemerlo, M., Pineau, J., Roy, N., Thrun, S., Verma, V.: Experiences with a mobile
robotic guide for the elderly. In: Eighteenth national conference on Artificial intelligence,
Menlo Park, CA, USA, American Association for Artificial Intelligence (2002) 587–592



Verifying Brahms Human-Robot Teamwork Models 13

2. Pineau, J., Montemerlo, M., Pollack, M., Roy, N., Thrun, S.: Towards robotic assistants
in nursing homes: Challenges and results. Robotics and Autonomous Systems 42 (2003)
271–281

3. Lenz, C., Nair, S., Rickert, M., Knoll, A., Rosel, W., Gast, J., Bannat, A.: Joint-action for
Humans and Industrial Robots for Assembly Tasks. In: Proc. 17th IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN). (2008) 130–135

4. CHRIS: Cooperative Human Robot Interaction Systems: http://www.chrisfp7.eu
(2011)

5. Sierhuis, M.: Modeling and Simulating Work Practice. BRAHMS: a multiagent modeling
and simulation language for work system analysis and design. PhD thesis, Social Science
and Informatics (SWI), University of Amsterdam, SIKS Dissertation Series No. 2001-10,
Amsterdam, The Netherlands (2001)

6. Stocker, R., Sierhuis, M., Dennis, L., Dixon, C., Fisher, M.: A Formal Semantics for Brahms.
In: Proc. 12th International Workshop on Computational Logic in Multi-Agent Systems
(CLIMA). Volume 6814 of Lecture Notes in Computer Science., Springer (2011) 259–274

7. Holzmann, G.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley
(2003)

8. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2002)
9. Sierhuis, M.: Multiagent Modeling and Simulation in Human-Robot Mission Operations.

(See http://ic.arc.nasa.gov/ic/publications) (2006)
10. Clancey, W., Sierhuis, M., Kaskiris, C., van Hoof, R.: Advantages of Brahms for Specify-

ing and Implementing a Multiagent Human-Robotic Exploration System. In: Proceedings
of the Sixteenth International Florida Artificial Intelligence Research Society Conference
(FLAIRS), AAAI Press (2003) 7–11

11. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
12. Stocker, R., Dennis, L., Dixon, C., Fisher, M.: Spin Ver-

ification of Brahms Human-Robot Teamwork Models. (See
http://www.csc.liv.ac.uk/∼rss/Publications.html) (2012)

13. Hirsh, R., Tyree, K., Johnson, N., Johnson, N.: Intelligence for human-assistant planetary
surface robots. In: In IntelZigence for Space Robotics, TSI Press (2006) 261–279

14. Jongmans, S.S., Hindriks, K., van Riemsdijk, M.: Model checking agent programs by using
the program interpreter. In: Computational Logic in Multi-Agent Systems. Volume 6245 of
Lecture Notes in Computer Science. (Springer) 219–237

15. Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentSpeak.
In: Proceedings of the Second International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS). (2003)

16. Dennis, L.A., Fisher, M., Webster, M., Bordini, R.: Model Checking Agent Programming
Languages. Automated Software Engineering 19 (2012) 5–63

17. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model Checking Programs. Auto-
mated Software Engineering 10 (2003) 203–232


