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Abstract Brahms is a multi-agent modeling language for simulating hu-
man work practice that emerges from work processes in organizations. The
same Brahms language can be used to implement and execute distributed
multi-agent systems, based on models of work practice that were first sim-
ulated. Brahms demonstrates how a multi-agent belief-desire-intention lan-
guage, symbolic cognitive modeling, traditional business process modeling,
activity- and situated cognition theories are brought together in a coherent
approach for analysis and design of organizations and human-centered sys-
tems.

1 Motivation

Brahms was developed as a multiagent modeling and simulation language
to visualize the social systems of work for business redesign projects [25]. In
the early years (1992-1999), Brahms was purely a modeling and simulation
language and tool designed to model people’s work practice, i.e. the cultural,
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circumstantial, interactional influences on how work actually gets done, as
opposed to an abstract top-down functional description of an organization’s
work process. In more recent years (2000-2003) we developed the Brahms lan-
guage also as an agent-oriented language (AOL) for developing multi-agent
systems (MAS). Besides running the Brahms virtual machine (BVM) as a
simulation engine, by turning off the simulation clock, the BVM can execute
its agents in real-time enabling the execution of a MAS. To couple human
activity with external systems, there is an extensive Java application inter-
face (JAPI) allowing the developer to integrate Brahms agents with external
software applications, real-time devices, networks, etc, and develop agents
completely in Java.

The Brahms language was originally conceived of as a language for mod-
eling1 contextual behavior of groups of people, called work practice.

Work Practice: The collective performance of contextually situated activ-
ities of a group of people who coordinate, cooperate and collaborate while
performing these activities synchronously or asynchronously, making use
of knowledge previously gained through experiences in performing similar
activities.

This created two very important ideas for the language; First, to model a
group of people it is very natural to model them as software agents. Second,
modeling situated behavior of a group imposes a constraint on the level of
detail that is useful in modeling the dependent and independent behavior
of the individuals. The right level is a representational level that falls be-
tween functional process models and individual cognitive models [6]. If we
are interested in modeling a day-in-the-life of say ten or more people, mod-
eling the individual behavior at the level of cognitive task models will be
very time consuming, because these models are generally at the millisecond
decision-making level. To overcome this kind of detail, the Brahms language
uses a more abstract level of behavioral modeling that is derived from Ac-
tivity Theory [27, 14] and Situated Action [26]. An individual’s behavior is
represented in terms of activities that take an amount of discrete time and
can be decomposed into more detailed subactivities if necessary.

Brahms demonstrates how a multiagent belief-desire-intention (BDI) lan-
guage, symbolic cognitive modeling, traditional business process modeling,
activity- and situated cognition theories are brought together in a coherent
approach for analysis and design of organizations and human-centered sys-
tems. The Brahms environment consists of different tools to develop, simulate
or execute Brahms models and display agent and object interactions. Brahms
is freely available for research purposes at the Brahms project website2.

1 We refer to Brahms programmers as modelers and Brahms programming as modeling,

because we feel that Brahms is a fifth-generation multiagent model description language,
rather than a third- or fourth-generation programming language.
2 http://www.agentisolutions.com
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2 Language

This section provides a detailed description of the Brahms language according
to the specific criteria used to compare the different agent-oriented languages
in this book. We first discuss the specifications and syntactical aspects of
the Brahms language. This section discusses all major representational capa-
bilities. Then, we discuss semantics and verification. Brahms is a practical
language used in many applications at NASA. Brahms was not developed as a
formal specification language for BDI and it does not have a formal semantic
specification. One could be developed if desired. Brahms is a compiled lan-
guage and does have a formal syntactic representation, which we will discuss.
Next, we discuss software engineering issues. As a practical modeling and pro-
gramming language, Brahms has many influences from object-oriented and
rule-based languages. There is a definite influence from the Java program-
ming language. The section ends with some more discussion of other features
of the language, which focusses on modeling geographical environments.

The Brahms language is a pure AOL. It is not a set of Java libraries en-
abling agent-based programming in the Java language. Instead, Brahms is
a full-fledged multiagent language allowing the modeler to easily and natu-
rally represent multiple agents. The grammar of the Brahms language in this
chapter is provided in EBNF (Extended Backus Naur Form) grammar rules.
The notation used in these grammar rules is as in Table 1.

Table 1 Synopsis of the notation used in EBNF grammar rules

Construct Interpretation

::= * + {} [] | . Symbols part of the BNF formalism

X ::= Y The syntax of X is defined by Y

{X} Zero or one occurrence of X

X* Zero or more occurrences of X

X+ One or more occurrences of X

X | Y One of X or Y (exclusive or)

[X] Grouping construct for specifying scope of operators,

e.g. [X|Y] or [X]*
symbol Predefined terminal symbol of the language

symbol User-defined terminal symbol of the language

symbol Non-terminal symbol
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2.1 Specifications and Syntactical Aspects

This subsection answers the question; Does the Brahms language support
various agent concepts such as, mental attitudes, deliberation, adaptation,
social abilities, and reactive as well as cognitive-based behaviour?

Although Brahms was originally developed for modeling people’s behavior,
the Brahms language is a domain independent language. This means that
the modeler decides what a Brahms model represents. Agents can represent
whatever autonomous entity the modeler wants to represent, such as a person,
an animal, or an autonomous or intelligent system. The following Brahms
language features are discussed:

• Mental attributes: attributes, relations, beliefs and facts, no explicit de-
sires, frame instantiations (intentions).

• Deliberation: concluding new beliefs, and use of thoughtframes for reason-
ing.

• Adaptation: changing beliefs, execution activity behavior and reasoning
based on context.

• Social Abilities: groups and group inheritance, communication, and mod-
eling the environment (objects, geography and location).

• Reactive and Cognitive-based behavior: modeling activity behavior, versus
pure cognitive behavior, detectables, workframe-activity subsumption.

• Communication: communication activities, and communicative acts.

Brahms is an agent-oriented BDI-like language. It allows easy creation of
groups of agents that execute activities based on local beliefs. Below is a
simple taxonomy of some of the language concepts discussed in this section:

GROUPS are composed of
AGENTS having

BELIEFS and doing
ACTIVITIES executed by

WORKFRAMES defined by
PRECONDITIONS, matching agents beliefs
PRIMITIVE ACTIVITIES
COMPOSITE ACTIVITIES, decomposing the activity
DETECTABLES, including INTERUPTS, IMPASSES
CONSEQUENCES, creating new beliefs and/or facts

DELIBERATION implemented with
THOUGHTFRAMES defined by

PRECONDITIONS, matching agents beliefs
CONSEQUENCES, creating new beliefs
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2.1.1 Agents, Groups, and Attributes

Agents. A Brahms model is always about the activities of agents. An agent
is therefore the most central construct in a Brahms model. Agents adhere to
the standard attributes we associate with agency. They are autonomous, can
be deliberative, as well as reactive and proactive, and are bounded rational.

agent ::=
agent agent-name { group-membership }
{
{ display: literal-string ; }
{ cost: number ; }
{ time unit: number ; }
{ location: area-name ; }
{ icon : literal-string ; }
{ attributes }
{ relations }
{ initial-beliefs }
{ initial-facts }
{ activities }
{ workframes }
{ thoughtframes }

}

group-membership ::= memberof group-name [, group-name ]*

externalagt ::= external agent agent-name ;

In the Brahms language, an agent is defined by the keyword agent, followed
by the agent’s name and its group-membership. Just as in object-oriented
modeling where the concept of an object class enables one to define a type
of object, Brahms includes an agent group concept to define a group of mul-
tiple agents with a similar make-up and behavior (see below). An agent has
a number of possible facets or elements that are optional (see agent syntax
above).

Group and Group Membership. The concept of a group in Brahms is sim-
ilar to the concept of a template or class in object-oriented programming. A
group represents a collection of agents that can perform similar work and have
similar properties. A group defines the attributes and relations, the initial-
beliefs and initial-facts, and the activities, workframes and thoughtframes of
members in the group. The difference with classes in object-oriented pro-
gramming is that the relationship between a group and its members is not an
IS-A relationship, but a MEMBER-OF relationship. This is why we speak of
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“a member of a group” instead of “an instance of a group.” An agent can be
a member of one or more groups. An agent will inherit attributes, relations,
initial-beliefs, initial-facts, activities, workframes and thoughtframes from the
group(s) it is a member of.

group ::=
group group-name { group-membership }
{
{ display: literal-string ; }
{ cost: number ; }
{ time unit: number ; }
{ icon : literal-string ; }
{ attributes }
{ relations }
{ initial-beliefs }
{ initial-facts }
{ activities }
{ workframes }
{ thoughtframes }

}

Using group membership and inheritance, we can model agent organiza-
tion:

• Functional Roles
Groups are similar to that of functional roles in an organization. A group
in Brahms could represent a typical role in an organization and the work
activities that someone performs when playing that role. For example, we
could represent the role of Maintenance Technician or Flight Controller as
a group.

• Structural or Organizational Groupings
A group can also depict an organizational group. For example, we can
define a group as “members of the Work System Design & Evaluation
group at NASA Ames Research Center.” We could now describe the work-
activities, and initial-beliefs of members of the WSD&E group, such as
when they have group meetings, etc.

• Informal and Social Groupings
We can also create informal and social groups related to conceptual defini-
tions that make sense in the modeling activity. For instance, in modeling
the people at work we could create a social group “all people meeting at the
water cooler.” We can now describe the activities, workframes, thought-
frames and initial-beliefs that people meeting at the water cooler have in
common. This might not be that interesting, but in modeling people’s in-
teractions, with for example, legacy systems we could define an informal
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group of “system-xyz users.” In this group we can describe how people
interact with system-xyz, and what initial-beliefs the system users have
(e.g. the initial-belief that the system contains specific data).

The group inheritance diagram from figure 1 is written in the Brahms
language as follows:

jimport gov.nasa.arc.brahms.modat.kfx.KfxFile;

group Student {
attributes:

public string name;
public boolean male;
private int howHungry;
private double preferredCashOut;
private long perceivedtime;
public symbol colorHair;
public BaseGroup spouse;
public relation(Student) studyFriend;

}

group BrahmsModeler {
attributes:

public map myIntIndexMap;
public map myStringIndexMap;
public Group myGroup;
public java(KfxFile) javaKfxFile;

}

agent Alex Agent memberof Student, BrahmsModeler { }
agent Kim Agent memberof Student { }
agent Joyce Agent { }

The BaseGroup definition does not have to be made, because it is part of
the Base Model library that is always imported. All groups are by definition
a member of BaseGroup (see Fig. 1).

Attributes. After the optional agent (and group) facets, there are a number
of sections in an agent (and group). First, the attributes section defines the
attributes for the agent. Attributes represent a property of a group or agent.
Figure 1 and the Brahms code above show the attribute definitions for the
two groups Student and BrahmsModeler. Attributes do not have values as
in object-oriented programming. Instead, attributes have values as part of
the beliefs of an agent or facts in the world. Attribute values are assigned or
changed by asserting new beliefs or facts (see section 2.1.2).
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Student

+ howHungry :int [0..1 ]
+ spouse :BaseGroup [0..1 ]
+ preferredCashOut :double [0..1 ]
+ name :string [0..1 ]
+ male:boolean [0..1 ]
+ colorHair :symbol [0..1 ]
+ perceivedtime :[0..1 ]
+ studyFriend :Student [*]

BaseGroup

+ location :BaseAreaDef [0..1 ]
+ contains :ActiveConcept [*]
+ thrownException :Exception [*]
+ isMemberOf :Group [*]

BrahmsModeler

+ javaKfxFile :[0..1 ]
+ myIntIndexMap :[0..1 ]
+ myStringIndexMap :[0..1 ]
+ myGroup :Group [0..1 ]

Joyce_AgentAlex_AgentKim_Agent

Fig. 1 Group membership and multiple-inheritance

Relations: Relations, defined in the relations section, represent a relation-
ship between two objects, two agents, or an agent and an object. The scope of
a relation is similar to that of an attribute. Relations are assigned or changed
by asserting new beliefs or facts. Relations are unary relations between the
left-hand side and the right-hand side in the relation (see fig. 2 and the
source code below).

Fig. 2 Relations

class Song { ... }

object WhatAWonderfulWorld instanceof Song { ... }

object LaVieEnRose instanceof Song { ... }
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group Artist {
relations:

public Song Performs;
}

agent LuisArmstrong memberof Artist {
initial beliefs:

(current Performs WhatAWonderfulWorld);
(current Performs LaVieEnRose);

}

2.1.2 Facts and Beliefs

In Brahms an agent acts according to its beliefs and its ability to deduce new
beliefs from its current beliefs. In this section we describe the intentional no-
tions of Brahms agents. The state of the world and that of agents in Brahms
is stored in informational units called facts and beliefs.

Facts. A fact is meant to represent some physical state of the world or
an attribute of some object or agent. Facts are globally true. Unlike objects,
agents cannot reason with or act directly on facts, however, agents can detect
facts in the world (representing noticing or sensing) turning them into beliefs
for the agent (see section 2.1.7). Each BVM contains its own world fact-set
containing all facts that are created during runtime by agents and objects
running in that particular BVM. By representing part of the context of the
agent as facts in the world, we are able to have agents react to the same facts
in different ways, depending on their beliefs about these facts. Konolige de-
fines a common fact, CF, as a fact that is known by all agents [13]. In Brahms,
it is not necessary that an agent has any belief, right or wrong, about a fact.
Although it is easily possible to have all agents inherit an initial-belief that
corresponds to an initial-fact, or have all agents detect a particular fact at
initialization, if it exists.

Beliefs. A belief represents an agent’s interpretation of a fact in the world. A
belief held by an agent may differ from the corresponding fact. For example,
from our above example, if Alex is studying in South Hall he could believe
“South Hall is 65 degrees” while the fact is that “South Hall is 80 degrees.”
A belief can also represent an agents conception of the world (s)he lives in.
For example, our student Alex could believe “I am a student at University of
California, Berkeley”—a belief about locations, or geography of the world the
agents is located in, is modeled using the Brahms geography model described
in section 2.4. Beliefs are local to an agent. Agents can reason about their
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beliefs and create new beliefs, and agents can communicate their beliefs to
other agents and objects.

Beliefs and facts can be defined as initial beliefs and facts at the group,
agent, class and object level. Initial facts can also be defined for area-
definitions and areas. An agent or object can also create beliefs and facts
while performing an activity. A belief or fact can be thought of as an object-
attribute-value triplet.

initial-belieforfact ::= ([value-expression | relational-expression]);

value-expression ::= obj-attr equality-operator value |
obj-attr equality-operator sgl-object-ref

equality-operator ::= = | !=

relational-expression ::=
tuple-object-ref relation-name sgl-object-ref { is truth-value }

value ::= literal-string | number | param-name | unknown

obj-attr ::=
tuple-object-ref . attribute-name {( collection-index )}

tuple-object-ref ::= agent-name | object-name |
conceptual-object-name | area-name |
variable-name | param-name |
current

sgl-object-ref ::= tuple-object-ref | unknown

Initial beliefs and facts are a way to populate agents and objects with an
initial set of beliefs and create an initial set of facts in the world at agent
initialization time. However, an agent can not do much if its belief-set or
the world’s fact-set cannot change. Agents and object can change beliefs and
facts in the world by performing some behavior. How an agent or object can
behave will be explained later on. Here we explain the command an agent
or object can use to create new or change previously asserted beliefs and/or
facts.

Facts and beliefs are created using a conclude statement. An agent or
object can create or change either a belief for itself, or a fact in the world, or
both. The syntax of the conclude statement is as follows.
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consequence ::= conclude((resultcomparison){, belief-certainty}
{, fact-certainty)};

resultcomparison ::= [ result-val-comp | rel-comp ]

result-val-comp ::=
obj-attr equality-operator expression |
obj-attr equality-operator literal-symbol |
obj-attr equality-operator literal-string |
obj-attr equality-operator sgl-object-ref |
tuple-object-ref equality-operator sgl-object-ref

belief-certainty ::= bc: unsigned
fact-certainty ::= fc: unsigned

The conclude statement has two variables that can be specified after the
result-comparison. These are the belief-certainty (bc) and fact-certainty (fc)
variables. These variables specify with what certainty the agent creates the
belief or fact respectively. The value of these variables can be an unsigned
integer between the interval [0, 100], and specifies with what percent certainty
the belief or fact is created. For example the following conclude statement
states that the agent will get a belief “(current.male = true)” with 100%
certainty, thus in all cases, and a fact with 0% certainty, thus never.

conclude((current.male = true), bc:100, fc:0);

2.1.3 Thoughtframes

Thoughtframes (thoughtframe! TFR) define deductions, mostly referred to
as production rules. TFRs are taken to be inferences an agent makes. TFRs
do not perform actions, consume no time, and cannot be interrupted. The
only allowable statements in a TFR is one or more consequences, concluding
new beliefs. Because TFRs represent reasoning, the agent cannot create or
change facts in the world in a TFR. Therefore, no matter the value of the
fact-certainty in a consequence in a TFR, a fact will never be created. A TFR
consists of a variable declaration section, one or more preconditions and one
or more consequences. The syntax of a TFR is given below.
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thoughtframe ::=
thoughtframe thoughtframe-name {
{ display : literal-string ; }
{ repeat : truth-value ; }
{ priority : unsigned ; }
{ variable-decl }
{ [ precondition-decl thoughtframe-body-decl ] |
thoughtframe-body-decl }

}

variable-decl ::= variables : [ variable ]*

precondition-decl ::=
when ( { [ precondition ] [ and precondition ]* } )

thoughtframe-body-decl ::=
do { [ thoughtframe-body-element ; ]* }

thoughtframe-body-element ::= consequence

As we will see later on, TFRs can be placed within composite activities,
allowing for modeling problem-solving activities that take time. This is seen
as: while the agent is ’in’ the activity, the agent reasons using its TFRs. Con-
clusions of new beliefs in TFRs can execute new TFRs and/or workframes
(WFR). Preconditions are similar for TFRs and WFRs.

Preconditions. When the preconditions of a TFR match the beliefs of
the agent or object, its consequences are immediately executed, similar to
forward-chaining production rules. An important point is that preconditions
for agents only match with the beliefs of the agent. The syntax for precondi-
tions is as follows.

precondition ::= [ known | unknown ] ( novalcomparison ) |
[ knownval | not ] ( evalcomparison )

novalcomparison ::= obj-attr |
obj-attr relation-name |
tuple-object-ref relation-name



13

evalcomparison ::= eval-val-comp | rel-comp

eval-val-comp ::=
expression evaluation-operator expression |
obj-attr equality-operator literal-symbol |
obj-attr equality-operator literal-string |
obj-attr equality-operator sgl-object-ref |

sgl-object-ref equality-operator sgl-object-ref

rel-comp ::=
obj-attr relation-name obj-attr { is truth-value } |
obj-attr relation-name sgl-object-ref { is truth-value } |
tuple-object-ref relation-name sgl-object-ref { is truth-value }

The agent’s inference engine (part of the BVM) is implemented based
on the well-known RETE algorithm [11]. However, unlike in OPS5 [3], each
agent has two types of reasoning state networks (RSN); one for beliefs and
one for facts. At this moment Brahms only supports conjunctions (AND)
in its preconditions, but we will be adding disjunctions (OR) soon, because,
even though you do not need disjunctions, it is sometimes easier for rule
maintenance to be able to write rules more compactly using disjunctions.

Precondition Operators. There are four types of preconditions. The pre-
condition types are operators that evaluate to true or false, depending on
evaluating the belief-condition in each operator to match on one or more be-
liefs in the agent’s belief-set.

knownval(evalcomparison) precondition operator evaluates to true iff:

Exists(belief b) [ Matches(b, evalcomparison) ]

This means that there exists a belief in the agent’s belief-set that matches
the evalcomparison. Given the below TFR for agent Alex and assuming the
belief-set for agent Alex, both preconditions evaluate to true, firing the TFR.

thoughtframe tf HowMuchMoneyToGet HungryEQhigh 1 {
when (knownval(current.needCash = true) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 15), bc:100, fc:0);
}

}
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Alex’ belief-set:
{

(Alex.needCash = true);
(Alex.hungryness = high);

}

The keyword current matches on the agent itself, and because the TFR
is for agent Alex the two beliefs match on the preconditions. Both knownval
preconditions return true, making the entire when-clause true and thus firing
the TFR executing the body-statement. After the TFR execution, agent Alex’
belief-set will now include the belief (Alex.preferredCashOut = 15), because
the belief-certainty is 100%. Unlike traditional production-rule systems (such
as OPS5), the created belief will have a timestamp. This timestamp equals
the simulation-clock time at which the TFR was fired (or system-clock time
in case of real-time execution).

not(evalcomparison) precondition operator evaluates to true iff:

not(Exists(belief b) [ Matches(b, evalcomparison) ])

This means that none of the beliefs in the agent’s belief-set match on the
evalcomparison, similar to all beliefs do not match on the evalcomparison,
and is the way to express that the precondition evaluates to true if the agent
does not have a belief that matches the evalcomparison.

thoughtframe tf HowMuchMoneyToGet HungryEQhigh 2 {
when (not(current.needCash = true) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 10), bc:100, fc:0);
}

}
Alex’ belief-set:
{

(Alex.needCash = false);
(Alex.hungryness = high);

}

In this case all preconditions also match the beliefs of agent Alex. The not
precondition evaluates to true, because even though the agent has a belief
about the attribute needCash, the value of that belief is ’false’ while the
precondition tries to match on the value ’true’. Therefore, the precondition
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evaluates to true. After firing of the above TFR, agent Alex will have the
belief (current.preferredCashOut = 10).

One might ask what would have happened if agent Alex does not have
any belief about the attribute needCash for Alex, would the not precondi-
tion evaluate to true? The answer to this question is, yes it would, because
it still would hold true that all of agent Alex’ beliefs do not match the eval-
comparison of the precondition.

Known precondition operator evaluates to true iff:

Exists(belief b) [ Matches(b, novalcomparison) ]

This means that there exists a belief in the agent’s belief-set that matches
the novalcomparison. A novalcomparison is a precondition expression that
matches on any belief the agent has about the specified attribute or relation,
without providing a necessary right-hand side value. Thus, regardless of the
right-hand side value of the belief (whether for an attribute or a relation), if a
belief exists the known precondition evaluates to true. Given the below TFR
for agent Alex and assuming the belief-set for agent Alex, both preconditions
evaluate to true, firing the TFR.

thoughtframe tf HowMuchMoneyToGet HungryEQhigh 3 {
when (known(current.needCash) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 15), bc:100, fc:0);
}

}
Alex’ belief-set:
{

(Alex.needCash = false);
(Alex.hungryness = high);

}

In this case all preconditions still also match the beliefs of agent Alex.
The known precondition evaluates to true, because the agent has a belief
about the attribute needCash, even though the value of that belief is ’false’.
The precondition matches on any belief of the form (Alex.needCash = <any-
value>). After firing of the above TFR, agent Alex will have the belief (cur-
rent.preferredCashOut = 15).

unknown(novalcomparison) evaluates to true iff:

not(Exists(belief b) [ Matches(b, novalcomparison)) ]
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This means that none of the beliefs in the agent’s belief-set match on the
novalcomparison, similar to all beliefs do not match on the novalcomparison.
Thus, regardless of the right-hand side value of the belief (whether for an
attribute or a relation), if a belief exists the unknown precondition evaluates
to false. This is a way to express that the precondition evaluates to true if
the agent does not have a belief about a given attribute or relation. Given
the below TFR for agent Alex and assuming the belief-set for agent Alex, the
unknown preconditions evaluates to false, preventing the TFR from firing.

thoughtframe tf HowMuchMoneyToGet HungryEQhigh 4 {
when (unknown(current.needCash) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 5), bc:100, fc:0);
}

}
Alex’ belief-set:
{

(Alex.needCash = true);
(Alex.hungryness = high);

}

The unknown precondition’s novalcomparison still matches on the need-
Cash attribute belief for agent Alex. The unknown precondition thus evalu-
ates to false, because the agent has a belief about the attribute needCash. The
unknown precondition returns false for any belief of the form (Alex.needCash
= <any-value>).

One might ask what would happen if the right-hand side value of the belief
is ’unknown’, would the unknown precondition evaluate to true? The answer
is no, in such a case the precondition would evaluate to false, because hav-
ing a belief of the form (Alex.needCash = unknown) means that the agent
knows about the attribute needCase, even though it does not know its spe-
cific boolean value.

Defining Thoughtframes. Thoughtframes can be defined at the “top-level”
of a group, agent, class and/or object. Thoughtframes defined at the top-level
are always active, meaning that their preconditions will be evaluated at each
change in the agent’s belief-set.

group Student {
. . .

thoughtframes:
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thoughtframe tf HowMuchMoneyToGet HungryEQhigh 1 {
when (knownval(current.needCash = true) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 15), bc:100, fc:0);
}//do

}//tf HowMuchMoneyToGet HungryEQhigh 1
}//Student

It is also possible to define thoughtframes within a composite activity. In
this case the thoughtframes will only be active when the agent is executing
the composite activity, and is the way to model problem-solving as an activity
taking time. For an explanation of composite activities see section 2.1.6.

group Student {
. . .

activities:
composite activity SolveCashOutProblem( ) {

. . .
thoughtframes:

thoughtframe tf HowMuchMoneyToGet HungryEQhigh 1 {
when (knownval(current.needCash = true) and

knownval(current.hungryness = high))
do {

conclude((current.preferredCashOut = 15), fc:0);
}//do

}//tf HowMuchMoneyToGet HungryEQhigh 1
. . .

}//composite activity SolveCashOutProblem
. . .

}//Student

Variables. Variables can be used to write more generic rules (TFRs) or tem-
plates for activities (WFRs). Variables have quantifiers, as will be described
below. Before a variable can be used it has to be declared, and the scope of
the variable is bound to the frame it is declared in. There are three quantifiers
for variables: foreach, collectall, and forone. Variables are used in precondi-
tions to be bound to agents, objects or values. When bound in preconditions,
variables can be used in consequences, detectables, and pass-by-reference pa-
rameters for activities. The syntax for defining a variable in a TFR or WFR
is as follows.
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variable ::=
[foreach | collectall | forone ] ( type-def ) variable-name ;

The quantifier affects the way a variable is bound to a specific instance of
the defined type of the variable.

Foreach quantifier. A foreach variable is bound to only one instance of its
type definition, but for each instance that can be bound to the variable a
separate frame instantiation is created. Consider, for example, the following
thoughtframe with a foreach variable.

thoughtframe tf CountOrders {
variables:

foreach(Order) order;
when (knownval(order is-assigned-to current))
do {

conclude((current.numberOfOrders=current.numberOfOrders+1));
}

}

If three orders are assigned to agent Alex Agent and the agent has beliefs
for all three of the orders matching the precondition, the agent’s engine cre-
ates three TFR instantiations (TFI), and in each TFI the foreach variable is
bound to one of the three orders.

Collectall quantifier. A collectall variable can be bound to more then one
instance as a list. The variable is bound to all matching agent or object in-
stances (depending on its type), and only one TFI is created. Consider the
previous example with a collectall variable declaration:

variables:
collectall(Order) order;

In this situation the agent’s engine creates one TFI and binds the collectall
variable to a list of all three orders.

Forone quantifier. A forone variable can be bound to only one instance or
value, and only one TFI is created. A forone variable binds to a random belief-
instance found and ignores other possible matches. In the previous example,
the variable declaration would look like:
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variables:
forone(Order) order;

In this situation, similar to the collectall, only one TFI gets created, but,
unlike in the collectall case, only one of the three orders gets bound to the
variable.

Unbound variables. A declared variable need not be used in a precondition.
In that case the variable is unbound (that is, it does not get a value) when
a frame instantiation is created. An unbound variable can be bound in an
activity. Note that an unbound variable may not be used in a consequence
statement, which will always result in a runtime error.

Repeat. A TFR can be executed one or more times depending on the value
of the repeat facet. In case the repeat facet is set to false, the TFR can only be
performed one time for a specific binding of the variables, called a thought-
frame instantiation (TFI). The scope of the repeat facet of a TFR defined
as part of a composite activity is limited to the time the activity is active,
meaning that the TFR with a specific variable binding and a repeat facet set
to false will not execute repeatedly while the composite activity is active.

Priority. Setting a TFR’s priority facet allows control over the execution
sequence of TFRs when more then one TFR is available at the same time.
The priority facet can be set with a value greater or equal to zero. When
two TFRs are available to be fired at the same time, the one with the high-
est priority will fire first. When both priorities are the same the sequence of
execution is undefined. The default value for the priority facet, when it is
not specified, is zero. Note that it is not recommended to use priorities to
control the sequence of thoughtframe execution. A better modeling practice
is to define preconditions controling TFR execution [5].

2.1.4 Primitive Activities

The central concept in Brahms, for the main purpose of modeling human
behavior, is the concept of activity. An activity is an abstraction of real-life
actions that help accomplish a daily task. A model of an agent’s activities
describes what the agent actually does over time (i.e. its behavior), based on
the causal relationship between the decision to perform an activity and the
past and present state of its context. In describing people’s real-life activities,
each activitiy in the world takes time no matter how short. A person is always
within an activity taking action. Sleeping is an activity, waiting for the bus
is an activity, simply doing nothing is an activity. Indeed, being alive is an
activity. The following key points can be made about activities:
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1. Reasoning is an activity taking time, not just an inference or deduction.
Thus logical inferences happen within an activity.

2. Activities might not involve goals and tasks. For example, answering the
phone is an activity that might not be part of any specific task that is
being accomplished. In fact, it might be an activity that is interrupting
the task being worked on.

3. Modeling activity behavior involves more than logical inferencing, namely
the representation of chronological activities that agents do.

4. The activation of an activity is constrained by preconditions that are as-
sociated with an activity template it is part of. For example, activities
may have preferential start times, as expressed in preconditions for the
template, which may refer to the time in hours, minutes, seconds, day of
the year, and/or day of the week.

5. An activity may be interrupted by a scheduled activity, such as going to
lunch at noon. Time may change the priorities of activities and different
people might do the same activities at different times.

In summary, activities are socially constructed engagements, situated in
the real world, taking time, effort and application of knowledge, with a de-
fined beginning and end, while not necessarily needing goals in the sense
of problem-solving tasks, and being interruptable, resumable and able to be
impassed. In this chapter we only describe the syntax and semantics of the
Brahms activity language. For more discussion about the theory behind ac-
tivities in Brahms, we refer the reader to [8, 19]. Brahms has different types
of primitive activities.

• Primitive activities: These are the lowest level activities in an activity
model. They are user-defined, take some time, but are not further specified
in any detail. Parameters are time and resources. At any time during
execution an agent is always executing some primitive activity. If an agent
is not executing a primitive activity, one can say that the human-behavior
model is underspecified.

• Predefined activities: These are language-level primitive activities with pre-
defined semantics (e.g. communicate, move, get, put).

• Java activities: A Brahms Java activity is an user-defined primitive activ-
ity that is implemented as a Java class, using the Brahms JAPI. Java code
may cause an action to happen completely outside the BVM (e.g. pop-
up a dialog that says “hello world”). A Java activity can also do things
within the BVM. Java code can generate output parameter values and
assign them to unbound variables in a WFR, or generate new agents or
objects within the Brahms model being executed. Java activities can also
create new beliefs and facts, as well as interface to external systems.

activities ::= activities : [ activity ]*
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activity ::=
primitive-activity |
predefined-activity |
java-activity |
composite-activity

predefined-activity ::=
move-activity |
create-agent-activity |
create-object-activity |
communicate-activity |
broadcast-activity |
get-activity |
put-activity

All activities have to be declared in the activities section of either a group,
agent, class, object, or composite activity. The declared activities can then be
referenced in the workframes (WFRs) defined for the group, agent, class or
object. It is possible to define input parameters for primitive activities. These
input parameters can be used to make activities more generic. Activities can
be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority
of the activity with the highest priority defined in the workframe. Activities
and thus workframes have a duration. The duration of the activity can be
defined to be a fixed amount of time or a random amount of time. For a
fixed amount of time, the random facet has to be set to false and the max-
duration attribute has to be set to the maximum duration in seconds. The
duration of the activity can also be defined to be a random amount of time.
To define a random amount of time the random facet has to be set to true,
the min-duration facet has to be set to the minimum duration of the activity
in seconds and the max-duration facet has to be set to the maximum duration
of the activity in seconds.

primitive-activity ::=
primitive activity activity-name ({param-decl [, param-decl ]*})
{
{ prim-act-facets }

}
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prim-act-facets ::=
{ display : ID.literal-string ; }
{ priority : [ ID.unsigned | param-name ] ; }
{ random : [ ID.truth-value | param-name ] ; }
{ min duration : [ ID.unsigned | param-name ] ; }
{ max duration : [ ID.unsigned | param-name ] ; }
{ resources : [ param-name | OBJ.object-name ]

[ , [ param-name | OBJ.object-name ]* ; }

Below is the definition of a Study primitive activity. The primitive activity
takes a Book object as a parameter, which is used as a resource in the activity.
The activity has a random duration between 30 minutes and 2 hours. The
durations are given in seconds.

primitive activity Study (Book course book)
{

display : “Study for a Cours” ;
priority : 10 ;
random : true ;
min duration : 1800 ; /* 30 mins */
max duration : 7200 ; /* 2 hours */
resources : course book;

}

2.1.5 Workframes

An agent cannot always apply all its available activities, given the agent’s
belief-state and the location it is in. Each activity is therefore associated
with a conditional statement or constraint, representing a condition/activity
template called workframe (WFR). WFRs are situation-action rules taking
time. A WFR defines conditions under which an agent or object can perform
an activity (or activities). WFRs are similar to TFRs, with similar syntax.
They have preconditions that are matched against the belief-set of the agent
or object. In short, activities describe what agents do, workframes describe
when agents do what they do, thus defining when activities are executed.
Workframes can be associated with groups/agents and classes/object. Hav-
ing two agents with different workframes performing the same activity, can
represent individual differences.
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workframe ::=
workframe workframe-name
{
{ display : ID.literal-string ; }
{ type : factframe | dataframe ; }
{ repeat : truth-value ; }
{ priority : unsigned ; }
{ variable-decl }
{ detectable-decl }
{ [ precondition-decl workframe-body-decl ] |

workframe-body-decl }
}

workframe-name ::= ID.name

variable-decl ::= variables : [ variable ]*

detectable-decl ::= detectables : [ detectable ]*

precondition-decl ::= when ({[precondition] [and precondition]*})

workframe-body-decl ::= do {[workframe-body-element]*}

workframe-body-element ::= [activity-ref | consequence |
delete-operation]

activity-ref ::= activity-name({param-expr[, param-expr]*});

delete-operation ::= delete [ variable-name | param-name ];

A workframe is a more important unit than the simple precondition-
activity-consequence design might suggest, because a workframe may model
relationships involving location, object resources such as tools and docu-
ments, required information, other agents the agent is working and commu-
nicating with, and the state of previous or ongoing work. Active workframes
may establish a context of activities for the agent and thereby model the
agent’s intentions, e.g., calling person X to give or get information, or going
to the fax machine to look for document Y. In this way, behavior may be
modeled as continuous across time, and not merely reactive.
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group PrimitiveActivityPerformer {
attributes:

public boolean execute PAC 1;

activities:
primitive activity PAC 1(int pri) {

display: “PAC 1”;
priority: pri;
max duration: 900;

}

primitive activity PAC 2(int pri, int dur) {
display: “PAC 2”;
priority: pri;
max duration: dur;

}

workframes:
workframe wf PAC 1 {

repeat: true;
when (knownval(current.execute PAC 1 = true))
do {

PAC 1(1);
conclude((current.execute PAC 1 = false));

}
}

workframe wf PAC 2 {
repeat: true;
do {

PAC 2(0, 1800);
conclude((current.execute PAC 1 = true), bc:25);
PAC 2(0, 600);

}
}

}

Workframes can be interrupted and resumed, based on the priorities of
activity references within. Priorities of activities can be dynamically assigned
through parameters passed in. The above example shows two WFRs in the
group PrimitiveActivityPerformer. WFR wf PAC 2 has no preconditions and
repeat = true. This workframe will therefore always fire in an endless loop.



25

WFR wf PAC 1 has one precondition, which at the start of execution will
always be false, since the agent will not have a belief that will match it.

On closer examination of the body of WFR wf PAC 2 we see that the
WFR first calls activity PAC 2 with priority zero and duration 1800 seconds
and later on again with priority zero with a duration of 600 seconds. Given
that the priorities of both activity-references in the WFR are zero, the WFR
itself gets a priority of zero at instantiation (WFI).

However, in between the two activity-references the activity concludes a
belief that will match the precondition for WFR wf PAC 1. A match on
this precondition would create a WFI for wf PAC 1 with priority one due
to the fact that it calls activity PAC 1 with priority one, and always has a
duration of 900 seconds after which the conclude statement sets the belief to
false, which stops the repeat=true and ends the WFI. Thus, WFR wf PAC 1
always only fires ones, even though the repeat is set to true.

Because the WFI for wf PAC 1 gets priority one its priority is higher than
that of WFR wf PAC 2. This interrupts the WFI for wf PAC 2 after the
conclude statement, and starts a WFI for wf PAC 1 for 900 seconds. After
the WFI for wf PAC 1 is completed, the WFI for wf PAC 2 again becomes
the only WFI and thus automatically the highest priority WFI, and thus
wf PAC 2 continues execution at the point it was interrupted, which is at
the start of the second PAC 2 activity-reference.

Fig. 3 Interrupted Workframe-Activity Hierarchy

As you can see in Fig. 3 WFR wf PAC 2 gets interrupted after the first
call to activity PAC 2, at time Tn +1800. At that time activity PAC 1 starts
executing. The next event is the end of activity PAC 1 and thus of WFI
wf PAC 1. At time Tn+1+900 WFI wf PAC 2 comes out of being interrupted
and again becomes the current WFI, and the second activity PAC 2 starts
execution.

There is one more point to make about WFR wf PAC 2 ; the conclude
statement has a belief-certainty of 25. This means that the belief in the
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conclude statement is only created in 25% of the time. This means that the
interruption of wf PAC 2 only occurs once in four executions on average.

Primitive activities take time, which may be specified by the modeler as
a definite quantity or a random quantity within a range. However, because
WFIs can be interrupted and never resumed, when an activity will actually
finish cannot be predicted from its start time.

2.1.6 Composite Activities

Composite activities are user-defined detailed activities that are decomposed
into sub-activities. The lowest activity in a composite activity is always either
a primitive-, predefined-, or a Java activity. A composite activity describes
what an agent does while it is “in” the activity. A composite activity can be
interrupted, when one of its lower-level activities gets interrupted, or one of
its contained workframes gets interrupted.

A composite activity requires one or more workframes to execute. Since
activities are called within the do-part of a workframe, each is performed at a
certain time within the workframe. The body of a workframe has a top-down,
left-to-right execution sequence (see Fig. 4). Preference or relative priority of
workframes can be modeled by grouping them into ordered composite activi-
ties. The workframes within a composite activity, however, can be performed
in any order depending on when their preconditions are satisfied. In this way,
workframes can explicitly control executions of composite activities, and ex-
ecution of workframes depend not on their order, but on the satisfiability of
their preconditions and the priorities of their activities.

composite-activity ::=
composite-activity activity-name( { param-decl [ , param-decl ]* } )
{
{ display : literal-string ; }
{ priority : [ unsigned | param-name ] ; }
{ end condition : [ detectable | nowork ] ; }
{ detectable-decl }
{ activities }
{ workframes }
{ thoughtframes }

}

A composite activity can terminate in the following three ways:

1. A composite activity terminates whenever the WFR in which it is exe-
cuted terminates, due to a WFR detectable of type complete or abort (see
section 2.1.7).
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Hierarchy.pdf

Fig. 4 Workframe-Activity Hierarchy

2. A composite activity terminates immediately whenever its end condition
is declared to be a detectable, and a detectable with an end activity action
is declared within the composite activity and is activated.

3. A composite activity terminates when the modeler has defined the
end condition to be nowork, and there is no workframe in the composite
activity that is either available or is the current workframe being executed.

During the execution of a composite activity, the engine continuously
checks whether the agent has received a belief that matches any detectables.

2.1.7 Detectables

A detectable is a language construct used within an activity or WFR by which
an agent may notice facts in the world. The noticing of the fact may cause the
agent to continue, impasse, stop, or to finish the activity or WFR. Detectables
are used for detecting facts and reacting to beliefs that are created based on
the fact detection, while the agent is executing a WFR and an activity. It
allows for modeling contextual awareness of the agent, which means that
the agent only detects relevant facts for the current activity. This enables
modeling of reactive behavior that is constrained by the agent’s activity, i.e.
what it is currently doing.
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detectable ::=
detectable detectable-name {
{ when ( [ whenever | unsigned ] ) }

detect ( ( resultcomparison ) { , detect-certainty } )
{ then [ workframe-det | activity-det ] } ;

}

detect-certainty ::= dc : unsigned

workframe-det ::= continue | impasse | abort | complete

activity-det ::= end activity

A detectable is defined in a workframe (see workframe-det) or in a
composite activity (see activity-det). A detectable is active while a work-
frame/activity is active. It is used for noticing states of the world, and being
able to act upon those.

When-condition: For each detectable it needs to be specified when the
detectable is active in the workframe or activity. There are two options:

• Whenever : This means that, when the workframe or activity in which the
detectable is defined is active, the detectable is checked every time a new
fact is asserted and also every time a new belief is asserted for the agent.

• At a specified percent completion time: An unsigned integer specifies that,
when the workframe or activity in which the detectable is defined is active,
the detectable needs to be checked at the percentage completion of the
workframe or activity, varying from 0% (start) to 100% (end) completion.
These kind of detectables are only checked once.

The default, if the when-condition is not specified, is whenever.

Detect-condition: There is a two-step process for the activation of detacta-
bles:

1. Fact Detection: This step is subdivided into two parts:

a. Notice fact: Facts are matched on only the left-hand side of the detect
condition.

b. Create belief: fact becomes a belief, regardless of the right-hand side of
the detect condition.

2. Trigger action: Execute the detectable-type action, when the detect con-
dition is true, based solely on the existence of the belief(s) in the agent’s
belief-set that match the detect-condition.
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Detect-certainty: The fact detect-certainty is a number ranging from 0 to
100 and represents the probability that the fact(s) will be detected, based
on the detect-condition. A detect-certainty of 0% means that the fact(s) will
never be detected. A detect-certainty of 100% means that a fact will al-
ways be detected, based on the left-hand side of the detect-condition in the
detectable. Any detect-certainty in between means that the fact(s) will be de-
tected given a probability with a normal distribution between 0 and 1. The
default, if the detect-certainty is not specified, is 100. Note, however, that the
detect-certainty has no influence on the agent getting the fact as a belief by
other means then the detectable. For instance, the agent can get the belief(s)
through reasoning (TFRs), or through a communication with other agents. In
that case, the detectable action can fire, regardless of the fact detect-certainty

Detectable-action: An agent never reacts directly to the facts it detects,
only to the beliefs that match the detect condition. A detectable merely
causes a belief to be asserted as part of its fact detection. The action portion
or trigger is activated by matching against the beliefs; i.e. it is possible to
trigger the action of a detectable by only asserting a belief without the same
fact being present in the world state. Detection and triggers are evaluated
independent of one another. There are five different detectable actions pos-
sible, the first four are only valid for detectables in WFRs and the last one
is only valid for detectables in composite activities:

• continue: This action has no effect, and only used for having agents detect
facts and turn them into beliefs (i.e. only noticing, and no action). If no
detectable-action is specified, this is the default action.

• impasse: This action impasses the workframe until the impasse is resolved.
The detect-condition is the impasse condition. What this means is that as
long as the agent has a belief that matches the detect-condition in the
impasse-detectable, the WFI is impassed. As soon as the agent gets a
belief that makes the detect-condition false, the impasse is resolved and
the WFI becomes interrupted, vying for becoming the current WFI again,
based on priority.

• abort : This action terminates the workframe immediately.
• complete: This action terminates the current activity and skips all re-

maining activities in the workframe, but still executes all remaining con-
sequences.

• end activity : This action is only meaningful when used in a detectable for
a composite activities. It causes the composite activity to be ended imme-
diately, regardless if there are workframes or thoughtframes in it that are
or can become active.
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2.1.8 Classes and Objects

In Brahms, agents are intentional. However we also want to be able to describe
artifacts in the real world as action-oriented systems, but unintentional at the
same time. We model such an artifact as an object. An example of an object in
Brahms is a fax machine. If we want to describe the behavior of a fax machine,
we could argue that we could describe a fax machine as an intentional agent.
However, in the real world we would never ascribe intention to the actions
of a fax machine. A fax machine mainly reacts to facts in the world; such
as a person pushing the start button on the fax machine that makes the
fax machine start faxing a document. Since in Brahms we are interested in
describing the world with its animate and inanimate entities, we want the
capability to make a difference between an intentional entity (an agent), like
a person, and an unintentional entity (an object) like a fax machine.

An object, in Brahms, is a construct that generally represents an artifact
or data. Objects could be data objects (e.g. a database record), inanimate
objects (e.g. a table) or computational objects (e.g. a computer system). The
key properties of objects are facts, beliefs, thoughtframes, workframes and
activities, which together represent the state and causal behaviors of objects.
Some objects may have internal states, such as information in a computer,
that are modeled as beliefs. Other artifact states such as the fact that a phone
is off the hook are facts about the artifact in the world.

Classes: Classes in Brahms represent an abstraction of one or more object
instances. The concept of a class in Brahms is similar to the concept of a
template or class in object-oriented programming (Rumbaugh et al. 1998). It
defines the thoughtframes, activities and workframes, initial-facts and initial-
beliefs for instances of that class (objects). Brahms does not allow multiple
inheritance for objects.

Objects: Objects in Brahms have all of the elements that an agent has,
plus two additional elements; conceptual-object membership and resource.
Furthermore, instead of having group-membership (MEMBER-OF) relation-
ships, an object can have class-inheritance (IS-A) relationships with classes.

Objects can have a belief-set. Beliefs in an object can model data encoded
within the object. Beliefs can be seen as the information that an object car-
ries, such as the text written on a piece of paper.

Objects can act on Facts or on Beliefs: By default, WFR precondi-
tions in objects match on facts, not on the beliefs inside the object. TFR
preconditions in objects match on beliefs inside the object, similar to agents.
The problem becomes how to do data processing within an object? In other
words, how to conclude a belief in a TFR that triggers an activity in a WFR?
Concluding a fact in a TFR is not allowed and since a WFR in an object
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can only react to facts this seems impossible. To solve this problem, WFRs
in objects can specify a workframe-type:

• Factframe: Preconditions match on facts. This is the default type in ob-
jects.

• Dataframe: Preconditions match on beliefs

class ::=
class class-name { extends class-name [ , class-name ]* }
{
{ class-facets }

}

object ::=
object object-name instanceof class-name
{partof conceptual-object-name [, conceptual-object-name ]*}

{
{ class-facets }

}

class-facets ::=
{ display : literal-string ; }
{ cost : number ; }
{ time unit : number ; }
{ resource : truth-value ; }
{ icon : literal-string ; }
{ attributes }
{ relations }
{ initial-beliefs }
{ initial-facts }
{ activities }
{ workframes }
{ thoughtframes}

2.1.9 Communications

In Brahms communication between agents and objects is done by communi-
cating beliefs. The communication of beliefs is done with a communication
activity that transfers beliefs to/from one agent to one or several other agents,
or to/from an (information carrier) object. A communication activity is used
to model different types of communications that can be observed in the world.
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Examples are: face to face conversations, reading or writing a document, or
data entered into computers.

An agent or object has to have the belief before it can communicate (i.e.
tell) the belief to another agent or object. The recipient agent or object
will have its original beliefs overwritten with the communicated beliefs. The
syntax of a communication activity is as follows:

communicate-activity ::=
communicate activity-name ( { param-decl [ , param-decl ]* } )
{
{ display : literal-string ; }
{ priority : [ unsigned | param-name ] ; }
{ random : [ truth-value | param-name ] ; }
{ min duration : [ unsigned | param-name ] ; }
{ max duration : [ unsigned | param-name ] ; }
{ resources }
{ type : [ phone | fax | email | face2face | terminal |

pager | none | param-name ] ; }
with : [ [ agent-name | object-name | param-name ]

[ , [ agent-name |object-name | param-name ] ]* ;
about : transfer-definition [ , transfer-definition ]* ;
{ when : [ start | end | param-name ] ; }

}

transfer-definition ::=
transfer-action ( communicative-act | resultcomparison )

transfer-action ::= send | receive
communicative-act ::= object-name | param-name

The direction of communication is defined by the transfer-definition:

• send: The agent communicated with will always receive the belief.
• receive: The agent from which the beliefs are received does not know it is

being communicated with. Also, that agent needs to have the belief.
• Transfer of beliefs happens either at the start or at the end of the activity.

Another way of communication is using the Communicator library. The
Communicator library can be used to send and receive FIPA (Foundation of
Intelligent Physical Agents)Foundation of Intelligent Physical Agents com-
municative acts3. The Communicator library implements external activities
for agents to communicate with other agents through communicative acts.
These activities can be used to create, read, manipulate, retract, and send
communicative-act objects.

3 http://www.fipa.org/specs/fipa00037/index.html
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The library defines the class CommunicativeAct. CommunicativeAct ob-
jects are serializable objects that are communicated between agents. A Com-
municativeAct object needs an envelope with the address information (from,
to, date, ...) and transport hints, and a payload for the message content and
content properties according to the FIPA definition:

class CommunicativeAct extends SerializableObject {
attributes:

public map envelope;
public map payload;
public Exception raisedException;

}//CommunicativeAct

Serializable objects are objects that can be efficiently communicated be-
tween agents either running toghether in one BVM, or distributed over the
network between multiple BVMs. The BVM uses an efficient dedicated pro-
tocol for communicating serializable objects between agents distributed over
a network.

2.2 Semantics and Verification

In this section we briefly discuss the preciseness, expressiveness, and the
verifiability of the Brahms language.

Brahms is a strongly typed compiled BDI agent language. As the reader
has seen in the previous sections, Brahms has a well-defined grammar speci-
fied in EBNF and a clear, but not formally defined, semantics.

The Brahms compiler’s lexer and parser are generated using JavaCC4.
JavaCC generates a top-down (recursive descent) parser. The parser and
lexer work together to parse the source files and to identify the appropriate
tokens for use by the parser. The parser generates a parse tree in the first
pass which is also where syntactic analysis takes place. In the second pass
the compiler performs the semantic analysis which includes type checking.
In the last pass the compiler generates an internal object model with the
compiled code and uses that model to then generate compiled code for the
BVM. Brahms’ compiled code is generated as XML-based Brahms compiled
concept files that have the extension ’.bcc’. At the moment, the compiler does
not have an optimizer.

Brahms has a clear and precise semantics that is part of the second pass of
the compiler. Currently, there is work in progress to be able to make formal
verification of Brahms models possible. The approach taken is to re-generate

4 https://javacc.dev.java.net/doc/features.html
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a Brahms model into a Jason program [2]. Since Jason is a pure BDI language
with a clear defined semantics a Brahms model will be verifiable as a Jason
program [10].

2.3 Software Engineering Issues

In this section we discuss some of the software engineering and programming
language principles, such as abstraction, inheritance, modularity, overloading,
overriding, information hiding, error handling, generic programming, etc.,
that have been considered or adopted within design of the Brahms language.

2.3.1 Agent-oriented versus object-oriented.

With belief-based agent-oriented languages, such as Brahms, people often
confuse groups and agents with classes and objects in an object-oriented lan-
guage (OOP), such as Java. Object-oriented programming includes features
such as encapsulation, polymorphism, and inheritance, enabling the notion
of information-hiding.

In OOP encapsulation is created by definition of member attributes in
a class. The purpose of encapsulation of information is to hide the physical
implementation of data, so that if it is changed, the change is restricted to the
class definition. Encapsulation takes a different form in belief-based agents.
In belief-based agent-oriented programming, the issue is not about hiding
the physical data storage definition, but rather hiding the internal belief-
state of an agent, so that the agent can use it to act upon and change it
independent from other agents. Agents are autonomous behavioral entities,
whereas objects are simply encapsulated data and function containers that
can be accessed by others, through well-defined interfaces. Agents can only
interact through the use of communication protocols.

Polymorphism and inheritance in OOP is the abstraction of similar types
and functionalities of objects into an inheritance hierarchy of abstract types to
more specific types. It is about inheritance of similar properties and functions,
as well as about function or method overloading, where we redefine a function
or method at a more specific level if needed, so that others can interface with
objects of similar types in the hierarchy in similar ways. Although these
capabilities are useful in software engineering in general, and are thus also
useful also in agent-oriented programming, they are not the key differences
between agent-oriented and object-oriented. The Brahms language also has
inheritance of properties, etc, in groups. Brahms also has polymorphism in
the form of activity overloading (see below). However, the notion of groups
and inheritance in Brahms is not about abstract class types, but about group
membership. In other words, the behavior of agents is defined by the different
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groups an agent belongs to. These so-called communities of practice define
what the agent knows and when and how it will behave as a member of that
group, independently from others. This is because the agent is a member of
that group and not because the agent is of a particular type. These differences
are subtle, but very important in distinguishing belief-based agent-oriented
programming from object-oriented programming.

2.3.2 Activity overriding and overloading

The Brahms language allows polymorphism by providing both activitiy over-
riding and overloading (ad-hoc polymorphism). This makes it possible to
write a workframe in a high-level group that is inherited by subgroups that
override/overload an activity referenced in the workframe. In the example
below the subgroups LunarRobot and LunarAstronaut each override the ac-
tivity LunarActivity as a composite activity. Both groups also inherit the
WFR wf PerformLunarActivity from the group LunarExplorer. This WFR
will call the overridden activity for each subgroup, and thus lunar robot and
lunar astronaut agents execute their lunar activity appropriately.

group LunarExplorer {
activities:

primitive activity LunarActivity(map input) {
max duration: 10;

}

workframes:
workframe wf PerformLunarActivity {

when (...)
do {

LunarActivity(map input);
}

}
}

group LunarRobot memberof LunarExplorer {
activities:

composite activity LunarActivity(map input) {
...

}
}
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group LunarAstronaut memberof LunarExplorer {
activities:

composite activity LunarActivity(map input) {
...

}
}

2.3.3 Java integration

The ultimate objective is to completely integrate Brahms with the Java lan-
guage, which would allow the Brahms modeler/programmer to write pure
Java code as part of a Brahms model/program. However, at the moment this
is not possible yet. Brahms currently has two ways of interfacing with Java
using the Brahms JAPI:

• Java activities are primitive activities written in Java. To write a Java
activity you will need to define the Java activity in the Brahms model, and
implement the activity by writing the activity using the Brahms JAPI. To
do this you need to create a Java class that extends from the AbstractEx-
ternalActivity abstract class in the JAPI. The AbstractExternalActivity is
an interface for external activities implemented in Java, called by Brahms
Java activities. The external activity can perform any Java action. This
abstract class provides access to parameters passed to Brahms Java ac-
tivities, and allows for adding bindings to unbound variables passed to
Brahms java activities through parameters. Most importantly, you need
to define the doActivity method to execute the Java activity.

• External agents are Brahms agents written in the Java programming
language. To write an external agent you will need to define the agent
as an external agent in the Brahms model and then write the external
agent in Java using the Brahms JAPI. To do this you need to create a
Java class that extends from the AbstractExternalAgent abstract class in
the JAPI. The AbstractExternalAgent is an interface for external agents
implemented in Java, loaded into the virtual machine to participate in a
Brahms simulation or real-time agent execution. The external agent can
perform any Java action. This abstract implementation provides access to
the concepts loaded in the virtual machine and the world state to allow for
communications with these concepts and to allow for world state changes
to be triggered by this agent.

• Java objects can be referenced using Java class types as Brahms attribute
types. This allows referencing Java objects from within the Brahms lan-
guage.
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2.4 Other features of the language: geography model

In Brahms agents and objects can be situated in a model of the physical
world. The world is represented independent of the capability of agents. An
areadefinition is used for defining a class of area instances used for represent-
ing geographical locations. Areadefinitions are similar to classes in their use.
Examples of areadefinitions are “Building”, and “City”. An example of an
area is “Berkeley”. Areas can be decomposed into sub-areas. For example, a
building can be decomposed into one or more floors. A floor can be decom-
posed into offices. The decomposition can be modeled using the PART-OF
relationship. A path connects two areas and represents a route that can be
taken by an agent or object to travel from one area to another. The modeler
may specify distance as the time it takes to move from area1 to area2 via the
path. The BVM automatically generates location facts and beliefs for agents
and objects moving from one area to another.

Agents and objects can be located in an initial location (i.e. areas). Agents
and objects can move to and from areas. When agents and/or objects come
into a location, the BVM automatically creates a location fact (agent.location
= <current-area>). Agents always know where they are and they notice other
agents and objects. When agents come into a location, the BVM automat-
ically gives the agent a belief about its new location (same as the location
fact), and also gives the agent a location belief for all other agents and objects
currently in that location. When an agent or object leaves a location, the loca-
tion fact and beliefs are retracted from all agents that are in that location the
moment the agent or object leaves. Agents and objects can carry (through
the containment relation) other agents and objects. Contained agents and
objects are not “noticed” until they are put into the area by the containing
agent or object.

areadef ::=
areadef areadef-name { areadef-inheritance }
{
{ display : literal-string ; }
{ icon : literal-string ; }
{ attributes }
{ relations }
{ initial-facts }

}
areadef-inheritance ::= extends areadef-name[, areadef-name ]*
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area ::=
area area-name instanceof areadef-name { partof area-name }
{
{ display : literal-string ; }
{ icon : literal-string ; }
{ attributes }
{ relations }
{ initial-facts }

}

The geography model is a conceptual model, meaning that it does not
represent the geography as a graphical three-dimentional model. Areas can
have attributes and relations, and define initial facts. Facts about areas can
represent the state of a location, e.g. the temperature in an area. The BVM
automatically generates facts about the ’partof’ relationships in the geogra-
phy. Agents can detect these facts and thus learn (i.e. get beliefs) about the
areas in their environment.

The example geography model below, defines a simple geography for the
University of Berkeley in Berkeley, CA. This model defines the university
buildings SouthHall and SpraulHall, where two students (Kim and Alex) are
initially located. Furthermore, the model defines two bank branches and two
restaurants in the city of Berkeley.

// Area defintions
areadef University extends BaseAreaDef { }
areadef UniversityHall extends Building { }
areadef BankBranch extends Building { }
areadef Restaurant extends Building { }

// ATM World
area AtmGeography instanceof World { }

// Berkeley
area Berkeley instanceof City partof AtmGeography { }

// inside Berkeley
area UCB instanceof University partof Berkeley { }
area SouthHall instanceof UniversityHall partof UCB { }
area SpraulHall instanceof UniversityHall partof UCB { }
area Telegraph Av 113 instanceof BankBranch partof Berkeley { }
area Bancroft Av 77 instanceof BankBranch partof Berkeley { }
area Telegraph Av 2405 instanceof Restaurant partof Berkeley { }
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area Telegraph Av 2134 instanceof Restaurant partof Berkeley { }

// initial location
agent Kim Agent memberof Student {

location: SouthHall;

agent Alex Agent memberof Student {
location: SouthHall;

}

Agents and objects can move within the geography model. To have an
agent move from one location to another you can do the following:

• Use a move(to location) activity in a WFR.
• Specify the duration of the move in clock-ticks. By default the duration is

zero, unless,
• There is a define a Path object between two areas. A path defines a du-

ration to move from area1 to area2. A path object defines a bi-directional
path.

• The BVM creates and retracts location facts and beliefs automatically.
• Agents in an area will detect arrivals and departures of other agents and

objects (by the creation and retraction of location beliefs for agents located
in the area).

• In the move activity you can specify (sub-)area arrival and departure de-
tection for the agents.

• The BVM calculates the shortest path between areas, given a geography
model.

• Contained objects and agents move with the agent or object that is moving.
However, they will not get noticed by other agents, until they are placed
in the destination area by the agent (using a put activity).

3 Platform

The Brahms Agent Environment (BAE) is a collection of tools for developing
complex models of agents, objects and areas for the purpose of simulating
work practice, or for developing MAS solutions to support the people that are
part of a work system. The BAE also supports the development of distributed
agent-based solutions in support of an organization’s workflow. In this section
we describe the BAE tools, available documentation, standards compliance,
and interoperability and portability features of Brahms.
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3.1 Available tools and documentation

The Brahms tools and documentation that are included in the BAE are:

• The Brahms Compiler (BC). The BC is a compiler for the Brahms
language. The compiler compiles .b source files into .bcc byte-code files.

• The Brahms Virtual Machine (BVM. The BVM is both a simulation
engine for simulating Brahms models, and a MAS execution environment
for real-time agents.

• The Composer. The Composer is a dedicated integrated development
environment (IDE) for Brahms. It provides a project editor, model editors,
a source code editor, and several post-execution displays. The modeler can
both compile and run a model from within the Composer. The Composer
is a useful tool for those who use Brahms for modeling and simulating
work practice.

• The Brahms Eclipse Plugin. The Brahms Eclipse Plugin is a plugin for
the Eclipse development environment. The plugin is useful for those who
use Brahms as a MAS development tool, and also develop and integrate
with Java code.

• The AgentViewer. The AgentViewer is a post-execution event time-
line viewer for agent and object beliefs, workframes, activities and
thoughtframes, as well as inter-agent and -object communications. The
AgentViewer is a kind of debugging tool, although it is used after execut-
ing the model and is not an interactive debugging environment. During the
execution of the model (either in simulation mode or in real-time mode),
all events are stored by the event-logger of the BVM in an ascii-formated
history file. Using the AgentViewer application, this history file can be
parsed into a MySQL database that the AgentViewer uses to generate a
TimeLine view.

• The Communication Display. The Communication Displaycommuni-
cation!display provides a spring diagram of the agent and object commu-
nications. It shows the to and from communications, as well as the number
of beliefs and/or CommunicativeActs communicated. The Communication
Display is integrated with the AgentViewer application and uses the same
MySQL database to retrieve its data.

• Documentation. Brahms documentation is provided on the Brahms web-
site5. The documentation available via this website can be easily accessed
through Quick Links on the home page.

5 http://www.agentisolutions.com



41

3.2 Standards compliance, interoperability and
portability

All the tools that are part of the BAE are written in the Java language
and require the Java Runtime Environment version 6. Currently, the BAE is
supported on Windows 2000/XP, Linux, OS X, and Solaris. The AgentViewer
and Communication Display require MySQL (either version 4.1, 5.0.51 or
later) to be installed.

In its simulation mode, agents cannot be distributed over multiple BVMs,
and the BAE uses a Brahms native communication protocol. In simulation
as well as in real-time execution mode Brahms agents can be integrated with
other agent systems through the use of external agents (see section 2.1.1).

In its real-time execution mode, the BAE uses a custom architecture for its
communication, naming/directory service and agent-life cycle management.
This custom architecure is called the Collaborative Infrastructure (CI). It
is a Java-based communication framework for agent-based communications
loosely based on FIPA. The CI is an open agent communication framework
and has a Java and C++ API, allowing Brahms agents to be integrated with
Java, C++ and C programs that also use the CI as their agent communi-
cations architecture. The CI includes a directory service for registering and
finding CI agents. The CI uses a Brahms native protocol using sockets as its
transport layer for communication between distributed agents.

3.3 Other features of the platfrom

The BAE has been extensively tested over the years in both simulation mode
and in real-time execution mode. We do not have any specific performance
metrics available, but BAE version 1.2.7 is currently running the OCAMS
application 24x7 in NASA’s Mission Control (see section 4).

4 Applications supported by the language and/or the
platform

In this section we describe a number of the most prominent applications of
Brahms. We categorize Brahms applications into those that primarily use
Brahms as a simulation environment, and those that use Brahms as a real-
time (distributed) MAS execution environment.

Brahms has been used in many simulation projects at the NYNEX and
Bell Atlantic phone companies [6], NASA (see below), the Universities of
Twente [4], Amsterdam [15] and Utrecht [16], and by several research orga-
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nizations throughout the world. At NASA, Brahms has been used to develop
a distributed multi-agent human-robot exploration system (see below), sim-
ulation of collaborative traffic flow management for future concepts of the
US National Airspace [28, 29], and most recently to simulate and implement
an intelligent workflow application for NASA’s Mission Control (see below).
Following is a description of a number of NASA simulation and MAS appli-
cations developed with Brahms.

Apollo EVA Simulations
From 1998 until 2001, Sierhuis developed Brahms simulations of the Apollo
12, 14, 15 & 16 Apollo Lunar Surface Exploration Package offload and de-
ployment extra-vehicular activities (EVA) on the Moon [18].

Day-in-the-life Simulation onboard the ISS
The International Space Station (ISS) is one the most complex projects ever,
with numerous interdependent constraints affecting productivity and crew
safety. This requires planning years before crew expeditions, and the use of
sophisticated scheduling tools. We presented an agent-based model and sim-
ulation of the activities and work practices of astronauts onboard the ISS
based on an agent-oriented approach. Between 2001 and 2003 we developed
a Brahms simulation model of a day-in-the-life onboard of the ISS Alpha
crew [1, 20].

MER Mission Operations Simulation
Mission operations systems for space missions are comprised of a complex
network of human organizations, information and deep-space network sys-
tems and spacecraft hardware. Similar to the operations within traditional
organizations, one of the problems in mission operations is the management
of the mission information systems related to the human work processes.
Brahms was used to model and simulate NASA’s Mars Exploration Rover
(MER) mission operation work process [24, 21, 17].

Shuttle Mission Operations Simulation
In this project we used the Brahms environment to model and simulate
JSC’s Mission Operations Directorate (MOD) organization, and the work
performed during the Shuttle pre-launch through docking phases with the
International Space Station [23]. The output of the simulation is a detailed
time line of the flight controllers activities and communication and metrics
of different work activity and workload.

Mobile Agents MAS
We have developed and tested an advanced EVA communications and com-
puting system to increase astronaut self-reliance and safety, reducing depen-
dence on continuous monitoring and advising from mission control on Earth.
This system, called the Mobile Agents Architecture (MAA), is voice con-
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trolled and provides information verbally to the astronauts through programs
called personal agents. The system partly automates the role of CapCom
in Apollo including monitoring and managing EVA navigation, scheduling,
equipment deployment, telemetry, health tracking, and scientific data collec-
tion [7, 12].

OCA ISS Flight Control Simulation and Intelligent Workflow MAS
The OCA Mirroring System (OCAMS) is a practical engineering application
of multi-agent systems technology, involving redesign of the tools and prac-
tices in a complex, distributed system. OCAMS is designed to assist flight
controllers in managing interactions with the file system onboard the ISS. The
simulation-to-implementation engineering methodology combines ethnogra-
phy, participatory design, multiagent simulation, and agent-based systems
integration [9]. The OCAMS system is currently deployed in the ISS Mission
Control at NASA Johnson Space Center (JSC) in Houston. OCAMS sup-
ports the ISS OCA officer 24x7 in their uplinking, downlinking, mirroring,
archiving and distributing of files to and from the ISS.

5 Final Remarks

In this chapter we described the Brahms language and environment. Brahms
has been in development as an agent simulation language since 1992, and
has matured to a full-fledged AOL. Brahms is well-tested and stable. This
is proven by the fact that Brahms is used in NASA Mission Control for the
development of operational multi-agent systems.

Brahms contributes to the multi-agent languages community in at least
two ways: 1) Brahms is both an agent-based simulation language and a MAS
development environment. This allowed us to develop a from simulation to
implementation agent-oriented software engineer methodology that has been
applied at NASA [22], 2) the Brahms language was the first AOL language
that integrated a BDI architecture with a reactive activity-based subsumption
architecture, all the way back to the early nineties [19].

In the near future, we are working on integrating the Brahms and the
Java language more. The next release of Brahms will have a seamless in-
tegration of Java objects. Preconditions in workframes and thoughtframes
will allow matching on Java object members, without them becoming beliefs.
This will optimize the use of Java objects from within the Brahms language.
We are also in the process of adding the use of lists in preconditions. Our
ultimate objective is to completely combine the Brahms and Java languages,
allowing the Brahms programmer to write Java code within their Brahms
program, without the need for using a Java API. Brahms will support both
Java objects, methods and agent activities, and the ability to call Java ob-
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ject methods directly from a workframe. This will combine the benefit of both
object-oriented and agent-oriented programming in one language.

The BAE has a stable and free release available for research purposes
from the Brahms website at http://www.agentisolutions.com. Brahms does
not (as of now) provide an open-source distribution, but is available for free
download under the Brahms Research license agreement.
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Appendix (Language Summary)

1(a) Brahms agents include mental attitudes, deliberation, adaptation, so-
cial abilities, and reactive as well as cognitive-based behaviour.

1(b) Brahms provides two types of communication capabilities: 1) a built-
in belief communication activity, 2) a FIPA-based Communication Library
for sending/receiving Communicative Acts.

1(c) Brahms, currently, does not support any mobility service.
1(d) Brahms is easy to learn. Brahms users include not only computer

scientists, but also cognitive scientists, psychologists, economists and even
an architect.

1(e) Brahms has a precise syntax and semantics. The syntax is specified in
EBNF. The semantics is currently not formalized, but is descibed as part
of the Brahms language document.

1(f) Brahms is suitable for the development of agent-based work practice,
organizational, work flow and cognitive simulations, as well as the imple-
mentation of a variety of agent-oriented programs and applications.

1(g) Brahms allows for extention and definition of new language compo-
nents through the definition of Java activities using the JAPI.

1(h) Although the Brahms semantics is currently not formalized, Brahms
does allow for a clear path for the (formal) verification of programs (also
called models).

1(i) Software Engineering and Programming Language principles, such as
abstraction, inheritance, modularity, overloading, information hiding, error
handling, generic programming, have been adopted within the design of
the Brahms language.

1(j).i Brahms can be integrated with the Java programming language, using
the JAPI, in both simulation and real-time execution mode.
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1(j).ii In real-time execution mode, Brahms agents can communicate with
other general Java or C++ agents, using the agent Collaborative Infras-
tructure (CI).

2(a).i The Brahms website (http://wwww.agentisolutions.com) provides
Java docs of the JAPI, a detailed Brahms language specification, both
EBNF syntacs and semantics, a Brahms tutorial that includes excercises
and documentation, and a web-based discussion forum. The BAE installa-
tion is done with an easy to use installation wizard. The Brahms website
includes a readme file with some additional information on configuring
MySQL.

2(a).ii Brahms requires the Java Runtime Environment (version 6), and
is currently supported on Windows 2000/XP, Linux, OS X, Solaris. The
AgentViewer tool requires MySQL 4.1, 5.1.51 or later to be installed.

2(b) In real-time execution mode, Brahms uses a custom agent collabo-
rative infrastructure (CI). Both Brahms and the CI use Communicative
Acts, loosely based on FIPA. The CI provides a custom naming/directory
service and custom agent life-cycle management for managing the starting
and stopping of distributed agents running in one or more Brahms Virtual
Machines (BVMs).

2(c) Brahms is not Open Source, but does allow for being extended with
additional functionality. Using the JAPI, it is possible to add new services,
external agents to interact with, external systems, and java activities to
add additional activity behaviors.

2(d).i Brahms logs history events that are used post-execution in the
AgentViewer tool, for the display of all agent events (new beliefs, work-
frame/activity and thoughtframe execution, movement in the geography
model, and communication).

2(d).ii Brahms is installed as the Brahms Agent Environment using an
easy install wizard. The Brahms web-site provides a web-based dis-
cussion forum through which the Brahms developers can be contacted
http://www.agentisolutions.com/cgi-bin/Ultimate.cgi). There is no spe-
cific maintenance provided to external users, however, the Brahms team is
regularly updating the BAE with new releases for download. Any bugs in
the BAE that are reported will be resolved in the next release, or provided
as updates on the website.

2(d).iii The BAE does not include specific tools for management or real-
time monitoring. However, there are two separate IDEs provided: 1) the
Composer is an IDE through which Brahms models can be designed, imple-
mented, compiled, and executed, 2) there is also a Brahms Eclipse Plugin.
The Composer includes the Agentviewer, which is can be used as a post-
execution debugger. Both the compiler and the BVM has configuration
files that can be set outside the Composer in a text editor, or within the
Composer using property editors.

2(e) Existing tools and applications integrated are JacORB CORBA, E-
mail Client, FTP Client, IM Client (Jabber), GPS, Biosensors, digital
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cameras, MS Excel (J-integra), MS Word (J-integra), RIALIST speech
dialoque system, LEGACI astronaut metabolic calculation algortithms,
Compendium.

2(f) Brahms requires Java Runtime Environment (version 6) and MySQL
version 4.1, 5.1.51 or later

2(g).i Currently, there are no specific performance metrics available. How-
ever, depending on the complexity of the agents, one BVM can easily sim-
ulate 150 Brahms agents and objects. In distributed real-time execution
mode, the number of BVMs is unlimited, and depending on the complexity
of the agents, each BVM can easily run 10 to 20 agents.

2(g).ii The BAE is a thoroughly tested and stable agent environment. It is
used to execute a MAS application 24x7 in NASA’s International Space
Station Mission Control. A free release is available for research purposes
only. Brahms is not Open Source.

2(h).i The new version of Brahms will support open multi-agent systems
and heterogeneous agents through the use of the Collaborative Infrastruc-
ture (CI). Other ways are to develop proxy agents using the external agent
JAPI.

2(h).ii The BAE, through the CI, provides distributed control. The Brahms
language provides hierarchical structure of agents. However, the directory
service for distributed agents does not.

2(h).iii The BAE provides a Communicative Acts library and templates for
programming multi-agent systems (both in Brahms and Java).

3(a) Brahms has been used to develop research, real-world and industrial
applications both for simulation and for MAS development. The most
prominent application is the OCA Mirroring System (OCAMS) in NASA’s
International Space Station Mission Control and Mobile Agents, a plane-
tary exploration MAS workflow framework for robots and astronauts.

3(b) Brahms is a domain-independent simulation and MAS language. It
can be used for agent-based simulation, as well as for MAS development
and execution. Brahms is not geared towards any specific domain, but has
mostly been used in the space mission operations and exploration domain.
It is particularly useful for simulating work practice and organizations,
and developing intelligent agent-based workflow services and applications.
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