
Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Brahms Tutorial

TM01-0002

Version 1.2

30 March 2011

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Technical Memorandum

TM01-0002

 BRAHMS TUTORIAL

VERSION 1.2

CONTACT

Brahms Contact

William Clancey – Project Lead (650) 604-2526

ABSTRACT

This document is a guide to programming in Brahms, an agent-oriented modeling language.

DATE: 30 March 20

KEYWORDS: Brahms, Tutorial

This document has not been reviewed by the Intellectual Property Organization.

Brahms Tutorial Version 1.2 Page iii
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

CONTRIBUTORS

Alessandro Acquisti

William J. Clancey

Ron van Hoof

Mike Scott

Maarten Sierhuis

Brahms Tutorial Version 1.2 Page iv
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

APPROVED

William Clancey Date

Project Lead

Brahms Tutorial Version 1.2 Page v
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Revision History

Version Contact Action

Version 0.1 Draft

02/01/2001

Alessandro Acquisti

510/823-5008

New Initial draft.

Version 0.2 Draft

02/21/2001

Alessandro Acquisti

510/823-5008

Add Added sections Q&A and proposed schedule of Tutorial.

Version 0.4 Draft

03/15/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Extensive revision of structure and content. Added

material from: 1) Maarten Sierhuis‘s PhD thesis; 2)

Brahms Language Specification TM99-0008; 3) Brahms

Installation readme.txt file; 4) Brahms 2001 TM01-0001

Project Plan. Added initial code.

Version 0.5 Draft

03/29/2001

Alessandro Acquisti

510/823-5008

Change Extensive revision of structure and content. Revised

chapter 4, sections 1-4

Version 0.6 Draft

04/01/2001

Alessandro Acquisti

510/823-5008

Change Extensive revision of structure and content. Revised

chapter 4, sections 5 et seq.

Version 0.7 Draft

04/10/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added tutorial code and discussion to chapter 4.

Version 0.8 Draft

04/15/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added links to Tutorial Files.

Cleaned up various sections after Ron‘s comments

Version 0.9 Draft

04/17/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added Bill, Maarten, Ron, and Charis‘ comments.

General revision and updates.

Version 0.9.4 Request

for Comments

05/12/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added hyperlinks, index. Changed color and format for

code sections, figures, tables. Edited ‗Validation‘

chapter. Added new links to code.

Version 0.9.5 Request

for Comments

05/26/2001

Alessandro Acquisti

510/823-5008

Change General clean-up. Modified sections to reflect transition

from SimAgent 1.0 to Agent Environment.

Version 0.9.6 Request

for Comments

06/12/2001

Alessandro Acquisti

510/823-5008

Change Added new screenshot figures and corrected some

areas.

Actions Taken are: New = new document, Add/Delete/Change = a section or topic has been added, or deleted, or changed.

Brahms Tutorial Version 1.2 Page vi
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Version Contact Action

Version 0.9.7 Request

for Comments

06/25/2001

Alessandro Acquisti

510/823-5008

Add Added Ron‘s answers to language questions from

Brahms Forums.

Version 0.9.8 Request

for Comments

06/30/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added reference section. Changed Agent Viewer

description. Changed other parts in response to

comments and suggestions from test-users.

Version 0.9.9 Request

for Comments

07/11/2001

Maarten Sierhuis

510/604-4917

Add,

Change

Made changes and added details in several sections.

Version 0.9.9.4 Request

for Comments

07/11/2001

Alessandro Acquisti

510/823-5008

Add,

Change

Added new material originated from feedback of new

Brahms users. Extensively revised previous material.

Adapted code. Altered the structure and order of

Chapters 2 and 3.

Version 0.9.9.5 Request

for Comments

01/01/2003

Alessandro Acquisti

510/823-5008

Add,

Change

Corrected typos in various sections and inserted

Composer description.

Version 1.0

07/01/2003

Alessandro Acquisti

510/823-5008

Add,

Change

General clean up and revision.

Version 1.1

10/24/2005

Bin Zhang,

Alessandro Acquisti

Add,

Change

Updated to conform to new Brahms Composer. New

language specifications *not* yet added.

Version 1.2

3/30/2011

Ron van Hoof

Change Updated to conform to new Brahms Agent Environment.

New language specifications *not* yet added.

Actions Taken are: New = new document, Add/Delete/Change = a section or topic has been added, or deleted, or changed.

Brahms Tutorial Version 1.2 Page vii
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 TABLE OF CONTENTS

1. INTRODUCTION .. 1-1

1.1 PURPOSE .. 1-1
1.2 INTENDED AUDIENCE .. 1-2
1.3 DOCUMENT SUMMARY .. 1-2
1.4 DOCUMENT CONVENTIONS ... 1-2
1.5 ACKNOWLEDGEMENTS ... 1-2
1.6 CONTACTS AND HELP... 1-3

2. OVERVIEW OF BRAHMS AND THE ATM SCENARIO .. 2-4

2.1 WHAT IS BRAHMS? AN INTRODUCTION TO ITS THEORETICAL FOUNDATIONS AND CONCEPTS 2-4
2.2 ANATOMY OF A BRAHMS MODEL: THE ATM SCENARIO ... 2-6
2.3 OBJECT-ORIENTED PROGRAMMING AND BRAHMS .. 2-9

2.3.1 The Atm case in object-oriented programming .. 2-9
2.3.2 The Atm case in Brahms .. 2-10

3. INSTALLATION AND COMPONENTS .. 3-13

3.1 BRAHMS OVERVIEW ... 3-13
3.2 INSTALLATION .. 3-13

3.2.1 Installing Brahms Agent Environment .. 3-13
3.2.2 Installing MySQL ... 3-14
3.2.3 Installing the License File ... 3-14
3.2.4 Choosing the Brahms Model Directory ... 3-15
3.2.5 The Atm Files ... 3-15
3.2.6 To Summarize: What you Will Need .. 3-16

3.3 DESCRIPTION OF COMPONENTS ... 3-16
3.3.1 Introduction: The Life of a Brahms Simulation ... 3-16
3.3.2 The Brahms Composer: Opening, Creating, and Building a Model 3-17
3.3.3 The Brahms Composer and the Virtual Machine: running a Model 3-24
3.3.4 Brahms Agent Viewer ... 3-26

3.4 SUMMARY OF STEPS .. 3-30
3.5 A NOTE ON DEBUGGING… ... 3-31
3.6 KNOWN BUGS IN BRAHMS AGENT ENVIRONMENT .. 3-31
3.7 CONTACTING THE BRAHMS PROJECT TEAM FOR TECHNICAL SUPPORT... 3-31
3.8 OTHER IMPORTANT DOCUMENTS .. 3-32
3.9 LATEST CHANGES .. 3-32
3.10 DOCUMENT INDEX .. 3-33

4. ATM SCENARIO .. 4-34

4.1 STRUCTURE OF THE SCENARIO ... 4-35
4.2 EXPECTATIONS AND GOALS .. 4-35
4.3 LESSON I: GETTING STARTED ... 4-37

4.3.1 Introduction ... 4-37
4.3.2 Task .. 4-37
4.3.3 Description: compilation unit ... 4-37
4.3.4 Tutorial .. 4-38

Brahms Tutorial Version 1.2 Page viii
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.3.5 Syntax ... 4-40
4.4 LESSON II: GEOGRAPHY ... 4-41

4.4.1 Introduction ... 4-41
4.4.2 Task .. 4-41
4.4.3 Description .. 4-41
4.4.4 Syntax ... 4-42
4.4.5 Tutorial .. 4-43

4.5 LESSON III: GROUPS, AGENTS AND ATTRIBUTES ... 4-49
4.5.1 Introduction ... 4-49
4.5.2 Task .. 4-49
4.5.3 Description .. 4-49
4.5.4 Syntax ... 4-53
4.5.5 Tutorial .. 4-54

4.6 LESSON IV: FACTS AND BELIEFS .. 4-58
4.6.1 Introduction ... 4-58
4.6.2 Task .. 4-58
4.6.3 Description .. 4-58
4.6.4 Syntax ... 4-60
4.6.5 Tutorial .. 4-60

4.7 LESSON V: WORKFRAMES AND PRIMITIVE ACTIVITIES .. 4-64
4.7.1 Introduction ... 4-64
4.7.2 Task .. 4-64
4.7.3 Description .. 4-64
4.7.4 Syntax ... 4-73
4.7.5 Tutorial .. 4-74

4.8 LESSON VI: CLASSES, OBJECTS AND RELATIONS .. 4-88
4.8.1 Introduction ... 4-88
4.8.2 Task .. 4-88
4.8.3 Description .. 4-88
4.8.4 Syntax ... 4-91
4.8.5 Tutorial .. 4-91

4.9 LESSON VII: THOUGHTFRAMES AND OTHER ACTIVITIES ... 4-100
4.9.1 Introduction ... 4-100
4.9.2 Task .. 4-100
4.9.3 Description .. 4-100
4.9.4 Syntax ... 4-102
4.9.5 Tutorial .. 4-103

4.10 LESSON VIII: VARIABLES .. 4-108
4.10.1 Introduction ... 4-108
4.10.2 Task .. 4-108
4.10.3 Description .. 4-108
4.10.4 Syntax ... 4-111
4.10.5 Tutorial .. 4-111

4.11 LESSON IX: COMPOSITE ACTIVITIES .. 4-117
4.11.1 Introduction ... 4-117
4.11.2 Task .. 4-117
4.11.3 Description .. 4-117
4.11.4 Syntax ... 4-119
4.11.5 Tutorial .. 4-120

4.12 LESSON X: MULTI-AGENT, RANDOMNESS, AND COMPLEX INTERACTIONS 4-125
4.12.1 Introduction ... 4-125

Brahms Tutorial Version 1.2 Page ix
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.12.2 Task .. 4-125
4.12.3 Description .. 4-125
4.12.4 Syntax ... 4-133
4.12.5 Tutorial .. 4-134

4.13 LESSON XI: DETECTABLES, PRIORITIES AND THE COMPLETE SCENARIO 4-136
4.13.1 Introduction ... 4-136
4.13.2 Task .. 4-136
4.13.3 Description .. 4-137
4.13.4 Syntax ... 4-140
4.13.5 Tutorial .. 4-141

4.14 CONCLUDING ISSUES .. 4-145
4.14.1 How to build your next model ... 4-145
4.14.2 Debugging tips .. 4-146
4.14.3 Validation .. 4-147
4.14.4 Further issues and exercises ... 4-147

5. VALIDATION .. 5-149

5.1 MODELING WORK PRACTICE .. 5-149
5.2 COMPUTATIONAL MODELS IN SIMULATION ... 5-150
5.3 TYPES OF MODELING SYSTEMS .. 5-151
5.4 VERIFICATION AND VALIDATION... 5-153

5.4.1 The purpose of verification and validation .. 5-153
5.4.2 The verification and validation process .. 5-154
5.4.3 Data validation .. 5-155
5.4.4 Conceptual model validation .. 5-155
5.4.5 Experimentation validation ... 5-158

6. INDEX ... 6-159

7. REFERENCES AND OTHER LINKS ... 7-161

Brahms Tutorial Version 1.2 Page x
TM01-0002 3/31/2011 Prologue

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

FIGURES

FIGURE 1 - THE COMPOSER: THE GRAPHIC INTERFACE .. 3-18

FIGURE 2 - THE COMPOSER: THE INTERNAL TEXT EDITOR .. 3-19

FIGURE 3 - OPENING THE COMPOSER ... 3-20

FIGURE 4 - IMPORTING THE ATM COMPLETE SCENARIO IN THE COMPOSER .. 3-21

FIGURE 5. SELECT A HISTORY FILE TO PARSE IN THE AGENT VIEWER .. 3-27

FIGURE 6. CREATING HISTORY DATABASE .. 3-27

FIGURE 7. PARSING HISTORY FILE INTO HISTORY DATABASE ... 3-27

FIGURE 8. AGENT VIEWER APPLICATION – AS OF JULY 2004 .. 3-28

FIGURE 9. ATMMODEL.B IN NOTEPAD .. 4-39

FIGURE 10 - CREATING GEOGRAPHY AREAS IN THE COMPOSER .. 4-43

FIGURE 11. BELIEFS AND FACTS VENN DIAGRAM .. 4-60

FIGURE 12. THE SIMULATION ENGINE (VIRTUAL MACHINE) ... 4-78

FIGURE 13. THE AGENT VIEWER AND THE ATM SCENARIO ... 4-80

FIGURE 14. THE FIRST ACTIVITY IN THE AGENT VIEWER .. 4-81

FIGURE 15. THE EXPLANATION FACILITY IN THE AGENT VIEWER ... 4-82

FIGURE 16. MORE COMPLEX ACTIVITIES ... 4-86

FIGURE 17. THE AGENT VIEWER AND OTHER ACTIVITIES ... 4-99

FIGURE 18. WORKFRAME-ACTIVITY HIERARCHY .. 4-118

FIGURE 19. STATE-TRANSITION DIAGRAM FOR FRAME INSTANTIATIONS ... 4-129

FIGURE 20. MULTI-TASKING IN BRAHMS ... 4-133

FIGURE 21 - A SCREENSHOT FROM THE COMPLETE ATM SCENARIO ... 4-144

FIGURE 22 - A ZOOM IN OF THE COMPLETE ATM SCENARIO ... 4-144

FIGURE 23. SIMULATION MODEL VERIFICATION AND VALIDATION IN THE MODELING PROCESS (BORROWED FROM

(ROBINSON, 1999)) ... 5-155

FIGURE 24. AN EXAMPLE OF CONCEPTUAL MODEL FOR THE SIMULATION OF AN APOLLO MISSION 5-156

FIGURE 25. BRAHMS COMPILE-DEBUG CYCLE ... 5-157

FIGURE 26. BRAHMS MODEL DEVELOPMENT CYCLE .. 5-157

FIGURE 27 BLACK-BOX VALIDATION: COMPARISON WITH THE REAL SYSTEM (FROM (ROBINSON, 1994)) 5-158

Brahms Tutorial Version 1.2 Page 1-1
TM01-0002 3/31/2011 Introduction

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1. INTRODUCTION
1

1.1 PURPOSE

This tutorial will introduce you to the ―Brahms‖ language and development environment
and their use for agent-oriented modeling. Brahms can be used to model complex work
practice scenarios. This tutorial will present the main aspects of the language and
discuss the usage of the modeling constructs available.

Because Brahms is an agent-oriented language, it requires a different way of thinking
than object-oriented and procedural languages. In many books on object-oriented and
procedural languages the Atm (automatic teller machine) scenario is used as an
introduction to the respective language. This tutorial will use the Atm example in order to
showcase many of Brahms modeling constructs and to show how they differ from
traditional object-oriented or procedural languages.

This tutorial will introduce many language constructs and specifications and describe
their application to the Atm scenario. The discussion of a Brahms implementation of the
Atm scenario will be the core of this tutorial. You, the reader, will be challenged to
complete exercises that consist in writing pieces of Brahms code to model increasingly
complex aspects of the scenario. You will also be given working examples and pieces of
code with which to compare your solutions. This tutorial, however, does not replace the
Brahms Language Specification document (available online at
http://agentisolutions.com/documentation/language/ls_title.htm), which is a
comprehensive guide to the modeling capabilities of Brahms. The Brahms Language
Specification document fully defines the formal syntax and related semantics of all the
modeling concepts. In addition, while this tutorial is self-contained and does also cover
elements of syntax and semantics, it should be regarded simply as an introduction to
Brahms. Agent-based modeling of social phenomena is more an art than a science –
and this is particularly true of Brahms, whose modeling richness can be used in several
different ways. This tutorial will teach you by example how to use the language
concepts, so that by the end of this tutorial you will be able to build simple to reasonably
complex Brahms models. However, for a deeper mastering of the language, this
document should be used in coordination with the Brahms Language Specification
document.

Finally, the Brahms language is still in development. It is often updated with new
functionalities, which are described in the Language Specification document available
online. This tutorial may not include the latest developments of the language. The

current version of this tutorial, 1.2, reflects the status of the language as of July 2003.

1
 Sources of this chapter: Brahms 2001 TM01-00001 Project Plan; communications with Brahms development team.

http://agentisolutions.com/documentation/language/ls_title.htm

Brahms Tutorial Version 1.2 Page 1-2
TM01-0002 3/31/2011 Introduction

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1.2 INTENDED AUDIENCE

This document is to be used by future Brahms modelers as a guide in their development
of Brahms models. Some level of previous programming experience is expected.
Knowledge of object-oriented languages and rule-based languages is preferable, but not
essential.

1.3 DOCUMENT SUMMARY

This tutorial is a self-contained introduction to the Brahms language. It starts by
presenting an overview of the Brahms programming language and a bird‘s eye view of
the Atm scenario. It then shows the reader how to install the components of the Brahms
development system. The Atm scenario then begins, with simple concepts and
examples that progressively build up in complexity and difficulty. In each scenario sub-
section the reader will be introduced to a set of new language concepts and asked to
use them in increasingly realistic Brahms models. Experienced programmers might
move quickly through the initial sections of the Atm scenario (Chapter 4, Sections 3 – 8)
and spend more time on the more complex sections (Sections 9 –11). While the Atm
scenario will be especially useful to people familiar with procedural or object-oriented
languages, it will also be understandable by those with no prior knowledge of procedural
and object-oriented languages.

1.4 DOCUMENT CONVENTIONS

This font is used for text (descriptions, explanations, etc.)

This font is used for code, as well as folder names, file names, etc.

1.5 ACKNOWLEDGEMENTS

Many thanks to Boris Brodsky, Charis Kaskiris, Laleh Haghshenass, Amber Lo, and
Chin Seah, Bin Zhang, for beta testing and useful feedback.

Brahms Tutorial Version 1.2 Page 1-3
TM01-0002 3/31/2011 Introduction

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1.6 CONTACTS AND HELP

Updated versions of this document are available from the AgentISolutions website:
www.agentisolutions.com. Questions about this tutorial and typos should be notified to
Alessandro Acquisti (acquisti@agentisolutions.com).

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 2-4
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

2. OVERVIEW OF BRAHMS AND THE ATM SCENARIO

2.1 WHAT IS BRAHMS? AN INTRODUCTION TO ITS THEORETICAL

FOUNDATIONS AND CONCEPTS

Brahms models may be thought of as statements in a new formal language developed
for describing work practice. The online language specifications (at
http://agentisolutions.com/documentation/language/ls_title.htm) show the conventional
notation and constructs used to express the syntax for the modeling language. The
language is domain-general in the sense that it refers to no specific kind of social
situation, workplace, or work practice; however, it does embody assumptions about how
to describe social situations, workplaces and work practice.

Brahms can model and simulate work practices. Brahms models are written in the
agent-oriented language that will be described in this document. The run-time
component - the simulation engine - can execute a Brahms model, also referred to as a
simulation run. A Brahms model can be used to simulate human-machine systems for
what-if experiments, for training, for ―user models,‖ or for driving intelligent assistants
and robots. Brahms is different from task and functional analysis. A traditional task or
functional analysis of work leaves out the logistics, especially how environmental
conditions come to be detected and how problems are resolved. Without consideration
of these factors, it is not possible to accurately model how work and information actually
flows, or to properly design software agents that help automate human tasks or interact
with people as their collaborators. What is wanted is instead a model that includes
aspects of reasoning found in an information-processing model, plus aspects of
geography, agent movement, and physical changes to the environment found in a multi-
agent simulation. A model of ―work practice‖ focuses on informal, circumstantial, and
located behaviors by which synchronization occurs, such that the task contributions of
humans and machines flow together to accomplish goals.

Brahms makes this kind of models possible. Brahms relates knowledge-based models
of cognition (e.g., task models) with discrete simulations and the behavior-based
subsumption architecture. Brahms is centered on the concept of ―agents.‖ Agents‘
behaviors are organized into activities, inherited from groups to which agents belong.
Most importantly, activities locate behaviors of people and their tools in time and space,
such that resource availability and informal human participation can be taken into
account. A model of activities doesn‘t necessarily describe the intricate details of
reasoning or calculation, but instead captures aspects of the social-physical context in
which reasoning occurs. Thus Brahms differs from other multi-agent systems by
incorporating chronological activities of multiple agents, conversations, as well as
descriptions of how information is represented, transformed, reinterpreted in various
physical modalities.

http://agentisolutions.com/documentation/language/ls_title.htm

Brahms Tutorial Version 1.2 Page 2-5
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

The Brahms language is structured around the following concepts:

 Agents and Groups

 Objects and Classes

 Beliefs and Facts

 Workframes

 Activities

 Thoughtframes

 Geography

which can be related one to the other in the following way:

Groups contain

agents who are located and have

beliefs that lead them to engage in

activities that are specified by

workframes that consist of

preconditions of beliefs that lead to

actions, consisting of

communication actions

movement actions

primitive actions

other composite activities

consequences of new beliefs and world facts

thoughtframes that consist of

preconditions and

consequences

The Atm scenario will drive you through all of these concepts. It will first present them –
one by one - and then it will ask you to use them in increasingly realistic Brahms
representations of a scenario where students get money from Atms and spend it at
various restaurants.

Brahms Tutorial Version 1.2 Page 2-6
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

The goals of the rest of this chapter are to offer a bird‘s eye view of the language,
introduce the Atm scenario that will be used in the tutorial, and highlight differences
between the Brahms modeling philosophy and that of object-oriented languages.

2

2.2 ANATOMY OF A BRAHMS MODEL: THE ATM SCENARIO

A Brahms file is a file written according to the rules of the Brahms language and
identified with the .b extension (the Brahms programming environment, called the
―Composer,‖ uses the .bmd extension to refer to a complete Brahms model written with
the Composer. The Composer can be downloaded from the AgentISolutions website).
Most of your Brahms models (including the Atm case that you will build through this
tutorial) will consist of more than one Brahms file. Unlike most other languages like C,
Java or Pascal, Brahms does not have a main method that serves as the starting point
for a Brahms simulation. While Brahms does not prevent you from placing more than
one concept in one Brahms file, it is recommended that you create one .b file for each
―concept‖ that you specify for your model. A concept can be a group, agent, class,
object, areadef, area, path, conceptual class or conceptual object - but we will go back
to this in detail in the next sections. It is also recommended that you always create one
Brahms file (.b) for your model that will import all the other .b files that are to be part of
your model. Also this aspect of the language will be explained in the next sections.

The Atm scenario discussed in the following pages will be used to introduce you to the
various components of the language and the main differences between object-oriented
and agent-oriented programming. The goal of the scenario exercises is to model the
following system:

Model a day in the life of a college student. Notoriously, college

students spend most of their time studying, but get hungrier as the time

goes by. When their hunger reaches a certain threshold, students have to

move to one of the restaurants around their location. Students choose

restaurants according to how much money they are carrying: the richer

they are, the more expensive a restaurant they will choose. If a student

does not have enough money even for the cheapest restaurant, she will

decide to pass first by an Atm of the bank where she has an account.

When she arrives at the Atm, the student inserts her bankcard and tries

to remember the PIN associated to her account. The Atm allows its user 3

attempts to digit the correct PIN, before refusing the card altogether.

The Atm communicates with the central bank computer to verify the

correctness of the information provided by the user. If the bank computer

informs to the Atm that the PIN is correct and that the user has enough

balance in her account, the Atm will dispense the cash and will print an

invoice with the account number and the remaining balance.

2
 For additional information about the theoretical foundations of Brahms, cfr. 3.8.

Brahms Tutorial Version 1.2 Page 2-7
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Students need to have enough balance in their accounts to take out cash:

if they attempt to take out more money than they have, the bank computer

will notify the students (through the Atm) of the remaining balance of

the account. The student will then need to modify her request

accordingly, and only take out the remaining dollars.

Don‘t worry – you will not have to model all of this right now! Chapter 4 will drive you
through this scenario step by step, progressively adding components and activities and
increasing realism and complexity. Still, to get you started and give you a sense for the
language that you will be discovering, you will be now given an example of code coming
from the Atm case itself. Clearly, you will not yet be able to ‖read‖ this code. Still, it may
be useful to you to browse through it, trying to recognize some of keywords that we
have described above (such as ―agent,‖ which are the subjects of ―activities,‖ which are
triggered by ―workframes,‖ etc.), to get familiarized with the concept and components of
a Brahms file. This file describes (some of) the activities of the ―Student‖ agent:

package gov.nasa.arc.brahms.atm;

group Student {

 attributes:

 public boolean male;

 public double howHungry;

 public int perceivedtime;

 public Diner chosenDiner;

 public boolean hasTakenCash;

 relations:

 public Account hasAccount;

 public Cash hasCash;

 public BankCard hasBankCard;

 initial_beliefs:

 (current.hasTakenCash = false);

 (Boa_Atm.location = BankOfAmericaUniversityBranch);

 (WF_Atm.location = WellsFargoUniversityBranch);

 activities:

 move MoveToLocation(Building loc) {

 priority: 1;

 location: loc;

 }

 primitive_activity FeelHungry() {

 priority: 1;

Brahms Tutorial Version 1.2 Page 2-8
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 }

workframes:

 workframe wf_MoveToLocationForCash {

 repeat: true;

 variables:

 forone(Cash) cs;

 forone(Atm) at;

 forone(Bank) bk;

 forone(Building) bd;

 when(knownval(current hasCash cs) and

 knownval(at.location = bd))

 do {

 MoveToLocation(bd);

 conclude((current.readyToLeaveAtm = false),

bc:100);

 }

 }

thoughtframes:

thoughtframe tf_ChooseBlakes {

 repeat: true;

 variables:

 forone(Cash) cs;

 when(knownval(current hasCash cs) and

 knownval(cs.amount > 15.00) and

 knownval(current.checkedDiner = false) and

 knownval(Campanile_Clock.time < 20))

 do {

 conclude((current.chosenDiner = Blakes_Diner),

bc:100);

 }

 }

} // Student

Brahms Tutorial Version 1.2 Page 2-9
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

2.3 OBJECT-ORIENTED PROGRAMMING AND BRAHMS

The code above is taken from the Atm model that you will build during this tutorial. The
Atm scenario is a classical case in object-oriented programming (OO). Comparing its
implementation in OO languages and in an agent-based language such as Brahms will
be particularly instructive.

2.3.1 THE ATM CASE IN OBJECT-ORIENTED PROGRAMMING

2.3.1.1 THE SCENARIO IN AN OBJECT-ORIENTED FRAMEWORK

Consider the Atm scenario described by Rumbaugh et al. in Object-Oriented Modeling
and Design, 1991 (ch. 2-6). The goal of the OO programmer is to ―design the software
to support a computerized banking network including both human cashers and
automatic teller machines (Atms) to be shared by a consortium of banks. Each bank
provides its own computer to maintain its own accounts and process transactions
against them. Cashier stations are owned by individual banks and communicate directly
with their own bank‘s computers. Human cashiers enter account and transaction data.
Automatic teller machines communicate with a central computer which clears
transactions with the appropriate banks. An automatic teller machine accepts a cash
card, interacts with the user, communicates with the central system to carry out the
transaction, dispenses cash, and prints receipts.‖ (op. cit., p. 151).

Therefore, the Atm scenario can be represented as a set of objects with their attributes
and relations: a consortium, consisting of banks, which hold accounts of customers;
customers have cash cards, through which they access their accounts during
transactions at the Atm, which accesses the central computer to communicate with the
Bank (cf. op. cit., ch. 8).

2.3.1.2 THE ―MODELS‖ IN OBJECT-ORIENTED PROGRAMMING

The object modeling technique that Rumbaugh et al. propose to code the Atm scenario
uses three kinds of ―model:‖ the object model, that describes the objects in the system
and their relationship; the dynamic model, that describes the interactions among objects
in the system; and the functional model, that describes the data transformations of the
system. Note that the term ―models‖ here refer to descriptions of different aspects of
the system, and clearly cross-linked. Through them, a modeler can design an Atm
system as a system of objects with attribute and relations that exchange information
within themselves.

Brahms Tutorial Version 1.2 Page 2-10
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

2.3.2 THE ATM CASE IN BRAHMS

2.3.2.1 THE SCENARIO IN BRAHMS

At the core of Brahms there is the concept of ―agent.‖ An agent represents an interactive
system, a ―subject‖ with a certain ―behavior‖ who is interacting with the world. An agent
can, for example, represent a person in an organization; but could also represent an
animal in a forest. A Brahms model is always about the activities of agents in a work
process, and agents engage in activities depending on ―facts‖ of the world as well as the
―beliefs‖ they have about those facts. Mapping the Atm scenario from objected oriented
programming into Brahms, therefore, means that the modeler must adopt a ―holistic‖
approach to modeling, trying to explain and simulate individual behavior through actions
and decisions, and selecting what to keep inside the picture and what to take out. An
exemplar Brahms embodiment of the Atm scenario discussed above could be the
following (note how the abstract scenario has been made more specific; note also that
relevant Brahms concepts and keywords are indicated within parentheses – their
meanings will be discussed in the next sections):

Alex (agent), a student (group) at Berkeley (location), has cash (object)

and an account (object) at the Bank of America (object, instance of the

class Bank) that he can access by using his cashcard (object) at an Atm

machine (object with location). Alex studies (activity) most of the time

(workframe), but as the time goes by he also feels (belief) the urge

(workframe) to eat (activity). There are some restaurants in Berkeley,

with different menus and prices (attribute). When he is hungry

(attribute), Alex checks (thoughtframe) how much money he is carrying

(fact). Depending on his financial situation, he can then decide to

(workframe) move (activity) to one of restaurants and eat, or instead go

first to the Atm to get some cash (workframe, activity). At the Atm, Alex

will insert his cashcard into the Atm machine, which will read the card

and ask for its pin. The Atm then will communicate with the Bank, verify

the card and the provided information, and complete or abort the

transaction. To make things more interesting, there is another student,

Kim, who does the same things Alex does but likes different restaurants,

has a different time schedule, and has opened her account at a different

Bank from the one Alex is using…

As it might be already clear from this short example (and as it will certainly get clearer
the more you will progress into your tutorial), there is a deep conceptual difference
between the way the Atm scenario can be dealt with in Brahms and the object-oriented
approach. To write a proper Brahms model, you will have to think about the why and
how of the various actions agents and objects perform. This is a more complete and
more holistic approach. It is a human centered computing (HCC) view as opposed to the
software engineering view. The latter might be content with focusing on use cases. The
HCC view instead studies why and how the human is using the machine, before
designing the Atm machine itself. This also translates in language differences between
Brahms and other object-oriented languages: Brahms is an agent-oriented language
with elements of rule-based languages, where ―activities‖ are not the same things as
―methods,‖ and ―workframes‖ are not the same as ―if..then” constructs of imperative
languages. It is important to keep this in mind while modeling in Brahms, in order to
avoid errors and misunderstandings.

Brahms Tutorial Version 1.2 Page 2-11
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

2.3.2.2 THE ―MODELS‖ IN BRAHMS

Let‘s go back to the concept ―models‖ (see 2.3.1.2), by which we refer to ―views‖ or
―descriptions‖ of different aspects of a scenario we want to model and simulate. The
Atm scenario can be decomposed into various Brahms ―models‖. In fact, in Brahms
more models can be used than the 3 ones discussed in Rumbaugh et al. Each ―model‖
is a view of a specific aspect that is important in a Brahms simulation: the agents, the
activities, the objects, etc.

What follows is a list of ‗conceptual‘ models through which you can interpret and think
through your Brahms simulations. Note that they are not explicit pieces of code: you can
rather see them similarly to the ―views‖ in the UML approach. Similarly to UML views,
when you will know more about the Brahms language, you will see that thinking your
project first in terms of these Brahms models or ‗views‘ will improve the speed, efficiency
and precision of your Brahms coding.

1. Agent model; represents the groups, agents and their relationship. For example,
Alex and Kim are both students, that is, members of the group Student.

2. Activity model; represents the activities that can be performed by agents and
objects. Activity like going to the bank to get money, or going to eat, with their
decomposition into smaller units.

3. Communication model; represents the communication between agents and
objects. The communications that take place, for example, between a student
and the Atm machine, or the Atm machine and the bank.

4. Timing model; represents the constraints and relationships between activities - if
any exist. The staging of the simulations: for example, before going to the
restaurant, an agent will check if he has enough money, and in case might go to
the bank to get more…

5. Knowledge model; represents the knowledge (initial beliefs and thoughtframes)
of agents and objects. Agents have beliefs that describe their knowledge of the
world. Alex might or might not know where the Atm machine for his bank is
located. He needs that information in order to get cash out of the bank. Agents
can also deduce new beliefs, based on inference rules, such as: “If I don't have
enough money to pay for my lunch, then I first have to go to the bank to get
money.”

6. Object model; represents the (conceptual) classes and objects in the world,
used as resources by agents or used to track information flow. Objects like the
Atm machine, the Bank Card, the Cash, etc.

Brahms Tutorial Version 1.2 Page 2-12
TM01-0002 3/31/2011 Overview of Brahms and the Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

7. Geography model; represents the geographical environment in which agents
and objects perform their activities, specifying areas and possible travel paths.
The geography of Berkeley, with details about where the restaurants are, where
the Atm machines are, etc.

Your first exercise in the tutorial will be to write down a draft of how the various concepts
which are part of the Atm scenario should fit into these models. Note: you are not
expected to be writing code! Quite the opposite, you can choose the format of your
choice (a list of items, drawings with boxes and lines, or tools like Visio, Mifflin,

3
 etc.) to

represent conceptually how you see the scenario‘s components and their interactions.
Ask yourself questions like: what concepts should I put in the agent model? What
concepts are important in the knowledge model, because they refer to – say - the
knowledge agents have about their environment? Note that this is an exercise less
about the Brahms language specification than about its underlying philosophy. In other
words, you do not need to know the language to complete this exercise. Rather, you
must start thinking in terms of ―work practice,‖ activities situated in specific
environments, as well as they ―why‖ and ―how‖ of things.

You might start with the information provided above. Currently, without knowing much of
Brahms syntax and structure, it is likely that you will not be able to neatly fit the scenario
concepts described above in the proper model/view. Don‘t worry - you will see that as
you progress in the tutorial, you will be able to come back to these models and refine
them. Ok: you should give it your initial try now!

3
 See http://www.compendium.org.

http://www.compendium.org/

Brahms Tutorial Version 1.2 Page 3-13
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

3. INSTALLATION AND COMPONENTS
4

3.1 BRAHMS OVERVIEW

Brahms models are written in an agent-oriented language that has a well-defined syntax
and semantics. The Brahms language is a ―parsed‖ language: you write the code and
then the parser generates an internal object representation for the ―run-time‖
component. Using this language, a Brahms modeler can create Brahms models. The
run-time component - the simulation engine - can execute a Brahms model, also
referred to as a simulation. This chapter will teach you how to install and use the various
components that form the Brahms system and allow you to write Brahms model and
then run them as Brahms simulations.

3.2 INSTALLATION

Brahms development environment is bundled into an application called the ―Brahms
Agent Environment.‖

5
 The environment also requires MySQL and a license file to

function properly.

3.2.1 INSTALLING BRAHMS AGENT ENVIRONMENT

First, go to http://www.agentisolutions.com/download/download.htm and download the
installation file for Brahms Agent Environment for the operating system of your choice
(operating systems currently supported are: Windows XP/Vista/Win7, Linux, and Mac
OS X). The Brahms Agent Environment installation package includes several
components:

 The Composer, which is an IDE (Integrated Development Environment) that
allows you to build Brahms models.

 The Compiler, which is an application which parse the code you have created
with the Composer into code that is readable by the Virtual Machine.

 The Virtual Machine (or Simulation Engine), that literally reads and runs the code
parsed by the Compiler and produces a ―simulation run‖ of your model.

4
 Sources: Brahms Installation readme.txt file; communications with Brahms development team.

5
 There exists also a version called ―ProfessionalAgent.‖ In this tutorial will be focus on the features available in the PersonalAgent
application. For more information, visit http://www.agentisolutions.com.

http://www.agentisolutions.com/download/download.htm
http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 3-14
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 The Agent Viewer, that allows you to visualize and study the simulation run you
have just created (integrated in the Composer).

After you download the Agent Environment, use the file setup.exe to launch the
installation program that will guide you through the steps to install ―Agent Environment.‖
Agent Environment is the core of the Brahms language: you will use its components to
write, compile, and run your Brahms models. For the installation location we recommend
C:\Brahms\AgentEnvironment. Installation of the Brahms Agent Environment in
C:\Program Files will result in issue on Windows Vista and Windows 7 due to its User
Account Control not permitting an application to write data to sub folders of Program
Files.

The installation program will install one executable and some scripts in a bin directory,
including: one for the Brahms Composer (Composer.exe), one for the Brahms Compiler
(bc.bat), and one for the Simulation Engine (Virtual Machine: bvm.bat).

The setup.exe program will also install the Brahms Agent Viewer that you will be able to
access through the Composer. The Agent Viewer will give you a graphical
representation of the Brahms models that you have successfully compiled and run with
Agent Environment.

3.2.2 INSTALLING MYSQL

Next, download MySQL 5.1. In order to actually see your Brahms simulations‘ results,
you need MySQL 5.1, which is not distributed with Brahms but that can be downloaded
for free from http://dev.mysql.com/downloads/. Save and install the version of MySQL
5.1 that is compatible with your operating systems. (Please read the
AgentViewer_Readme.html file in the Brahms directory - which is c:\program

files\brahms\AgentEnvironment by default - for detailed MySQL 5.1 installation
instructions.)

3.2.3 INSTALLING THE LICENSE FILE

Finally, go back to the AgentISolutions website and register in order to obtain a Brahms
license file. Go to the page: http://www.agentisolutions.com/download/registration.htm
and provide your email address. The license file is needed to run the Brahms simulation
engine. After you register, you will receive your license file by email. Next, you should
copy it to the new Brahms\AgentEnvironment\ directory that the Agent Environment
installation application has created.

http://www.agentisolutions.com/download/registration.htm

Brahms Tutorial Version 1.2 Page 3-15
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

3.2.4 CHOOSING THE BRAHMS MODEL DIRECTORY

By default, setup.exe will install all Agent Environment files in a folder
Brahms\AgentEnvironment\ in the c:\Program Files directory. In this same directory the
Composer will save by default your Brahms models. We recommend installation in
C:\Brahms\AgentEnvironment\ especially on Vista and Windows 7 due to limitations
imposed by the User Account Control not permitting applications to write data inside of
sub folders of Program Files.

It might be useful to create an alternative folder for your projects and their files. Pros:
you might want to keep your models (the ―data‖) in a different location (e.g., a different
drive) than your application. Cons: you will have to do some ―personalization‖ of a
couple of components (not to worry: the steps are discussed below). In the rest of this
tutorial we will follow the ―hard‖ path and create our own model folder. This will be a nice
way to start learning how Brahms works.

3.2.5 THE ATM FILES

Together with this Tutorial and the installation file for the Agent Environment, you should
also download a zipped set of folders containing the Atm model code for different stages
of the scenario evolution. If you have not downloaded them yet, do it now! Currently you
can find the Atm model files here:

http://www.agentisolutions.com/documentation/tutorial/Brahms_Tutorial_Files.zip

 (there will be a zipped file containing 4 folders, referring to different stages in the
evolution of the tutorial). After you download the zipped files, we suggest that you unzip
them to the following folder (that you need to create):

c:\Brahms\Projects\

The first folder – Brahms – can be used as a location for all of your Brahms working (i.e.,
non-application) files. The subfolder Projects will be used to contain the actual Brahms
files that are part of your future Brahms models. The unzipping process will create a
folder c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\ that will
contain the files belonging to various versions of the Atm model – the ones that we
provide for you, and the ones that you will develop by yourself. Hence, from now on and
for the rest of this tutorial, we suggest that you will save all your Brahms files for your
Atm project inside the folder:

c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\

You will use the files we provide to you to study the application of the language
constructs, to compare your code with ours, and for help when you will have to write
your own Brahms code to model various aspects of the Atm scenario.

http://www.agentisolutions.com/documentation/tutorial/Brahms_Tutorial_Files.zip

Brahms Tutorial Version 1.2 Page 3-16
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

You can also use those files to start seeing how a Brahms model works. The folder
called ‗Final‘ contains the complete version of the scenario: that is, what your model
should look like by the end of this tutorial. The other folders contain the scenario as
modeled up till different sections of this tutorial, that is, they are the ―solutions‖ to earlier
sections of the tutorial (the name of the folder refers to which chapter‘s stage of the
scenario the code describes). These folders offer you a way to study and compare the
evolution of the tutorial from the simple activities of the first Lessons to the complex
interactions of the last ones. You may open these files right now and see their content.
You will find:

 .b files: they are the Brahms model files.

 .bcc files: they are the files produced by the ―Brahms Compiler.‖

 Atm……txt files: they are files containing the history of the events in the simulation,
and they are produced by the ―Brahms Virtual Machine‖, or ―Simulation Engine.‖

 EventInformation.txt file: this file contains a human readable output of the
events in the simulation, and they are produced by the ―Brahms Virtual Machine‖,
or ―Simulation Engine.‖

3.2.6 TO SUMMARIZE: WHAT YOU WILL NEED

To recap: to use Brahms and this Tutorial, you will need to:

- Download and install the Agent Environment (see above)

- Download and install MySQL 5.1 (see above)

- Obtain and install the Brahms license file (see above).

- Download and unzip the Tutorial files (see above)

Ok? Let‘s move on then!

3.3 DESCRIPTION OF COMPONENTS

3.3.1 INTRODUCTION: THE LIFE OF A BRAHMS SIMULATION

In this section we will consider the different components of the Brahms system. The ―big
picture‖ to keep in mind is the following:

Brahms Tutorial Version 1.2 Page 3-17
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1. A Brahms simulation starts with somebody – you! – writing Brahms code. You
will use the Brahms Composer for this scope. In the Composer you can write
code by using the internal text editor, or through the graphic interface that allows
you to create concepts and modify parameters by moving your mouse and
dragging/dropping items on the Composer windows. The final output of this
stage will be a (set of) Brahms files, i.e. lines of code written according to the
Brahms language rules and saved with the .b extension (the Composer also
saves your entire model as a single entity in the .bmd format. More on this below)

2. Then, while still inside the Composer, you can ―build‖ your .b files. Building your
model means that you use the internal parser to produce new files based on the
.b files you have written. The new files are .bcc files that can be read by the
Brahms Simulation Engine. The new files are produced if no compilation errors
are encountered.

3. The next step is to ―run‖ your model (now contained in the .bcc files) into a
simulation: you can do this from the Composer environment (which in turn will
use a component called Brahms Simulation Engine, aka Virtual Machine). If all
goes fine, the result will be an ‖event‖ file (saved with the .txt extension) that
contains all the ―history‖ of your simulation.

4. Last step: seeing your simulation. Again, from within the Composer, you can
―view‖ with the Agent Viewer - you will have to create a new Brahms database
based on the .txt event file and then open it through a graphical interface
provided inside the Composer.

We will now discuss in details these various components by trying to run the Atm model
files available online..

We will assume that you have already completed the installation steps described above:
you installed the Agent Environment, you installed MySQL, you obtained your License
File, and you downloaded the Tutorial files.

In the rest of this section we will test the installation and the behavior of your Brahms
system by making use to the Tutorial files.

3.3.2 THE BRAHMS COMPOSER: OPENING, CREATING, AND BUILDING A MODEL

The Brahms Composer allows you to create Brahms models through a powerful and
intuitive graphic interface. The complete Composer‘s manual is available from the
AgentiSolutions website (http://www.agentisolutions.com/) and is a great companion to
this tutorial. In this section we only provide a quick introduction to its usage and
capabilities, but we refer the reader to the Composer manual for a more accurate
description.

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 3-18
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In theory, any text editor would be sufficient to create Brahms models. You could just
insert code for each ―concept‖ in your model (such as groups, agents, locations, objects,
etc.) into a different file, and give each of these files the extension .b (see Section 4.3).
However, with the Brahms Composer you can create much more easily and quickly
Brahms concepts and edit them. Editing can be done through the Composer‘s graphic
interface (Figure 1), or through the internal text editor (Figure 2). The Composer
automatically creates .b files for you, as well as .bmd files. The former are the actual
Brahms files that you create, edit, and parse in order to obtain a simulation run.
Typically, a Brahms model – such as the Atm scenario – is composed of several agents,
objects, etc., and therefore of several such files. The latter are files used only by the
Composer to manipulate your model as a whole – that is, there is only one such file for
each model of yours.

Figure 1 - The Composer: The graphic interface

Brahms Tutorial Version 1.2 Page 3-19
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

When you start the Composer, you have the option to start a new model, open an
existing one, or import the files of an existing model (Figure 3). The first option will be
discussed in Section 4.3. The difference between the other two options is that ―opening‖
refers to accessing a .bmd file previously created by the Compose, while ―importing‖
refers to importing into the Composer a set of Brahms .b files (composed, as discussed
above, possibly with a simple text editor), starting with the .b file in your model that has
an ―import‖ statement for all the other files (―import‖ statements are discussed in Section
4.3).

Figure 2 - The Composer: The internal text editor

To learn about the Composer and to test the installation of your files, we will try to use
both latter options (―import,‖ and ―open‖) with the Atm scenario files that you have
downloaded. Note, however, that in the rest of this tutorial, we will focus more on
understanding how the language works and can be used, and less on how to use the
Composer (although examples and references will be made throughout the text).

Brahms Tutorial Version 1.2 Page 3-20
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 3 - Opening the Composer

Ok. So, we are going to assume that you have followed the steps above (installed the
Brahms components, created the new directories, and downloaded the Atm Model files).
This should mean that your Brahms application files have been saved in a
\Brahms\AgentEnvironment\ folder in your root directory and that your model files have
been saved in c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\.

Now, launch the Composer (look for the bin folder and click on Composer.exe) choose
―Import‖ tab in the Composer dialog window (see Figure 4), look for the
c:\Brahms\Projects\AtmModel folder, and then look into the folder:

c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm

Brahms Tutorial Version 1.2 Page 3-21
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Basically, we want to test the files for the ―Final_source‖ model. In this folder, select as
―File_name‖ the file AtmModel.b. If a library path is request, add:
c:\Brahms\Projects\AtmModel\final_source (we will explain soon why). Click on open.
You should see something like Figure 1 (although not necessarily all windows will be
opened).

Figure 4 - Importing the Atm complete scenario in the Composer

Now go to the ―File‖ menu (top left) and choose: ―Save Project.‖ Congratulation, you
have just imported and then saved again your first Brahms model! Now exit the
Composer (in the ―File‖ menu, choose ―Exit‖).

Brahms Tutorial Version 1.2 Page 3-22
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Start the Composer again. This time, however, do not choose the ―Import‘ tab but rather
the ―Existing‖ tab. Look for the c:\Brahms\Projects\AtmModel\final_source folder and
open the AtmModel.bmd file. This is the file which did not exist before and that has been
created by the Composer when you chose to save your project. Again, as your model
opens, you should see something like Figure 1. You have just learnt two ways to
achieve the same goal – open in the Composer an existing Brahms model!

In addition, the Composer also grants you access to the Brahms Compiler.

By opening or compiling the files in the Brahms Composer, the modeler will be able to
check whether they are syntactical correct or whether there are other errors in the code,
and to produce xml files that can be fed into the Brahms Virtual Machine.

Before we see how this works, we must clarify the issue of that library path we
mentioned above.

As the name says, with the library path we tell the Brahms Compiler what path to use
when compiling files. By default, the Composer will look for the Models\lib folder in the
AgentEnvironment folder, and if you wish so, you could certainly use this folder.
However, several users prefer to keep working projects separated from application files,
in different folders or even in different drives, and in this tutorial we want to teach you
how to use your Brahms model files in a different directory. This is why you were asked
in the previous section to create the set of nested directories inside
c:\Brahms\Projects\AtmModel\final_source. This will be a useful exercise to start
learning about how Brahms work – and will also make your future Brahms projects more
flexible and reusable.

Technical note: The above approach comes at a little cost, however. If you want to use a particular directory to work on
the files of your Brahms models (as we are forcing you to do in our exercise; in our case, the directory is:
c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm), you must add a few parameters

in the Brahms environment. In particular, you may have to modify a vm.cfg file to read in the library path that you are

going to use for your models. This file is located in the AgentEnvironment directory created during installation, and by

default it is set to:

 library_path=<installation directory>/Models

“Models” refers precisely to the directory inside AgentEnvironment we were mentioning above. Now, let us assume

that instead you want to you use a c:\Brahms\Projects\AtmModel\final_source folder to save all your models

(included the Atm). Then you should modify your library_path information to look like:

library_path=c:/Brahms/AgentEnvironment/Models/lib;

c:/Brahms/Projects/AtmModel/final_source;

Brahms Tutorial Version 1.2 Page 3-23
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Ok.
6
 Now note: use of '/' as the path separator is important even though Windows uses '\' as its path separator, as an

alternative you can use a double '\'('\\')! As you see, you can add other directories to this path by separating the
directories with a semicolon (;). In this case we have left two directories – hence, if you like, you might keep on using the
default Models/lib directory as the location for your model files.

Anyway – let‘s go back to the Composer. You opened or imported your Atm model.
Now, what do you do with it? Well, you can compile it so that the Simulation Engine will
be able to run a simulation of your model. To compile your code from the Brahms
Composer, simply go to the ―Build‖ menu when your model is open, and choose ―Build
Model.‖ There you go – if all goes well, at the bottom of the Composer window a
message will appear telling you that the build was successful. Some xml files will have
been created – but we will discuss this later, in 4.3.

Technical note: if you prefer to go “manual” and directly access the underlying Compiler, you should execute the following
from a MS-DOS command line:

c:\Brahms\AgentEnvironment\bc.bat -dtd c:\Brahms\AgentEnvironment\DTD -lp

c:\Brahms\AgentEnvironment\Models\lib;C:\Brahms\Projects\AtmModel\final_source

C:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\AtmModel.b

where the first part of the command (up to bc.bat) calls the Brahms Compiler executable, the second part (-dtd

c:\Brahms\AgentEnvironment\DTD) tells the Compiler the path for the XML document type definition files

referenced in the Brahms Compiled Code (bcc files), the third part (-lp

c:\Brahms\AgentEnvironment\Models\lib;C:\Brahms\Projects\AtmModel\final_source) tells the

Compiler the library path, and the last part passes to it as an argument the AtmModel.b file – which is a Brahms file that

imports all the other files of the Atm project (or „package‟: more about this in 4.3.3, where you can also see an example of
code that imports other files for a project).

7

Additional technical note: if you want to go “manual,” then, in order to use the Compiler (as well as the Virtual Machine,
that we will discuss in a moment) from other places on your machine (without having to spell out all the directory
structure), make sure to add the Brahms AgentEnvironment directory to your system PATH environment variable: that

is, open your autoexec.bat file and add the directory where the bc.bat and bvm.bat files can be found to the line

with the PATH: command.
 8

6
 Why did we leave about the ‗c:\brahms\Projects\AtmModel\final_source‘ directories? This will become clearer in section 4.3.3, but
if you want a rough explanation now, keep on reading. Basically, the Brahms language uses ‗packages‘ that are mapped to a
directory in the file system. The package declaration represents a hierarchical directory structure and is written in the Brahms
model files themselves. For example, the Atm files will be written as part of the package gov.nasa.arc.brahms.atm that

maps to the directory gov\nasa\arc\brahms\atm in the file system. Hence, you do not need to specify the package in the

configuration files – you only need to specify where this (and any future packages) can be found!

7
 This parser creates the xml files from the .b files; it is possible to have a .b file that imports all the files in a package, with the
expression import package.* ; If the parser starts from this file, it will automatically compile all the others (cf. 4.3.3 on the

anatomy of a Brahms file).

8
 To add or changes values of environment variables in windows 2000/XP/Vista/Win7 use the following procedure:

1. Click on Start > Settings > Control Panels.

2. Double-click on System.

3. On the Advanced tab, click Environment Variables.

4. Select the user or system variable you want to change as follows:

5. Click New to add new variable name and value.

Brahms Tutorial Version 1.2 Page 3-24
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Either way (click on the ―Build‖ button on the Composer panel, or use the command
line), the Brahms Compiler will start and the model will be compiled. The outcome of the
compilation will be a set of bcc files produced in the very same
c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\ folder.

9

3.3.3 THE BRAHMS COMPOSER AND THE VIRTUAL MACHINE: RUNNING A MODEL

After successfully compiling your model, go to the ―Run‖ menu in the Composer and
click: ―Run Model.‖ You should see a number of messages in ―VM Log‖ window, such
as:

INFO : Starting engine for 'gov.nasa.arc.brahms.atm.WF_Atm'

INFO : Starting engine for 'gov.nasa.arc.brahms.atm.Boa_Bank'

INFO : Virtual machine started...

INFO : Stopping virtual machine

INFO : Stopping scheduler

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.Alex_Agent'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.Kim_Agent'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.Campanile_Clock'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.Boa_Atm'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.WF_Bank'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.WF_Atm'

INFO : Stopping engine for 'gov.nasa.arc.brahms.atm.Boa_Bank'

INFO : Stopped event notifier

But what does it mean to ―run‖ a Brahms model? When you select ―Run‖ from the
Composer, a component called Brahms Virtual Machine runs the simulation by reading
the bcc files produced by the compiler and producing a text file with the history events
captured during the simulation. This text file can be parsed by the Agent Viewer
application to produce a complete event history database of the simulation.

6. Click Edit to modify the highlighted variable (i.e. PATH) If you are not logged as an administrator to the local computer,

you can only create/change/delete User Variables. These variables will only be accessible to the particular user. No
reboot is required. You just need to open a new terminal window if you had one open for the changes to take effect in the
terminal window.

9
 A complete guide to the Composer is available from the AgentiSolutions website (http://www.agentisolutions.com/). The
information presented in this section only covers the most basic steps needed to start working on the ATM scenario.

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 3-25
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Technical note: the Virtual Machine can be also called from MS-DOS (rather than from within the Composer) by
executing bvm.bat and by giving it the relevant bcc filename, without the bcc extension.

10

Given that the Brahms Compiler saves the xml files in the same directory where the .b files are saved, the Virtual

Machine is called through bvm.bat, which must be given the filename of the file that imports all other files. For example,

in the case of the Atm model, supposing that the .b files have been created in the

c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm directory, the Compiler will save

there also the bcc files, and the necessary command to run the simulation will be:

bvm -cf C:\Brahms\AgentEnvironment\config\vm.cfg gov.nasa.arc.brahms.atm.AtmModel

where AtmModel, again, represents the bcc file created by the Brahms file that imports all the other Atm project files.

The example above assumes that bvm.bat - that resides in the Brahms\AgentEnvironment directory – can be called

from anywhere because the PATH variable in the autoexec.bat file has been already modified. Furthermore,

remember that the vm.cfg file has a library path that must contain the path where your xml files can be found:

library_path=c:/Brahms/AgentEnvironment/models/lib;C:/Brahms/Projects/AtmModel/fin

al_source

Anyway: the Virtual Machine will first initialize and load the concepts of your model, and
then it will start the engine. When it stops,

11
 a history file with a .txt extension will have

been created in the AgentEnvironment/Databases folder, with the format: ‗model
name_date_time‘: e.g., Atmmodel_20010418_100523.txt. Everything that happened in the
simulation is in this file.

Technical note: it is possible to add an undocumented flag –ui as an argument to the bmv.bat command in order to halt

the simulation at the modeler‟s discretion. An applet will start when the Virtual Machine is running the simulation; this
applet will let you halt the process and still obtained a file that the Agent Viewer - discussed below - can parse.

3.3.3.1 IMPORTANT: WHEN THINGS DON’T WORK…

At this stage, there are a couple of things that might be wrong. If a history file is not
created, then most likely you don't have the proper setup in your library path. In the
AgentEnvironment\config directory you will find a vm.cfg file. Again, check that the
library path contains the path where your xml files can be found:

library_path=c:/Brahms/AgentEnvironment/models/lib;C:/Brahms/Projects/AtmModel/fin

al_source

The folder C:/Brahms/Projects/AtmModel/final_source has been created automatically
when you unzipped tutorial files. (note that you can separate multiple paths using the
semicolon or comma). The second thing that could be the cause for the problem is an
incorrect use of packages. We will discuss packages in 4.3.3 but for the moment it will
suffice to recall that, if your Brahms files have statements like:

package gov.nasa.arc.brahms.atm;

then your model would have to be loaded using:

10
 Soon the Virtual Machine will be also accessible directly from inside the Composer.

11
 By default, Brahms simulations will run until the model stops executing because no agent or object has any activity left to
perform. Therefore, it is also possible for a simulation to go on indefinitely if any of its agents or objects never ceases being in an
activity. This is not the case of the models provided for the Atm tutorial, so you do not have to worry about this for the moment.

Brahms Tutorial Version 1.2 Page 3-26
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

bvm -cf C:\Brahms\AgentEnvironment\config\vm.cfg

gov.nasa.arc.brahms.atm.<modelfilename>

which in our case is:

bvm -cf C:\Brahms\AgentEnvironment\config\vm.cfg

gov.nasa.arc.brahms.atm.AtmModel

because the file AtmModel.b contains an import statement for all other .b files in the Atm
directory (note that the directory in which 'projects' is specified must be in the library
path as well).

Another problem could be that the license file has not been installed (see 3-13). Also, if
things are not working, you may want to check your vm.cfg file and check that the
library_path is set to the directory where your projects are saved.

Yet one more problem could be that something in the way the Brahms Composer deals
with projects has changed since the time this Tutorial was written. Since the Brahms
language and the Brahms environment are still evolving, it is possible that, for example,
the paths used by the Brahms Composer to save or run projects have been modified. If
you do not find files where this Tutorial says you should find them, first try to look for
alternative and simpler locations (for example, rather than searching in
c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\ , try looking
into c:\brahms\Projects\AtmModel). If unsuccessful, please contact us for help at
support@agentisolutions.com.

3.3.4 BRAHMS AGENT VIEWER

The final step is to open the Agent Viewer from within the Composer, and ‗parse‘ the
history of events text file that can be found in the AgentEnvironment\Databases folder.

What you need to do is, first, make sure that you have installed MySQL 5.1 and that its
Client is running on your machine. (in order to watch simulation results, make sure that
the MySQLAdmin.exe is running – that will show as a ―green‖ semaphore in your system
tray on Windows operating systems).

Next, go to the File/Agent Viewer menu in the Composer, and ―create‖ a new database
by selecting the history of events text file that can be found in the
AgentEnvironment\Databases folder.

The Agent Viewer will create a new database with the same name as the history text file
(something similar to AtmModel_20010415_134559). The database can be opened by
clicking on the File/Agent Viewer/Open Database menu option. (Agent Viewer by default
will try to open the most recently created database file, so you will simply have to click
on ―yes‖ in the selection window.)

mailto:support@agentisolutions.com

Brahms Tutorial Version 1.2 Page 3-27
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 5. Select a history file to parse in the Agent Viewer

Figure 6. Creating history database

Figure 7. Parsing history file into history database

Brahms Tutorial Version 1.2 Page 3-28
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Finally, go to the ‗View‘ menu inside the Composer and look for ―Time Line View.‖ The
operations of the model are visually verified using the Agent Viewer Time Line View The
Agent Viewer is a separate application inside the Composer that uses the simulation
history data to display a 2-dimensional graphical time-line view of the activities of agents
and objects. The following timeline figures are all screenshots from selected agents and
objects in the Agent Viewer. Using the Agent Viewer application the modeler can
investigate the simulation run and the properties of the model.

Figure 8. Agent Viewer Application – as of July 2004

Figure 8 shows the Agent Viewer. Using this application the end-user can select which
agents and objects to view in the time-line view, and investigate the exact behavior of
those agents and objects during the simulation):

Brahms Tutorial Version 1.2 Page 3-29
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

a. Using the menu-bar, the end-user can parse the simulation history data into a history database,

and open a history database for viewing.

b. When the database is opened all the agents and objects are loaded into the tree view. Using the

tree view, the end-user can select which agents and/or objects (s)he wants to view in the time-line

view.

c. By selecting to view the agent/object communication, the (blue) arrows show all the communication

activities, and the direction of the communication (sender and receivers). The communicated

beliefs are also accessible by clicking on the square at the top of the sender side of the

communication arrow.

d. For each agent/object the ‖current‖ location is shown. When the agent/object moves to a new

location, it is shown as a change in the location name and color.

e. The time-line can show the time in different time-intervals, therewith zooming in and out.

f. The tool-tip pops up when the mouse is moved over ―hot spots‖. The hot spots are those areas

where more information is available than can be shown on the screen. By moving the mouse over

those areas the hidden information pops up in a tool-tip, such as the name of a workframe or

activity.

g. The Activity-Context Tree is the central piece of the agent/object time-line. It shows the workframe

and activities hierarchy of the agent or object.

h. The touch-object line is a (yellow) line that is shown when the agent/object is using certain objects

in its activity. ―Touch objects‖ are used to calculate the time those objects are used in activities.

i. The explanation facility view is used to display more detailed information about the execution of

workframes. By clicking on any workframe (light blue in color), an explanation facility window is

opened for the workframe at hand.

j. By selecting the ―Active‖ tab in the explanation facility view, the executed statements in the

workframe body are shown.

k. You can select the statements in the workframe body to get more info.

l. When you select a statement in the body of the workframe, the total time the activity was active is

shown. Using the other tabs in this view, you can find out the exact time the workframe became

available, as well as the exact time it became active and ended.

m. Workframes are situated-action rules that execute activities. The top of an Activity-Context tree is

always a workframe. You can recognize a workframe by the ―wf:‖ symbol, followed by the name of

the workframe. When the zoom-level is too high to contain the name of the workframe it is left out

of the display. Using the tool-tip the user can find out the name.

n. Composite Activities are executed by workframes, and contain lower-level workframes. You can

recognize Composite Activities by the ―ca:‖ symbol followed by the name of the activity. When the

Brahms Tutorial Version 1.2 Page 3-30
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

zoom-level is too high to contain the name of the activity it is left out of the display. Using the tool-tip

the user can find out the name.

o. Primitive Activities are executed by workframes, and are always at the bottom of the Activity-

Context Hierarchy. You can recognize Primitive Activities by the following symbols, depending on

the type of primitive activity: ―pa:‖ (for a primitive activity), ―mv:‖ (for a move activity), ―cw‖ (for a

communicate activity), ―co:‖ (for a create object activity), followed by the name of the activity. When

the zoom-level is too high to contain the name of the activity it is left out of the display. Using the

tool-tip the user can find out the name.

Using the Agent Viewer it becomes possible to visually inspect the simultaneous
behavior of the agents and objects, and compare the expected behavior from the
conceptual model with the actual behavior during the simulation.

3.4 SUMMARY OF STEPS

To summarize, these are the steps necessary to write, compile and run the Atm
scenario (and by extension, any Brahms simulation):

1. Download and install the Brahms Agent Environment

2. Download and install MySQL 5.1

3. Obtain a Brahms license file.

4. Download and unzip the Tutorial files.

5. Open the Atm files for the “Final_source” model inside the Composer (by
opening the atm.bmd file or by importing the .b files), or use the Composer to
write the Brahms file(s), i.e. files with the .b extension written according to the
rules and specifications of the Brahms language.

6. Compile/build them inside the Composer (or, if you want to go “manual”, do it by
using bc.bat; for example, c:\Brahms\AgentEnvironment\bc.bat -dtd

c:\Brahms\AgentEnvironment\DTD -lp

c:\Brahms\AgentEnvironment\Models\lib;C:\Brahms\Projects\AtmModel\final_s

ource

C:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\AtmModel

.b where AtmModel.b is a file that imports the other files in the
gov.nasa.arc.brahms.atm package - more on package in the next chapter - and
c:\brahms\Projects\AtmModel\final_source is the library path).

Brahms Tutorial Version 1.2 Page 3-31
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

7. Run the Virtual Machine (simulation engine) on the xml files created by the
Composer in the same folder where you saved the .b files. You can do so with
the ―Run Model‖ command in the Composer, or, if you want to go “manual”, by
issuing the following command line in MS-DOS: bvm -cf

c:\Brahms\AgentEnvironment\vm.cfg gov.nasa.arc.brahms.atm.AtmModel.

8. Parse the resulting history of events .txt file from the Agent Viewer, which you
can access from the Composer, and then open the database the parser has just
created.

3.5 A NOTE ON DEBUGGING…

While the Brahms Composer provides syntactic verification of your Brahms files, the
system does not yet offer full debugging capabilities. Debugging a Brahms model can
be a difficult task and some tips will be provided at the end of the tutorial, in section
4.14.2 and chapter 5.

3.6 KNOWN BUGS IN BRAHMS AGENT ENVIRONMENT

A list of known bugs for the current version of the Brahms Agent Environment is
available online from http://www.agentisolutions.com.

3.7 CONTACTING THE BRAHMS PROJECT TEAM FOR TECHNICAL

SUPPORT

If you have questions about this tutorial, you can reach the curator at:
acquisti@agentisolutions.com. In case you have problems with the installation or
questions and problems with the use of the Brahms components that the tutorial does
not address, you can reach Technical Support at:

 E-mail: mailto:support@agentisolutions.com

 www: http://www.agentisolutions.com/support

The support team also actively participates in the discussion forums located on the
AgentiSolutions website. Support questions or questions about Brahms programming
and modeling can be posted in those forums. The Brahms community will try to help you
out whenever they can. You can find the discussion forums at:
http://groups.google.com/group/brahms-forum?hl=en.

http://www.agentisolutions.com/
mailto:support@agentisolutions.com
http://www.agentisolutions.com/support
http://groups.google.com/group/brahms-forum?hl=en

Brahms Tutorial Version 1.2 Page 3-32
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

3.8 OTHER IMPORTANT DOCUMENTS

 Brahms Language Specification; updated version available online at
http://agentisolutions.com/documentation/language/ls_title.htm.

 Brahms Tutorial Lite. A compact version of this tutorial, updated online at
http://agentisolutions.com/documentation/tutorial/tt_title.htm.

 Brahms Composer Manual. A guide to the IDE used to build Brahms model and
a good companion to this tutorial, updated online at
http://agentisolutions.com/documentation/.

 Maarten Sierhuis‘s PhD thesis, from which are taken parts of this document:
Modeling and Simulating Work Practice: Brahms, A multiagent modeling and
simulation language for work systems analysis and design. The book can be
purchased online from AgentISolutions website: www.agentisolutions.com.

 On the theoretical foundations of Brahms: Clancey, W. J., Sachs, P., Sierhuis,
M., and van Hoof, R. (1998). "Brahms: Simulating practice for work systems
design." International Journal on Human-Computer Studies, 49, 831-865.

Additional sources for each chapter are reported in footnotes at the beginning of that
chapter. A References chapter is included at the end of this document.

3.9 LATEST CHANGES

The Brahms language is continuously evolving. While we will make an effort to keep this
tutorial always updated, in some cases new constructs might be added to the language
and old constructs might be removed or changed and not be immediately reported in
this document. For the latest information on the Brahms language specifications, you
should regularly visit: http://agentisolutions.com/documentation/language/ls_title.htm and verify
the ―Document History‖ information. The most recent changes in the language that have
not yet been integrated in this tutorial are:

 put and get activities

 create agent activity

 java activities

 unknown values

 maps

http://agentisolutions.com/documentation/language/ls_title.htm
http://agentisolutions.com/documentation/tutorial/tt_title.htm
http://agentisolutions.com/documentation/
http://www.agentisolutions.com/
http://agentisolutions.com/documentation/language/ls_title.htm

Brahms Tutorial Version 1.2 Page 3-33
TM01-0002 3/31/2011 Installation and Components

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 java integration

For more information on these concepts, please read the online Language
Specifications.

3.10 DOCUMENT INDEX

You can use the Index at the end of this document to search for items and keywords.

Brahms Tutorial Version 1.2 Page 4-34
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4. ATM SCENARIO
12

Let the game begin! From this chapter on, you will be driven step by step through a
Brahms version of the Atm scenario introduced in the previous sections. You will be
shown Brahms concepts and then asked to use them in increasingly realistic and
complex representations of an Atm scenario. You will be given lots of examples about
what those representations should look like. Your final goal will be to model the following
scenario:

Model a day in the life of a college student. Notoriously, college

students spend most of their time studying, but get hungrier as the time

goes by. When their hunger reaches a certain threshold, students have to

move to one of the restaurants around their location. Students choose

restaurants according to how much money they are carrying: the richer

they are, the more expensive a restaurant they will choose If a student

does not have enough money even for the cheapest restaurant, she will

decide to pass first by an Atm of the bank where she has an account.

When she arrives at the Atm, the student inserts her bankcard and tries

to remember the PIN associated to her account. The Atm allows its user 3

attempts to digit the correct PIN, before refusing the card altogether.

The Atm communicates with the central bank computer to verify the

correctness of the information provided by the user. If the bank computer

informs to the Atm that the PIN is correct and that the user has enough

balance in her account, the Atm will dispense the cash and will print an

invoice with the account number and the remaining balance.

Students need to have enough balance in their accounts to take out cash:

if they attempt to take out more money than they have, the bank computer

will notify the students (through the Atm) of the remaining balance of

the account. The student will then need to modify her request

accordingly, and only take out the remaining dollars.

THE CAST (AGENTS and OBJECTS)

Students: Kim, Alex

Bank computers: Bank of America, Wells Fargo

Restaurants: Blakes, Raleighs

Studying Places: South Hall, Spraul Hall

Clock: the Campanile

Atms: one Atm for each bank

12
 Sources: Brahms Language Specification TM99-0008 v2.2; Maarten Sierhuis‘ PhD Thesis; communications with Brahms
development team members; Atm tutorial files and comments; Brahms Forum postings.

Brahms Tutorial Version 1.2 Page 4-35
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

A few comments. The complete scenarios will be (most likely) quite long and will include
several files. This tutorial will drive you through the scenario from start to end. However,
while in the beginning all the details will be described and all the code to implement the
cases will be provided, as you will progress in the tutorial less and less details will be
provided, and more will be left to your skills and your imagination. For example, you will
have to think for yourself how to model the reaction of the bank when a wrong pin is
inserted, or what happens when too little money is left into the account. For your own
verification, however, you have also been provided pieces of codes that represent
―snapshots‖ of the Atm scenario at different stages of its evolution. Remember though
that no single solution is the only the right one!

4.1 STRUCTURE OF THE SCENARIO

Each of the following sections will introduce you to a concept of Brahms modeling: the
basic compilation unit (section 4.3); the geography (section 4.4); groups, agents,
attributes and relations (section 4.5); facts and beliefs (section 4.6); workframes,
thoughtframes and activities (sections 4.7 and following); objects and classes (section
4.8); variables (section 4.10); as well as advanced topics like the interaction of many
agents, the use of priorities, and the use of random elements (sections from 4.9 on).

Each section will adhere to the same structure: a subsection titled ―Introduction‖ will
describe the scope of the section; the ―Task‖ subsection will present you with the
modeling goal to be accomplished by the end of the section; the ―Description‖
subsection will discuss, more or less formally, the language concepts of interest to the
section.

13
 The ―Syntax‖ subsection will link to the complete syntactical details and rules

of the concepts being discussed. Finally, the ―Tutorial‖ subsection will be the area where
the ―goal‖ and the ―description‖ meet: it will drive you through the actual coding of the
Atm scenario. As a general rule, it will be useful to try to code each section‘s scenario
on your own, right after reading the ―Task‖ and the ―Description,‖ before reading the
―Tutorial‖ section. Complete model files are also available and linked to from the

―Tutorial‖ sections, as described in Error! Reference source not found..

4.2 EXPECTATIONS AND GOALS

The reader should have some level of previous programming experience to get the most
from this tutorial. Knowledge of object-oriented languages and rule-based languages is
preferable, but not essential.

13
 The material in these sections is based on Maarten Seirhuis‘ PhD Thesis, cfr. 3.8.

Brahms Tutorial Version 1.2 Page 4-36
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

This tutorial will provide a self-contained introduction to the language. It will start with
simple concepts and examples and builds up in complexity and difficulty. By the end of
this tutorial you should be able to model easy to mildly complex scenarios on your own.
The tutorial however will not cover all of the language features. Once you get going, you
should refer to the online language specifications for a complete view of the language.

Experienced programmers might move relatively quickly through the initial sections of
the Tutorial (Sections 3 – 8) and spend more time on the final sections, where more
complex activities and constructs will be introduced (Sections 9 –11). Even experienced
programmers, however, should try to keep in mind that Brahms is different from object-
oriented languages: Brahms is an agent-oriented language with elements of rule-based
languages, where ―activities‖ are not the same things as ―methods,‖ and ―Workframes‖
are not the same as ―if..then” constructs of imperative languages.

One final note before kick-off: this tutorial will not follow the way you are supposed to
build a model in Brahms, because you still do not know about Brahms concepts. As we
have described at the end of the previous chapter, once you master Brahms you should
start your scenarios from the various ‗model views‘ presented in 2.3.2.2. We will come
back to this issue in section 4.14. And remember: there is no substitute for practice to
learn a new programming language. As mentioned above, while in the beginning all the
details will be described and all the code to implement the cases will be provided, as you
will progress in the tutorial less and less details will be provided, and more will be left to
your judgment. You will have to come out with good solutions to the exercises and
challenges proposed in the text. Of course, you will be given examples of code to
compare and verify your own solutions.

Brahms Tutorial Version 1.2 Page 4-37
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.3 LESSON I: GETTING STARTED

4.3.1 INTRODUCTION

This chapter will get you started with your first Brahms file – your first ‗compilation unit‘.

4.3.2 TASK

Create a Brahms file that contains a package declaration and an import declaration to
be used during the development of the Atm tutorial.

4.3.3 DESCRIPTION: COMPILATION UNIT

A compilation unit is a file with the extension ―.b.‖ Quite simply, we might say that a
compilation unit is each and any of the Brahms files in your Brahms model. Why do we
need several files to simulate one Brahms model? Well, that‘s up to you as a modeler.
In theory, you could write your whole model in one, single, long .b file. This practice
however is highly discouraged. Practicality and clarity, among other reasons, suggest
using different files for different concepts (for example, a file for each group, a file for
each agent, etc.) stored in the same folder (or in folders which are part of the same
tree).

Technically, a compilation unit consists of three parts, each of which is optional:

 A package declaration, giving the fully qualified name of the package to which the
compilation unit belongs

 Import statements that allow types from other packages to be referred to using their
simple names

 Type declarations of group, agent, class, object, conceptual object class, conceptual
object, area definition, area and path types.

The package declaration appears within a compilation unit to indicate the package to
which the compilation unit belongs. The Compiler loads a ‗.b‘ file when it is referenced in
an import declaration. Hence, the first compilation unit that you will write for your Atm
model will be a .b file whose only purpose is that of loading all the other .b files that are
part of the project.

http://www.agentisolutions.com/documentation/language/ls_cun_stx.htm

Brahms Tutorial Version 1.2 Page 4-38
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.3.4 TUTORIAL

The first step should be the creation of a set of nested directories:

 c:\Brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\

(if you have not created them already, do it now; rest assured that you can create your
Atm directory everywhere you want, even though in the examples described in this
tutorial and in the instructions on how to use the Brahms Compiler and Virtual Machine
batch files it will be assumed that this is in fact the location of the directory you will be
using. If you modify it, remember to change accordingly also your library path in the
vm.cfg file and the way you call the Virtual machine, as discussed in the previous
chapter). If you had created the folders and had unzipped into the c:\brahms\Projects\
folder the Atm files downloaded from the AgentiSolutions website, we suggest you
delete all those files and the AtmModel directory itself – we have to start again from
scratch and you have to build your own model now!!

Now, the second step: either from the Composer or from a text editor, create your new
model.

Technical note: depending on which version of the Tutorial files you have downloaded, the files may be installed by the
Composer in a slightly different nested directory. Don‟t worry - for this tutorial we will start again building files from scratch
from the c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\ directory.

If you use the Composer, you must first start it, then select the ―New‖ tab, and fill in the
following information in the respective fields: the ModelName will be AtmModel, the
package will be gov.nasa.arc.brahms.atm, and the location will be
c:\brahms\Projects\AtmModel\final_source gov\nasa\arc\brahms\atm\. If you now go
to the c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\ folder,
you will notice that the Composer has created the right directories for you and, inside
the atm folder, a file called AtmModel.b.

Before seeing what that file contains, let‘s see what is the procedure to start a model if
you are working from scratch without the Composer – just with a text editor such as
Notepad. You would create, again, the atm folder and a new document in Notepad,
where you will write:

package gov.nasa.arc.brahms.atm;

import gov.nasa.arc.brahms.atm.*;

Then, you would save this file as ‗AtmModel.b‘. It does not matter that, for the moment,
you do not have other files to import – these will come soon! Your file might look
somewhat like the following figure:

Brahms Tutorial Version 1.2 Page 4-39
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 9. AtmModel.b in Notepad

What is the reason for these two lines?

Firstly, the package declaration is used to find Brahms concepts in the file system.
Similarly to Java, in Brahms a package is to be mapped to a directory in the file system.
The package declaration represents a hierarchical directory structure. The package
gov.nasa.arc.brahms.atm maps to a directory gov\nasa\arc\brahms\atm in the file
system. If a group Student were defined in a file named Student.b then this file would be
located in the gov\nasa\arc\brahms\atm directory. The Compiler and Brahms Virtual
Machine use the library path to find concepts in a specific package relative to the library
path. Thus, to reference a specific concept in a library, the package name can be used.
The package name reflects the directory in which the concept is stored with a ‗library-
path‘ as its base path. In our case, if the library-path is

library_path = c:\\brahms\\Projects\\AtmModel\\final_source

and you have an import statement like

import gov.nasa.arc.brahms.atm.Student;

Brahms Tutorial Version 1.2 Page 4-40
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

then the concept Student is expected to be defined as

package gov.nasa.arc.brahms.atm;

group Student { }

and is expected to be found in the file

c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\Student.

b

This is why in section 3.3.2 we suggested to add
c:\brahms\Projects\AtmModel\final_source to the library-path. Note that the file
created automatically by the Composer will be exactly the same.

Compilation units that do not have a package statement are part of an unnamed
package. The Compiler and Brahms Virtual Machine use the library path to find
concepts in an unnamed package by trying to locate them in the directory specified by
the library path. It is the responsibility of the model builder to prevent naming conflicts in
concepts that are part of an unnamed package. It is highly recommended to use
packages for all Brahms concepts.

Secondly, the import declaration allows a type declared in another package to be
referred to by a simple name that consists of a single identifier. The import declaration
makes concepts defined in other compilation units available as one model. In our
example, by using the star (‗*‘), we are automatically importing all the .b files that will be
found by the Compiler in the Atm folder.

By default, every model imports the ‗brahms.base.*‘ library - referred to as the
‗BaseModel‘ - containing base constructs for groups and classes and containing
standard available classes and relations. The import of this library does not have to be
defined explicitly.

4.3.5 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_cun_stx.htm and pages
linked from there.

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_cun_stx.htm

Brahms Tutorial Version 1.2 Page 4-41
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.4 LESSON II: GEOGRAPHY

4.4.1 INTRODUCTION

This chapter will teach you how to create the geography of a Brahms model.

4.4.2 TASK

Create the geography of the Atm model. The action takes place in Berkeley: there are
streets and buildings, like restaurants and bank branches with their Atms. You will
model at least two different Atm locations (one for each Bank: Bank of America and
Wells Fargo) and two restaurants (Blakes, and Raleighs). You will also have to describe
the distances between these locations.

4.4.3 DESCRIPTION

The geography of a Brahms model is described through areas, area_definitions and
paths. Mind you: this is not a Cartesian geography, it‘s an abstraction based on
concepts (such as areas) and the way those concepts are connected (with paths).

An area_definition is used for defining types of area instances used for representing
geographical locations in a model. Area definitions are similar to classes in their use.
Examples of area definitions that are already built in the language are ‗World‘, ‘Building‘,
and ‘City‘. Through area definitions, the modeler can create new area types or extends
those already existing – for example, by creating the area definition for Restaurant, that
extends Building.

An area is an instance of an area definition. An example is the area ‗Berkeley‘, instance
of City. Areas can be decomposed into sub-areas. For example, a building can be
decomposed into one or more floors, or a city into streets, using the part-of relation to
other areas that is available in each area.

http://www.agentisolutions.com/documentation/language/ls_adf_stx.htm
http://www.agentisolutions.com/documentation/language/ls_are_stx.htm

Brahms Tutorial Version 1.2 Page 4-42
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

A path connects two areas and represents a route that can be taken by an agent or
object to travel from one area to another. The modeler specifies distance as the time it
takes to move from area1 to area2, over the path. The automatic generation of location
facts and beliefs for agents and objects moving from one area to another is also
implemented. This means that when an object or agent changes location, the simulation
engine automatically generates a new location fact about the new location of the agent
or object that moved, and also adds the location fact as a belief to the belief-set of the
agent or object. At the same time, the simulation engine will add the location belief to all
agents in the location. When an agent moves, the simulation engine will also add a
location belief for all the other agents and objects in the location to the belief-set of the
moving agent. In other words, objects and agents always ―know‖ where they are, and
agents will always notice (we use the term ―detect‖) other agents and objects in its
location. However, moving agents and objects do not notice other agents or objects on
their path, even though The move activity can be interrupted by a communicate activity
in a workframe triggered by a detectable or a belief communicated by another agent
(more on this later…). Agents and objects can move through the entire geography.

An agent or object has the functionality of a container artifact and can carry other agents
or objects (cf. the contains relation in the next section). The geography may be
implemented to limit the generation of beliefs to other agents in the immediate
environment of the specific agent. When an agent or object moves from one location to
another location the simulation engine calculates the shortest route between the two
locations, based on the available paths between the areas in the model. It should be
noted that when an agent or object moves between two areas that do not have a path
between them, the simulation engine assumes that the moving time is zero. However, if
there is a route (i.e. a path between the areas) the simulation engine will ignore the
zero-time distance without a path (otherwise, it would always take the zero-time
distance).

Note that areas can have relations and attributes. An area_definition can inherit from
more than one area definition, so multiple inheritances are supported. When an area
definition is a subclass of another area definition the subclass will ‗inherit‘ the attributes,
relations, and initial-facts from its parent area definitions. Attributes and relations will be
explained in the next sections.

4.4.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_adf_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_are_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_pat_stx.htm, and pages
linked from there.

http://www.agentisolutions.com/documentation/language/ls_pat_stx.htm
http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_adf_stx.htm
http://www.agentisolutions.com/documentation/language/ls_are_stx.htm
http://www.agentisolutions.com/documentation/language/ls_pat_stx.htm

Brahms Tutorial Version 1.2 Page 4-43
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.4.5 TUTORIAL

Create a new file in a text editor with a .b extension and call it AtmGeography.b. Or, if
you want to use the Composer, just open your Atm model and click on the ―Geography
Model‖ tab at the bottom of the screen to access the Geography graphic interface.
Then, click on the menu-button with the letters ―are‖ on it and the icon of a filled green
shape. This will create a new ―Area_1‖ concept whose name you will change into
―AtmGeography‖ by simply clicking on the icon of the concept on the screen (Figure 10).
Remember to save your model!

Figure 10 - Creating geography areas in the Composer

Brahms Tutorial Version 1.2 Page 4-44
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Important note: we will not keep on presenting both approaches – the text editor and the
Composer - for each concept that we will meet in the Tutorial. The Composer manual
will tell you how to create concepts via the graphic interface. In this tutorial, instead, we
will focus on the language concepts. However, remember that whenever we refer to files
being created or edited, this can be done both with an external text editor such as
Notepad, or, much more quickly and smoothly, inside the Composer, which offers you
advanced features to create and modify concepts and files.

If you are writing your own code, then you will have to insert into this file the following
elements: 1) a package declaration (to state that this file belongs to your Atm project); 2)
definitions of new areas (areadef: such as world, city, buildings, streets, etc.) and
instances of these areas; 3) paths describing the distance (in terms of the time
necessary for movement) from one location to another.

Hence, start writing:

package gov.nasa.arc.brahms.atm;

to establish that this geography belongs to the AtmModel (the Compiler adds the
declaration automatically). Then, you can create the instances of two area definitions
already defined by default in the language (World, and City):

area AtmGeography instanceof World { }

area Berkeley instanceof City partof AtmGeography { }

What we are saying is that the action will take place in the AtmGeography ‗world‘, and in
particular in Berkeley. A complete geography will need other components, such as a
University (namely the University of California Berkeley), University Halls, Streets,
Restaurants, and Bank Branches. Given that BaseAreaDef and Building are standard
area definitions already defined in the language, you can write:

areadef University extends BaseAreaDef { }

areadef UniversityHall extends Building { }

areadef BankBranch extends Building { }

areadef Restaurant extends Building { }

Note that if you are using the Composer, many of the above code lines will be produced
automatically by the Composer as you create, drag and drop concepts, and use the
efficient pop-up fields to plug in parameter values.

http://www.agentisolutions.com/documentation/language/ls_adf_stx.htm
http://www.agentisolutions.com/documentation/language/ls_are_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_pat_stx.htm

Brahms Tutorial Version 1.2 Page 4-45
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

By using the terms extends and partof you have just drafted an area type schema for
the geography in which the actions of agents and objects of the Atm model will take
place. extends is used to create a new area definition which inherits characteristics from
another area definition. partof is used to represent the hierarchy or geographical
relations between areas. For example, Wall Street might be partof New York, which is
partof the United States. The next step is to populate this schema with specific
instances of the area definitions you have just created, to create a hierarchical
geography description of the locations in which agents and objects can be placed. You
will need a university, some restaurants, some banks, and some university halls where
your student agents will study. Note that comments, in Brahms, can be expressed either
by preceding them with ‗//‘, or by containing them within:

/*

comment

*/

Hence, if we imagine that Berkeley campus (UCB) is inside the city of Berkeley and that
it contains several University Halls, while the banks and the restaurants are in Berkeley
but outside the campus, we will write:

 // inside Berkeley

area UCB instanceof University partof Berkeley { }

area SouthHall instanceof UniversityHall partof UCB { }

area Telegraph_Av_113 instanceof BankBranch partof Berkeley { }

area SpraulHall instanceof UniversityHall partof UCB { }

area Bancroft_Av_77 instanceof BankBranch partof Berkeley { }

area Telegraph_Av_2405 instanceof Restaurant partof Berkeley { }

area Telegraph_Av_2134 instanceof Restaurant partof Berkeley { }

Almost there: The final step consists of connecting together these different areas to
allow agents and objects to move between areas. When agents move between areas,
you can either state (each time moving between locations makes it necessary) what the
distance is between the two areas the agent has to move (expressed as time needed for
the move activity); or define this once with the path statement in the geography file. We
will use this second option here:

//paths to and from banks from spraul and south halls

path StH_to_from_BOA {

 area1: SouthHall;

 area2: Telegraph_Av_113;

 distance: 240;

}

path SpH_to_from_BOA {

 area1: SpraulHall;

 area2: Telegraph_Av_113;

Brahms Tutorial Version 1.2 Page 4-46
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 distance: 240;

}

path StH_to_from_WF {

 area1: SouthHall;

 area2: Bancroft_Av_77;

 distance: 200;

}

path SpH_to_from_WF {

 area1: SpraulHall;

 area2: Bancroft_Av_77;

 distance: 200;

}

//paths to and from restaurants from and to spraul and south halls

path StH_to_from_BB {

 area1: SouthHall;

 area2: Telegraph_Av_2134;

 distance: 360;

}

path SpH_to_from_BB {

 area1: SpraulHall;

 area2: Telegraph_Av_2134;

 distance: 280;

}

path StH_to_from_RB {

 area1: SouthHall;

 area2: Telegraph_Av_2405;

 distance: 400;

}

path SpH_to_from_RB {

 area1: SpraulHall;

 area2: Telegraph_Av_2405;

 distance: 320;

}

//paths to and from restaurants and banks

path BOA_to_from_BB {

 area1: Telegraph_Av_113;

Brahms Tutorial Version 1.2 Page 4-47
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 area2: Telegraph_Av_2134;

 distance: 60;

}

path WF_to_from_BB {

 area1: Bancroft_Av_77;

 area2: Telegraph_Av_2134;

 distance: 80;

}

path BOA_to_from_RB {

 area1: Telegraph_Av_113;

 area2: Telegraph_Av_2405;

 distance: 80;

}

path WF_to_from_RB {

 area1: Bancroft_Av_77;

 area2: Telegraph_Av_2405;

 distance: 100;

}

As mentioned above, you can also do all the above in the Composer – in fact with the
Composer you will save lots of time and keystrokes. However, given that here we want
to learn the details of the language rather than the use of the Composer itself, the above
typing exercise will prove useful anyway….

Some comments about this code. Note that if you model paths from a to b and from b to
c but not from a to c, when you issue a move command from a to c the Compiler will
automatically calculate the total travel time for you.

Agents do not notice anything or do other things on their way to a location. If you want
something like that to happen, then you have to explicitly code it. For example, if you
want to model the possibility that a student can meet another student on the street while
on his road from area A to area B, you might split his movement into 2 steps: from A to
the street (modeled as an area), and from the street to B. The student agents can now
meet each other in the street area. This would definitely be a more advanced Brahms
model, and thus we do not expect that you are able to create such a more complex
model at this stage

14
.

14
 We are currently extending the language allowing for real multi-tasking. This way you can create a move activity in which the
agent can notice other agents and do other activities while moving. At this moment the Brahms language does not support this
kind of multi-tasking in so-called primitive activities.

Brahms Tutorial Version 1.2 Page 4-48
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

As hinted above, there are at least 3 ways to model distances and movements in
Brahms: 1) not using paths at all, but using the move activity instead (see section 4.7)
and defining each time how long a certain move activity should take; 2) defining all the
paths between places, as done in this section (if you forget to define the path and also
the move-time, the Compiler will interpret that as it taking zero time); 3) have travel
times that change according to the conditions—for example, if there is a path from a to b
requiring 10 seconds that has been coded in a geography file, you might override that
within the move action; you might even code the time as a belief of the agent (so that
the agent modifies this belief according to factors like weather conditions or
transportation means being used). An additional way to move something in a Brahms
model is to have an object—say, a motorcycle, that contains another agent or object:
the motorcycle will actually do the move activity, and the total travel time will depend on
it rather than the speed of the agent. Containment of agents and/or objects is realized
with a contains relation. We will discuss the contains relation in section 4.8.

Now you are ready to try and compile your Atm model for the first time. Follow the steps
described in the previous chapter. Remember to choose the ―Build Model‖ menu option
in the Composer once your Atm model is open. If everything goes well, some xml code
will be produced. If something goes wrong, either in the command line interface or in
the Composer some error messages will appear. In particular, the Composer will give
you information about possible syntactical and semantic errors in your code, with the
exact line and column where they have been found.

Some final notes: as you will soon see in the next sections, an agent needs an initial
belief about the location of an object (say, an Atm machine) to move there. Remember
that area definitions can have attributes, and agents can have beliefs about them—this
might turn useful in your models.

Brahms Tutorial Version 1.2 Page 4-49
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.5 LESSON III: GROUPS, AGENTS AND ATTRIBUTES

4.5.1 INTRODUCTION

This chapter will teach you how to define and create groups (e.g. Students) and agents
that are members of groups. It will also teach you about attributes and relations of
Brahms groups and agents.

4.5.2 TASK

Create the group Student and agent Alex from the model schemas you have previously
drafted. Alex is a student and will have attributes and relations that are relevant to the
Atm scenario, such as; where agents study, feel hungry, and thereafter go and eat with
money they obtain from Atms. In this section we will start with a small subset of
attributes (for example, the gender, the hunger, and so on) and relations (like hasCard,
and hasAccount), which will be expanded on as the Tutorial progresses.

4.5.3 DESCRIPTION

4.5.3.1 AGENTS & GROUPS

The concept of a ―group‖ in Brahms is similar to the concept of a template or class in
object-oriented programming. A group represents a collection of ‗agents‘ that can
perform similar work and have similar beliefs. A group defines the work activities
(activity frames and thought frames), the initial-beliefs of members in the group and the
initial-facts about the agent in the world. The difference with classes in object-oriented
programming is that the relationship between a group and its members is not an IS-A
relationship, but a MEMBER-OF relationship. This is why we speak of ―a member of a
group‖ instead of ―an instance of a group.‖

In Brahms we use the notion of strong agency: Brahms agents model human behavior,
and the Brahms modeling language implements in some way all of the attributes
discussed in context of weak and strong agency, i.e. autonomy, social ability, reactivity,
pro-activeness, mobility, and bounded rationality.

People and artifacts (both physical and conceptual) are represented as "objects",
generally having properties, such as geographical location, which may change over time
depending on their interactions. The term "agent" is generally used to refer specifically
to an object that represents a person or, more inclusively, that represents an interactive
system that has behavior interacting with the world that we want to represent as having
the capabilities of awareness, reasoning and a mental state - intentionality.

http://www.agentisolutions.com/documentation/language/ls_grp_stx.htm

Brahms Tutorial Version 1.2 Page 4-50
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

An agent is a construct that generally represents a person within a workplace or other
setting being modeled. Agents have a name and a location. To specify what an agent
does, the modeler defines activities and workframes for the agent. The key properties of
agents are group membership, beliefs, workframes, thoughtframes, and location.

Groups and members of groups

In Brahms, Agents are members of groups. It is possible to model actual individual‘s
behavior—for example, the activity of an agent ‗Alex‘ in the Atm model: the activities will
then be defined local to agent ‗Alex‘, and will be agent-specific (i.e. not inherited by
other agents). However, most Brahms models will not go into as much detail as to
define the activities of individual agents, but rather describe the behavior of abstracted
groups of agents in entities called groups. In describing the activities of groups of
agents, a specific agent will inherit the activities of the group. In this way we can
describe the daily activities of the group in a more abstracted way (i.e. non-individual
specific), but we can make it specific through the parameters and the attributes of each
specific agent.

A group can represent one or more agents, either as direct members or as members of
subgroups. Typically, a modeler would associate descriptions of activities with groups,
so that a group represents a collection of agents that perform similar work. A group may
have only one member and roles may be highly differentiated. Depending on the
purpose of the model, agents in a model may represent particular people, types of
people, or pastiches. The modeler may define groups to represent anything, such as
―service technicians‖, ―people who like sushi‖, or ―people who wear spacesuits‖. Each
agent and group can be a member of any number of groups, providing that no cyclic
membership results.

Groups and agents are the most central elements in a Brahms model. An agent
represents an individual, whereas a group represents a group of individuals playing a
particular role in an organization. The simulation engine schedules the constrained
activities of agents, not for groups. However, being a member of a group, the group's
constrained activities are also scheduled as they pertain to the individual agent. A
Brahms model is always about the activities of individual agents in a work process.
Agents in Brahms are socially situated in the context of work, the organization, and its
culture. However, the Brahms language is a multi-purpose AOL, which means that there
is nothing inherently in the Brahms language that constraints the programmer to use
agents for other purposes.

http://www.agentisolutions.com/documentation/language/ls_agt_stx.htm
http://www.agentisolutions.com/documentation/language/ls_agt_stx.htm

Brahms Tutorial Version 1.2 Page 4-51
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In a model a hierarchy of groups can be built by defining the group-membership. A
group can be a member of more than one group. An agent can be a member of one or
more groups. When an agent is a member of a group the agent will ‗inherit‘ (or
‗instantiate‘) attributes, relations, initial-beliefs, initial-facts, activities, workframes and
thoughtframes from the group(s) it is a member of. all attributes and relations are
inherited by agents, including private ones (an agent can be seen as an instance of a
group in terms of object oriented practices). In case the same constructs are
encountered in the inheritance path always the most specific construct will be used,
meaning that an attribute defined for the agent has precedence over an attribute with
the same name defined in one of the groups of which the agent is a member.

Elements of agents and groups

Brahms agents and groups may have the following elements.

Name: The name of an agent is its unique identifier. This element is not optional.
Normally we give agents fictitious names to identify specific individuals in an
organization without identifying them.

Display: The display name of an agent is an optional textual description of the agent's
name. The display name can have spaces. It is not used as the unique identifier for the
agent.

Group-membership: An agent can be a member of one or more groups. This element is
optional. When an agent is a member of a group the agent will inherit all elements from
the group(s) it is a member of. An agent can be seen as a member of a group. In case
the same constructs are encountered in the inheritance path always the most specific
construct will be used. For example, a workframe defined for the agent has precedence
over a workframe with the same name defined in one of the groups of which the agent is
a member.

Cost and time: The cost per unit (―Cost/unit‖), and the unit time for which the cost is
entered (―Unit (seconds)‖). This element is optional. For example, if the cost attribute is
10.0 and the time attribute equals 3600 seconds it means that the cost of an agent is 10
BB‘s (Brahms Bucks) per hour. Using these attributes the simulation engine can
calculate cost statistics of a work process, based on a calculation of the summation of
an agent‘s activity time.

Location: An agent can have an initial location within the geography (see the previous
section, 4.4). This element is optional.

Attributes: Represent a property of an agent or object in the world. Attributes can have
values. Currently only single-valued attributes are allowed. The value of an attribute is
specified through facts and/or beliefs (we will describe attributes in more detail later in
this section). This element is optional.

Brahms Tutorial Version 1.2 Page 4-52
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Relations: Represent a relation between two concepts. A concept can be either an agent
or and object. The first (left hand side) concept is always the concept for which the
relation is defined; the second concept (right hand side) can be any concept. Relations
are specified through facts and/or beliefs (we will describe relations in more detail in
section 4.8). This element is optional.

Initial-beliefs: A belief is a first-order predicate statement about the world. This element
is optional. Beliefs are always local to an agent, i.e. only the agent can access its
beliefs, and no other agent can. This allows us to represent how a specific agent ‗views‘
the state of the world. Agents act based on their beliefs. Beliefs are the ‗triggers‘ of
agent‘s actions. We will discuss beliefs in section 4.6. Initial beliefs define the initial state
for an agent. Initial beliefs are turned into actual beliefs for the agent when the model is
initialized at simulation start time.

Initial-facts: Facts represent the state of the world. A fact is a first-order predicate
statement about the world. This element is optional. Facts are, in contrast to beliefs,
global. Any agent can detect a fact in the world and turn it into a belief and act on it.
Initial facts define the initial state of the world. Initial facts are turned into facts in the
world when the model is initialized for a simulation run. There is a fundamental
difference between the ―ownership‖ of a belief and a fact. A belief is ―owned‖ by a
specific agent during the execution of the model. No other entity in the model can
access that belief without some interaction with the agent (direct or indirect). However,
although initial-facts are defined with an agent or object, at execution time a fact is not
―owned‖ by that agent or object. A fact is global, and can be acted on (in the case of
objects) or detected (in the case of agents). We will discuss facts in section 4.6.

Activities: In this element the activities an agent can be engaged in are defined. This
element is optional. Activities in Brahms take a certain amount of time, either derived or
defined. There are a number of types of activities that are defined for the Brahms
language. Activities defined are executed by workframes. We will describe activities in
section 4.7

Workframes: In this element the activity rules, called ―workframes‖, are defined. This
element is optional. Workframes describe the constraints of executing activities.
Workframes are situation-action rules. We will study workframes in section 4.7.

Thoughtframes: In this element the agent‘s inference rules, called ―thoughtframes‖, are
defined. This element is optional. Thoughtframes are inherently different from
workframes, as they do not execute any activities. We will discuss thoughtframes in
section 4.9

4.5.3.2 ATTRIBUTES

Attributes represent a property of a group, agent, object class or object. Attributes have
values. In Brahms we currently only allow single-valued attributes. The value of an
attribute is defined through facts and/or beliefs.

http://www.agentisolutions.com/documentation/language/ls_att_stx.htm

Brahms Tutorial Version 1.2 Page 4-53
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Attribute scope

Attributes are always defined within a group, agent, conceptual-class, conceptual-object,
class, object definition, area or area definition and cannot be defined outside any of
these concepts or inside of any other concepts. Attributes can have different scopes
within the specified concepts defined by one of the keywords private, protected or
public.

15

Private attributes:

Private attributes are scoped down to only the concept for which it is defined. A private
attribute is not inherited by sub-groups or sub-classes (agents/objects that are
members/instances of the group/class will inherit the attribute) and the private attribute
can only be referenced by initial beliefs, initial facts, workframes and thoughtframes for
that specific concept.

Protected attributes:

Protected attributes are inherited by sub-groups and sub-classes. Protected attributes
can only be referenced by initial beliefs, initial facts, workframes and thoughtframes of
the concept for which the attribute is specified or any of the sub-groups/sub-classes and
of agents/objects that are members/instances of the sub-group(s)/class(es).

Public attributes:

Public attributes are similar to protected attributes. The only difference is that they can
be referenced by initial beliefs, initial facts, workframes and thoughtframes in any group,
agent, class or object.

Value assignment

Value assignment of attributes is done through the creation of individual beliefs and
facts for agents and objects, rather than simply assignment operators like ‗=‘ or ‗:=‘. We
will discuss this issue in much more detail in the next sections.

4.5.4 SYNTAX

Syntax details are available at:

15
 Note that attribute and relation scopes are currently not yet implemented in the language. This implies that attribute/relation
scope definitions will be ignored by the Compiler, and all attributes/relation will be treated (for the time being) as public. This is
why in the code examples presented in the text all attributes and relations are treated as ‗public‘.

Brahms Tutorial Version 1.2 Page 4-54
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_grp_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_agt_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_att_stx.htm, and pages
linked from there.

4.5.5 TUTORIAL

With this section, you will start populating your virtual world with some actors. Start
creating a file Student.b (or use the Composer, go to the ―Agent‖ tab, and create a new
agent by clicking on the menu-button with the letters ―agt‖ close to the symbol of one
hand). If you are writing your own code, then you must write the following (do not forget
the package declaration; as noted above, the Compiler adds the declaration
automatically and lets you insert the parameter values discussed below – such as
attributes, etc. - through efficient pop-up fields):

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_grp_stx.htm
http://www.agentisolutions.com/documentation/language/ls_agt_stx.htm
http://www.agentisolutions.com/documentation/language/ls_att_stx.htm

Brahms Tutorial Version 1.2 Page 4-55
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

package gov.nasa.arc.brahms.atm;

group Student {

 attributes:

 relations:

 initial_beliefs:

 initial_facts:

 activities:

workframes:

thoughtframes:

}

It‘s ok that for the moment we have left most items blank. You have to start with
something, right? ‗Group Student‘ is the declaration that you are going to use to
describe a new group with that name. You are not declaring such group as memberof
any other group, which means that the Group Student will not inherit any previous
attribute, or beliefs, etc, from other groups (apart from the default BaseGroup every
Brahms group is based upon). On the other side, you could create more complex group
hierarchies and memberships than the one we use in this tutorial, where students are
simply members of the Student group. For example, you might model the group
‗BankAccountHolder‘ and then make agents belong to both the Student and the
BankAccountHolder group. Or you might have groups of groups – for example, a group
EconomicStudent part of the group Student. These are modeling issues that you will
have to face after you have mastered the basics of the Brahms language. For the
moment, however, be careful about simpler issues such as the ordering of the
components inside the Group Student definition: even if currently you do not know much
about things like workframes or initial-beliefs, you must pay attention to write the
declarations in the correct order (which is the order presented above) to avoid errors
during compilation.

The group ‗Student‘ is representative of all students in Berkeley, but in particular it must
be suited to perform the tasks we want to model in the Atm scenario. A good way to
achieve this goal is to start giving it proper attributes and relations. Let‘s start adding
these lines to the Student group file:

attributes:

 public boolean male;

 public double howHungry;

http://www.agentisolutions.com/documentation/language/ls_grp_stx.htm
http://www.agentisolutions.com/documentation/language/ls_att_stx.htm

Brahms Tutorial Version 1.2 Page 4-56
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 public double preferredCashOut;

In Brahms, attributes can be of type boolean, double, int, symbol and string, but also
other user-defined type (groups, classes, areas) and Brahms built-in meta-type
definitions (such as Agent, Group, Class, etc.). ‗Symbol‘ is just any value you want to
give to an attribute without referring to it as a string. This has some advantages: it is
easier to write down values for attributes that way (for example, rather than having a
boolean type attribute ‗male‘, we could have a symbol type attribute ‗gender‘, which can
have the values ‗female‘ or ‗male‘). A symbol type can be seen as an enumerated type
in languages such as Pascal, and C, except that we do not have to declare the possible
values. Any value is possible.

In this tutorial, we start giving students some simple distinguishing characteristics:
whether their gender is female or male, how hungry they are, and how much money
they normally take out from their accounts when they go to an Atm. As you can see, for
the moment we are not specifying any of these values: the student can be either female
or male, can be very hungry or not hungry at all (let‘s assume that the higher the
howHungry attribute is, the hungrier we consider the student), and can decide to take
whatever cash he or she wants out of the bank. So, where do we specify these values?

The answer can be given on two levels. First, attributes (as well as relations we will
study in section 4.8) values are specified through facts and beliefs that we will model in
the next section. We can specify such facts and beliefs right inside the Group Student
body (did you notice there were already the labels for the initial-facts and initial-beliefs
sections in the source code for the group Student?). Defining initial beliefs and/or facts
in the group is appropriate only when they are common to the entire group. When this is
not the case, we better specify these values inside the body of the Agent that is member
of that group.

Now, create a new file and call it: Alex_Agent.b. Make sure that the name of the file is
the same as the name of the concept that is being defined in the file; in this case
Alex_Agent. Then add the following in the newly created file:

package gov.nasa.arc.brahms.atm;

agent Alex_Agent memberof Student {

 location: SouthHall;

 initial_beliefs:

 (current.howHungry = 15.00);

 (current.male = true);

 (current.preferredCashOut = 8.0);

 initial_facts:

 (current.male = true);

 (current.preferredCashOut = 8.0);

}

http://www.agentisolutions.com/documentation/language/ls_att_stx.htm
http://www.agentisolutions.com/documentation/language/ls_agt_stx.htm

Brahms Tutorial Version 1.2 Page 4-57
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Alex_Agent is the first agent in the Atm model. It is a member of the group Student,
which means that every activity that will be described for the Student group, Alex_Agent
wil be able to perform. The structure of an ‗Agent‘ file can be exactly the same as that of
a Group: we could have, again, workframes, thoughtframes and so on. The reason we
rarely do so is because we almost never model specific activities, workframes and
thoughtframes at the agent level: we prefer to model activities as activities of a group,
performed by particular agents. However, there is nothing wrong with defining these
elements at the agent level. In this case, we are only giving a particular location to our
Agent: this means that when the simulation starts, Alex_Agent will be in that initial
location (e.g. South Hall), while other agents might start elsewhere. Note that in this
scenario we will model all the activities that agents perform (studying, eating, getting
money from the Atm) within the Student group. That is: agents, such as students, will
study, eat, get money from the Atm, etc. Other strategies are of course available: you
might create other groups—for example, Bank Account Owners—and model activities
for that group—such as going to the Atm; then, you would make the agents of your
model be also members of that group. What solution is best? That is a modeling
decision. Just remember the inheritance rules: in case the same constructs are
encountered in the inheritance path, always the most specific construct will be used.
This means that an element defined for a group the agent is directly member of, has
precedence over an element with the same name defined in one of the groups of which
the former group is a sub-group.

Hold on! We will not yet run the simulation. A little more patience and you will arrive to
that. As you have seen, even though this section was about agents, groups and
attributes, we could not help making reference to other concepts such as beliefs and
facts. All of these concepts are interrelated in Brahms, because agents are the most
important concepts. Agents act on the basis of facts and beliefs in a world made of
objects, areas, other agents, activities, workframes, and thoughtframes . Hence, facts
and beliefs is what we are going to explore in the very next section, in order to
understand what the statements like ‗current.preferredCashOut = 8.0’ in the initial-
beliefs and initial-facts section actually mean.

Brahms Tutorial Version 1.2 Page 4-58
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.6 LESSON IV: FACTS AND BELIEFS

4.6.1 INTRODUCTION

This chapter will teach you about facts and beliefs in Brahms.

4.6.2 TASK

The balance of a bank account; the price of a lunch at the restaurant; the time of day,
etc. There exist many ‗facts‘ in a Brahms model—and at least as many ‗beliefs‘ for each
agent! In fact, everything that happens in a Brahms model is related to either a fact, or a
belief, or both. Hence, now start giving your agent(s) initial facts and beliefs about their
environment that they will need in order to act in their world.

4.6.3 DESCRIPTION

The state of the world in Brahms is stored as propositions called ―facts‖. A fact is meant
to represent some physical state of the world or an attribute of some object or agent.
Facts are global: with the appropriate detectable any agent can detect a fact (we will
discuss this later in section 4.7). Agents and objects can have ―beliefs.‖ Beliefs are
propositions (like facts) that represent the internal ―mental‖ state of an agent or object.
Beliefs are always local to the agent or object.

4.6.3.1 BELIEFS

A belief represents a particular object knowing about something, typically an agent. A
belief always has the form:

 (<object or agent>.<attributename> <operator> <value>)

OR

 (<object or agent> <relation-name> <object or agent> <is true | is false>)

Beliefs are always local to an agent or object; that is, only the agent or object itself can
examine, or search (i.e. reason with) its own beliefs, and no other agent or object can
do so. A belief held by an agent may differ from the corresponding fact or a belief that
another agent has about the same fact. Beliefs can be declared as initial-beliefs at the
object class, object, group, or agent level, or an agent or object can create beliefs during
the running of a Brahms simulation. A belief can be thought of as an object-attribute-
value triplet. There are four ways an agent or object‘s beliefs can change:

http://www.agentisolutions.com/documentation/language/ls_bel_stx.htm

Brahms Tutorial Version 1.2 Page 4-59
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1. An agent or object can create or change a belief before or after performing an
activity or during some reasoning.

2. An agent or object can detect a fact in the world, which, ones detected, becomes a
belief.

3. Another agent or object communicates its belief(s) to another agent or object.

4. The modeler adds initial-beliefs at the class, object, group, or agent level.

The representation of beliefs together with reasoning implements a conventional
first-order predicate logic of beliefs. The modeler has available the full range of
representation of, and reasoning on, beliefs conventionally found in rule-based systems
such as EMYCIN and other agent languages. However, because the logic is first-order,
agents are not modeled as having second-order beliefs (beliefs about other agents‘
beliefs).

Agents and objects in Brahms have beliefs represented as first-order propositions. For
instance, suppose agent A1 beliefs that he is writing his dissertation, and that it will be
finished on time. A1 would then have the belief set:

{ BEL(Is-Writing (A1, Dissertation)), BEL(Will-Finish-On-Time(A1, Dissertation)) }

An agent will always start out with an initial-belief set that is defined at the agent‘s local-
level, and the groups of which the agent is a member. Initial-beliefs are assigned in the
initialization phase of a simulation. These initial-beliefs define the initial state for the
agent. An agent without an initial state could be seen as initially ‗dumb‘, or an agent that
has not experienced anything yet. As the simulation time moves forward agents will
infer, detect and receive new beliefs, either based on their actions and communications
in the world or deducing new beliefs, using an inference rule.

4.6.3.2 FACTS

Facts, in Brahms, are factual states of the world. They represent, what we call, a ‗birds-
eye view‘ of the world. Facts are global to the world, meaning that they can be ‗seen‘ by
every agent and object in the world.

Therefore, in Brahms there is a difference between facts that actually hold in the world,
and believes of an agent or object. This means that we can represent the facts in the
world separate from the belief-state of agents about that world. For instance, although
the fact is that the color of my car is red, I can believe that the color of my car is green,
because I might be colorblind. In representing the context of the agent as facts in the
world, we are able to have multiple agents react on the same facts in different ways,
dependent on their beliefs about these facts. In Brahms, it is not necessary that any
agent has any belief about a fact. Specifically, facts are independent from the
knowledge of agents (see Figure 11).

http://www.agentisolutions.com/documentation/language/ls_fct_stx.htm

Brahms Tutorial Version 1.2 Page 4-60
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

World Facts

Beliefs of Agt A

Beliefs of Agt B

B
eliefs o

f A
g
t C

Beliefs of Agt D

Figure 11. Beliefs and facts Venn diagram

4.6.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_bel_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_fct_stx.htm, and pages
linked from there.

4.6.5 TUTORIAL

Let‘s go back to the code we were working on in the Agents and Groups section:

package gov.nasa.arc.brahms.atm;

agent Alex_Agent memberof Student {

 location: SouthHall;

 initial_beliefs:

 (current.howHungry = 15.00);

 (current.male = true);

 (current.preferredCashOut = 8.0);

 initial_facts:

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_bel_stx.htm
http://www.agentisolutions.com/documentation/language/ls_fct_stx.htm

Brahms Tutorial Version 1.2 Page 4-61
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 (current.male = true);

(current.howHungry = 15.0);

 (current.preferredCashOut = 8.0);

}

A belief is a first-order proposition that an agent or object believes to be true.

At the beginning of the simulation, you can give your agents initial beliefs about himself
and other agents, objects, concepts in the world. During the simulation, the agent can
get new beliefs – through his own workframes and thoughtframes as well as by
communication. Similarly, facts are state of the world that you can assign at the
beginning of the simulation as ‗initial facts‘ and then modify during the simulation in a
variety of ways. Importantly, facts are ‗general‘ – they exist in the world and they can be
detected as well as modified by other agents or objects; but beliefs are always local to
an agent or object, i.e. only the agent/object can access its beliefs, no other
agent/object can. This allows us to represent how a specific agent ‗views‘ the state of
the world. For objects, beliefs can represent information stored in/on the object. Agents
act based on their beliefs, whereas objects do not. Beliefs are the ‗triggers‘ of agent‘s
actions (cf. section 4.7). Hence, when we will study about ‗conclusions‘ in workframes
and thoughtframes (see sections 4.7 and 4.9) we will see that an agent can ‗conclude‘
beliefs only for himself, even though he might ‗conclude‘ facts about another agent‘s
attribute.

Initial-beliefs define the initial state for an agent and define the initial information for
objects. Initial-beliefs are turned into actual beliefs for the agent when the model is
initialized for a simulation run. In this case, we are giving agent Alex_Agent some initial
beliefs about himself. The use of ‗current‘ in the above code has the very same scope of
the term ‗this‘ in C++ or Java. It always refers to the agent or object executing that
particular construct, or, in other words, it always refers to the element inside whose body
declaration the ‗current‘ term is being used. Note, furthermore, that attributes can be
referred to very much like in Java in the construct: object.attribute. Older version of the
Brahms language also admitted the construct: ‗the attribute of object‘ but it is preferable
to use the newer and more Java-like syntax.

Similarly, facts represent the state of the world. A fact is a first-order proposition about
the world. Facts are in contrast to beliefs, global. Any agent can detect a fact in the
world and turn it into a belief and act on the belief. Objects on the other hand, only react
to facts. Initial-facts define the initial state of the world. Initial-facts are turned into actual
facts in the world when the model is initialized for a simulation run. In the example above
we are stating for example that the attribute male of the agent is a fact in the world that
other agents can detect, and potentially act upon.

http://www.agentisolutions.com/documentation/language/ls_bel_stx.htm
http://www.agentisolutions.com/documentation/language/ls_fct_stx.htm

Brahms Tutorial Version 1.2 Page 4-62
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Not always things are so straightforward. Is the hungriness level of Alex_Agent only a
belief or an actual fact? One might argument for both options. The hungriness level of a
person is based on some specific fact, i.e. it is something which exists in the world - the
status of the agent‘s endocrine system, which can be detected with appropriate
measurements and tests and which might have an effect on its own even if the agent
does not detect it or as different beliefs about it (think for example of an agent so deeply
involved in an activity that he forgets about eating, while his body is instead increasingly
in need for food). On the other side, what would be the use of making the hungriness
level a fact in the world of this scenario? Note in fact that facts in the world can be
detected by other agents or objects: so, do we want such an internal fact as the
hungriness state of an agent to be (potentially) public knowledge? Of course, the other
agents and other objects in the model do know automatically know about all the facts in
the world: they only see or act upon depending on how the modeler decides to model
his scenario (for example, another agent would need a ‗detectable‘ – more on this in
section 4.13 – to get information about a fact ‗hungriness level‘). On the other side, you
do not need any fact to model the belief of an agent, but you do need facts to make
objects react (objects do not react on beliefs). This dichotomy involves some
philosophical discussion, that we leave aside for now, but it suffices to say that it leaves
open several approaches to the modeling of attributes such as the physical state of a
human agent (here, his ‗hungriness level‘, which could have been modeled just as a
belief only) as well as of complex artifacts such as Banks and Atms in our model (should
they be objects or agents)? In the code attached to this Tutorial, we have chosen to
model banks and Atm‘s as objects, but you should always remember that more than one
approach is possible in Brahms, and a few might be equally correct (we will discuss
these issues in particular when we will discuss detectables).

On the other side, an agent needs to have a belief (even if an ‗uncertain‘ one: see next
section for an explanation of what that means in Brahms), in order to use it. For
example, workframes are triggered when preconditions are met (cf. 4.7). For a
precondition to be met, the agent must have at least a belief about the existence of the
particular concept considered in the precondition.

16
 An agent does not automatically

know even about its own attributes. For example, in the Atm scenario, the hungriness
level is an attribute of Students. Even after modeling its value for Alex_Agent as a fact,
we still must set up a belief for the agent in order for Alex to know and act after it.

16
 Note, however, that he agent does not need a prior belief about a concept in order to receive a communication about it.

Brahms Tutorial Version 1.2 Page 4-63
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

So, when should we use beliefs and when do we use facts? Be careful: facts in the
world can be known by everybody in the world with a detectable to detect that fact:
another agent can know your account balance if you model it as a fact (and, of course, if
you model that other agent‘s detectable of your bank account). A rule of thumb is the
following: when you are modeling flows of data, you might preferably use beliefs; if you
are dealing with things happening and changing in the physical world, then you might
instead use facts. It is up to you as a modeler to find the right combination between
realism and practicality, specificity and generality. There will be several cases in the Atm
scenario (as well as in all the other scenarios you will model in Brahms), where more
than one option is available to you. Take cash and Atm machines: in the coming pages
we will be modeling cash as an object that belongs to the student, with an attribute
―balance‖ that represents the total amount of cash the student is carrying. Other ways of
modeling this are also possible. Similarly, the Atm will be modeled as an object (which
implies that it will react only to facts), but it could also have been modeled as an agent.
The choice is the modeler‘s. The rule of thumb is to try to represent things as close to
your world experience as possible. Thus, one reasonable good rule is: Humans are
modeled as agents and everything else is modeled as objects, most importantly all
objects in the world.

Brahms Tutorial Version 1.2 Page 4-64
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.7 LESSON V: WORKFRAMES AND PRIMITIVE ACTIVITIES

4.7.1 INTRODUCTION

This chapter will teach you how to use activities and frames in Brahms models.

4.7.2 TASK

Finally, some action inside the model! Alex_Agent is hungry and needs food, therefore
he goes to the restaurant, where his ‗hungriness level‘ is automatically decreased.

4.7.3 DESCRIPTION

4.7.3.1 WORKFRAMES

Recall the conceptual approach to modeling in Brahms that we have described in
chapter 2:

GROUPS are composed of

 AGENTS having

 BELIEFS and doing

 ACTIVITIES executed by

 WORKFRAMES defined by

 PRECONDITIONS, matching agent’s beliefs

 PRIMITIVE ACTIVITIES

 COMPOSITE ACTIVITIES, decomposing the activity

 DETECTABLES, including INTERUPT, IMPASSES

 CONSEQUENCES, creating new beliefs and/or

facts

An activity is an abstraction of real-life actions that help accomplish a task. A model of
an agent‘s activities describes what the agent actually does over time (i.e. its actions)
based on decision-points that are described based on the causal relationship between
the decision to perform an action and the past and present state of its beliefs. In Brahms
we represent activities to take a certain amount of time.

However, an agent cannot always apply all its available activities, given the agent‘s
cognitive state. Each activity is therefore associated with a conditional statement or
constraint, representing a condition/activity pair, most of the time referred to as a rule. If
the conditions of a rule are believed, then the associated activities are performed. In
Brahms, such rules are called workframes. Workframes are situated-action rules.

http://www.agentisolutions.com/documentation/language/ls_pac_stx.htm
http://www.agentisolutions.com/documentation/language/ls_wfr_stx.htm

Brahms Tutorial Version 1.2 Page 4-65
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

A workframe defines an activity (or activities) that an agent or object may perform.
Worframes have conditions, called preconditions, that constrain when to carry out the
activity. A workframe precondition tests a belief held by the agent executing the
workframe. A workframe can also contain a detectable. Detectables describe
circumstances (in the form of fact-conditions about the world) an agent might observe
while executing the workframe. Detectable could, for instance, create an impasse to
completing the activity (we will discuss detectables in more detail later in section 4.13).
A typical workframe would be defined as follows, inside the body of an agent:

workframes:

 workframe wf_moveToRestaurant {

 repeat: true;

 variables:

 when

[…]

 do

 […]

 }

}

A workframe is a larger unit than the simple precondition-activity-consequence design
might suggest, because a workframe may model relationships involving location, object
resources such as tools and documents, required information, other agents the agent is
working with, and the state of previous or ongoing work. Active workframes may
establish a context of activities for the agent and thereby model the agent‘s intentions,
e.g., calling person X to give or get information, or going to the fax machine to look for
document Y. In this way, behavior may be modeled as continuous across time, and not
merely reactive.

A workframe is an action rule for an agent or object. It is a declarative description of
under what condition (in case of an agent, beliefs that an agent has or in case of an
object, the facts in the world) the agent/object will perform the activities specified in the
body of the rule. Workframes are treated like data-driven (forward chaining) production
rules. However, workframes are different from production rules, in that they specify
activities that agents and objects can perform (are engaged in) - production rules
specify what conclusions can be drawn based on the conditions that are met (facts).

Brahms Tutorial Version 1.2 Page 4-66
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

As mentioned in the previous section, in Brahms we separate facts in the world from
beliefs that agents have. For example, in Brahms we can have a fact ‗the color of John‟s
Car is red‘. Agent John might have the belief ‗the color of John‟s Car is red‘, but agent
Caroline might have the belief ‗the color of John‟s Car is green‘. Agent workframes get
‗worked on‘ (in production rules systems we call this ‗get fired‘) based on the beliefs that
agents have. This means that, in the example above, if John and Caroline have the
same workframe using the belief of John‘s Car is red as a condition for the activation of
the workframe; John will start working on the workframe, whereas Caroline will not start
working on the workframe. Using this separation of beliefs and facts in the world allows
Brahms to model agent‘s activities, based on changes in the world (facts) detected
through detectables, and the agent-specific beliefs that are created. For objects beliefs
are the information that an object carries and the beliefs do not trigger any workframes.
Workframes for objects are only triggered by facts in the world.

Workframes can also be associated with objects. In this case workframes satisfy their
preconditions with facts rather than with beliefs. Workframes for objects are inherited
from object classes as workframes for agents are inherited from groups.

On the other side, having two or more agents with different workframes, performing the
same activity, can represent individual differences. Individual differences can also be
modeled by giving different agents the same workframes but different beliefs about the
world. Activities are constrained on their activation by the preconditions that are
associated with the workframe it is in. For example, activities may have preferential start
times, as expressed in the preconditions, which may refer to the time in hours, minutes,
seconds, day of the year, and/or day of the week.

Repeat

A workframe can be performed one or more times depending on the value of the
‗repeat‘ attribute. A workframe can be performed repeatedly if the repeat attribute is set
to true. In case the repeat attribute is set to false, the workframe can only be performed
once for the specific binding of the variables at run-time. The scope of the repeat
attribute of a workframe defined as part of a composite activity is limited to the time the
activity is active, meaning that the workframe with a specific binding and a repeat set to
false will not execute repeatedly while the composite activity is active. As soon as the
composite activity is ended the states are reset and in the next execution of the activity it
is possible for the workframe with the same binding to be executed. So only for top-level
workframes the state will be stored permanently during a simulation run.

Priority

The workframe priority can be set in one of two different ways. You can have the
simulation engine determine the priority of the workframe (in that case the priority will be
deduced based on the priorities of the activities defined within the workframe; the
workframe will get the priority of the activity with the highest priority); or you can set the
priority of the workframe manually by setting a priority value with the priority attribute.

Brahms Tutorial Version 1.2 Page 4-67
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

This priority value will cause the simulation engine to use this value instead of the
deduced priority value.

4.7.3.2 ACTIVITIES

As mentioned earlier, an activity is an abstraction of real-life actions that help
accomplish a task. A model of an agent‘s activities describes what the agent actually
does over time (i.e. its actions) based on decision-points that are described based on
the causal relationship between the decision to perform an action and the past and
present state of its beliefs. In Brahms we represent activities to take a certain amount of
time.

There are several types of activities. The simpler ones are primitive activities. A primitive
activity is the lowest level of activity an agent or object works on for a specified amount
of time. A primitive activity has no side-effects. In the next sections we will study other
activities, such as communicate, create object, as well as composite activities (that is,
activities composed by other activities). In this section we will just consider one
particular form of activity – the move activity – because it will come immediately useful
for our Atm model.

Move activity

The primitive move activities trigger an agent or object to move to a location if not yet
located there. For this activity type, the modeler defines the goal-location, such as the
name of an area in the geography model, or a variable referring to an area. In moving,
an agent or object may act as a container for another agent or object that is carried
along. For example, a car-object may carry an agent, and then move to a new location.
To simulate this, the modeler links the carrier and the carried with the built-in contains
relation, before the move activity is executed (about relations see section 4.8). This is
done with a consequence that asserts the relation, and then negates the relation with
another consequence when the trip is completed, and the carrier ―drops‖ the carried
object or agent in the new location.

When a primitive move activity is executed, and the goal-location is different from the
agent‘s or object‘s current location, the agent or object will start moving to the goal
location. The simulation engine finds a path between the locations and gets or computes
the distance. It is possible, however, to define the duration of the activity and thus avoid
the need to define a geography model with travel paths. The engine calculates the
duration of the trip and uses it to set the duration of the primitive move activity. When
the agent or object reaches the new location, a new fact and belief are created stating
that it is there. The agents currently at the new location detect the agent or object and
will therefore get a belief about its location. A newly arrived agent will also detect the
other agents and objects in the new location. The agent or object then continues with
the workframe.

Brahms Tutorial Version 1.2 Page 4-68
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Brahms can handle interruptions that cause the location of an agent to change. Work
that has to be done at a specific location may be interrupted and the agent may then
move to another location to do work of a higher priority. When the higher-priority work is
completed, before the agent resumes the interrupted work, the agent returns to the
location where the agent has to do the work.

Declaration and reference

All activities have to be declared in the activities section of either a group, an agent, a
class, an object, or a composite-activity. A typical declaration could be as follow (se
more in the Utorial sub section below):

activities:

move moveToRestaurant() {

[Body of the activity]

}

The declared activities can then be referenced in the workframes defined for the group,
agent, class or object, as we will soon see in the tutorial section:

workframes:

 workframe wf_moveToRestaurant {

 repeat: true;

 variables:

 when

 […]

 do

 { [activity]

 […]

 }

}

Parameters

It is possible to define input parameters for primitive activities. These input parameters
can be used to make activities more generic. In the reference the values for the input
parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Brahms Tutorial Version 1.2 Page 4-69
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Resources

Artifacts (objects) can be defined as being a resource or not by setting the resource
attribute to either true or false. In general artifacts that are worked on by agents are not
considered to be a resource in an activity (a form, a fax). Artifacts that are used by an
agent in an activity are considered to be resources (a fax machine, a telephone).

It is possible to associate artifacts with activities for statistical purposes and for the
purpose of generating object flows by defining them in the list of resources for an
activity. Artifacts that are defined as resources are also called resource objects.
Resource objects associated with activities will only collect statistics and will not be used
for the object flow generation. Artifacts which are defined not to be a resource and
which are associated with an activity are also called touch objects. Touch objects should
be associated with one or more conceptual object(s) for object flow purposes and
statistical purposes.

As mentioned before, primitive activities are atomic actions, and a small number of
primitive activities are defined to have built-in semantics that is implemented in the
Brahms engine. These predefined primitive activities exist to communicate beliefs,
create runtime objects, and travel to a location.

4.7.3.3 PRECONDITIONS

Preconditions control the activation of a workframe or thoughtframe. For a frame to
become active the preconditions defined for the frame have to be satisfied.
Preconditions are satisfied by either matching beliefs of an agent (if the workframes are
defined for an agent or the frame is a thoughtframe) or by matching facts in the world (if
the workframes are defined for an object). Preconditions can include variables as part of
their matching of specific beliefs/facts.

known:

The modifier ‗known‘ represents the possibility for an agent/object to have a belief/fact,
but be unspecific as to whether the agent/objects knows the actual value.

For example, to evaluate the following precondition:

known (car1.color)

Brahms Tutorial Version 1.2 Page 4-70
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

The simulation engine would simply check with the belief set of an agent to see whether
the agent has a belief of the form:

car1.color = ?

If the engine finds a belief of this form, as it would when the following belief is present:

car1.color = red

then the engine would evaluate the precondition as true. A simple relational precondition
like:

known (John is-the-son-of)

will evaluate to true when the engine finds any of the following beliefs (the right hand
side and truth-value are completely ignored):

John is-the-son-of Bill is true

John is-the-son-of Bill is false

John is-the-son-of Jack is true

John is-the-son-of Jack is false

A more complex precondition like:

known (Cimap-order1.service-tech is-the-son-of)

will evaluate to true if the following beliefs are present:

Cimap-order1.service-tech = <agent1>

<agent1> is-the-son-of ?

where <agent1> is either an agent or object.

knownval:

The modifier ‗knownval‘ (known value) means that the simulation engine must find a
precise match for the precondition. The precondition is only true if matching beliefs/facts
can be found for both the left hand side and the right hand side and if the relation
between them is found as well. For an example of a complex precondition such as:

knownval(Cimap-order1.service-tech is-the-son-of Cimap-order2.service-

tech)

the following beliefs must be present:

Cimap-order1.service-tech = <agent1>

Cimap-order2.service-tech = <agent2>

<agent1> is-the-son-of <agent2>

When using variables, the engine will find as many matches as there are valid
instantiations for the variables.

unknown (aka no-knowledge-of):

Brahms Tutorial Version 1.2 Page 4-71
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

When the modifier ‗unknown‘ is used, the simulation engine looks at the beliefs of the
agent or facts in the world for objects for possible matches of the precondition. If there
are any matches, the precondition evaluates to false, if no matches are found the
precondition evaluates to true. The ‗unknown‘ modifier can be interpreted as ‗The
agent/object has no beliefs/facts for <precondition>‘. However, there are intricacies that
need to be explained further.

When matching a precondition of the form: O1A1, the simulation engine looks for a belief
of the form O1A1= ?. When a belief of the form O1A1= ? is found, the simulation engine
interprets this to mean that the agent ‗knows‘ about this object and attribute and thus the
precondition is false.

When the precondition is of the form O1 rel however, no matter what the right hand side
or the truth of the relation is, the simulation engine will simply look up whether the
agent/object possesses the belief/fact O1 rel ?, and if so will evaluate the precondition to
be false.

All other preconditions, require at least two steps for the simulation engine to determine
the truth or falsehood of the precondition.

The form O1A1 rel requires the simulation engine to evaluate first the O1A1 then the
result of the O1A1 (say O2) with the relation. When a belief/fact for either the OA or for
O2 rel is not found, the precondition will be evaluated to true, if both are found the
precondition will evaluate to false. For example given the following beliefs:

John.car = car1

car1 is-driven-by Jack

and the precondition:

unknown (John.car is-driven-by)

The simulation engine will evaluate the precondition to false, because it finds a belief for
―John.car = ?‖ with the value car1 and it finds a belief for car1 is-driven-by. If either of
the beliefs were not available the precondition would evaluate to true.

not (aka no-matching-beliefs):

Not works similar to unknown in that when there is no belief for the precondition
specified with the not modifier the precondition will evaluate to true. If a belief does exist
for the condition in the precondition then the not modifier works similar to the modifier
knownval, but negates the resulting truth-value. The simulation engine will first try the
knownval for the precondition. If the precondition with the knownval modifier evaluates
to true then the precondition with the not modifier evaluates to false and vice versa.

Precondition Evaluation Order

Brahms Tutorial Version 1.2 Page 4-72
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

When variables are used in one or more precondition(s) the order in which the
preconditions are specified is important. Depending on the order different outcomes are
possible. The reason that precondition order is important is that the simulation engine is
not a standard pattern matcher, but actually evaluates the preconditions causing
potential assignments of values to variables. For example:

 knownval(John.car = <car>)

The simulation engine tries to find a belief of the form ‗John.car=‘. If it finds one stating
‗John.car=car1‘ then it will assign the value car1 to the variable <car>.

If you were to write the following two preconditions in the following order the outcome
might be unexpexted:

 not(John.car = <car>)

 knownval(<car> belongs-to <company>)

Suppose we have the following beliefs:

 John.car = car1

 car2 belongs-to nynex

The simulation engine will evaluate the first precondition first and first treat the
precondition as a knownval therefor assigning the value ‗car1‘ to the variable <car>
because it matches the precondition with the belief ‗John.car = car1‘. Since this
precondition is a not this precondition will always evaluate to false. The simulation
engine would not continue but if it would then the simulation engine would verify the
second precondition. It found a binding for the <car> variable and will substitute its
value. It will then try to find a belief of the form ‗car1 belongs-to <company>. It cannot
find such a belief and therefor will fail the evaluation causing the frame not to be made
available. However if you turn the preconditions around the outcome is different.

 knownval(<car> belongs-to <company>)

 not(John.car = <car>)

In this case <car> will be bound to car2, the first precondition evaluates to true. The
second precondition will be evaluated and the simulation engine tries to find the belief
‗John.car=car2‘, it cannot find such a belief but due to the ‗not‘ modifier the precondition
will evaluate to true causing the frame to be made available.

The precondition ordering will also be important when taking into account the use of
variables. We will discuss variables in section 4.10.

Brahms Tutorial Version 1.2 Page 4-73
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.7.3.4 CONSEQUENCES

Consequences are statements that are inside a workframe's body. They can be situated
before or after activities. Consequences are facts or beliefs or both that may be
asserted when a workframe is executed. They exist so a modeler may model the results
of the activities in a workframe. A consequence is formally like a condition and defines
the facts or beliefs that will be created or changed, when executed. The property fact-
certainty is the probability that the fact will be changed or created; the default value is
100%. The property belief-certainty is the probability (with also a default value of 100%)
that the belief will be changed or created, conditional on the fact being true. That is, if
the fact-certainty and the belief-certainty are each 50%, then 1 in 2 times the fact will be
created and 1 in 4 times the belief will be created. If the fact-certainty is zero, then no
fact will be created but the belief-certainty determines how often a belief is created.

A consequence is a logical statement for concluding/asserting new beliefs for an agent
or object and/or facts in the world.

Fact certainty

The fact certainty is a number ranging from 0 to 100 and represents the percentage of
chance that a fact will be created based on the consequence. A fact certainty of 0%
means that no fact will be created, 100% means that a fact will be created at all times.

Belief certainty

The belief certainty is a number ranging from 0 to 100 and represents the percentage of
chance that a belief will be created based on the consequence. A belief certainty of 0%
means that no belief will be created, 100% means that a belief will be created at all
times.

4.7.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_wfr_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_pac_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_mov_stx.htm, and pages
linked from there.

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_wfr_stx.htm
http://www.agentisolutions.com/documentation/language/ls_pac_stx.htm
http://www.agentisolutions.com/documentation/language/ls_att_stx.htm

Brahms Tutorial Version 1.2 Page 4-74
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.7.5 TUTORIAL

So: the first action we will make our Alex_Agent complete in our Atm scenario will simply
be going to one of the two Restaurants in town and eating there. This will be a very
simplified version of what happens in real life. We do not have yet a Restaurant object -
but you might remember that we have already defined a couple of restaurant locations
(that extend the building area definition). One of such location is Telegraph_Av_2405,
the street address of the restaurant. Let‘s say that we know that every student will go to
that specific restaurant – not only Alex – to keep things simple for the moment. And let‘s
assume that, just by being there, the student will feel automatically less hungry
(basically, we will bypass modelling the ‗eating‘ step). So, we might write something like
this: inside the Student body declaration, under the workframes: tag, let‘s define a
workframe called ‗moveToRestaurant‘:

workframes:

 workframe wf_moveToRestaurant {

 repeat: true;

 variables:

 when

 (knownval(current.howHungry > 2.00) and

 knownval(current.location != Telegraph_Av_2405))

 do

 {moveToRestaurant();

 conclude((current.howHungry = current.howHungry -

5.00), bc:100, fc:100);

 }

}

The first line of the workframe simply declares the unique name of the workframe. We
do not bother – for the moment – with the variables declaration. Repeat is set to true so
that this workframe might be repeated, if needed. The repeat attribute for workframes
allows workframes with the exact same variable binding to be executed repeatedly.
When a workframe is instantiated with a specific binding that workframe instantiation
(wfi) is executed. When the wfi has been completed the engine will determine if the
bindings are still valid (if the preconditions still hold true for the same beliefs). If that is
the case and if repeat is set to true, the engine will make a new wfi with the exact same
bindings available. If repeat is set to false then that specific workframe will never be

executed again with that specific set of bindings.
17

17
 The only exception to this rule is with workframes specified within a composite activity (that we will consider in section

4.11). While a composite activity is active the engine keeps track of the executed bindings for workframes, but when the

omposite activity ends, all of these bindings are reset. This is only relevant in case repeat is set to false.

http://www.agentisolutions.com/documentation/language/ls_wfr_stx.htm

Brahms Tutorial Version 1.2 Page 4-75
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

The when: tag is very important. It states under which conditions the workframe has to
be triggered. When the conditions stated are met (precisely those values, cause we are
using the knownval statement) the conclusions stated after the ‗do‘ tag will be fired, in
the order that they are written. In this case, we need that the current student/agent
being considered be hungrier than ‗2.00‘ (whatever that means; and that he/she is not
already at the restaurant. The conclusion will make him less hungry by a constant (equal
to 5) after he has been to the restaurant. (Aside note: you can of course alter this and
other values in this scenario – how much money the agents has or gets from the bank,
how expensive the restaurants are, etc. In fact, you are encouraged to do so and see
how your simulation will change!).

Note that knowval checks for a belief that the agent has about that concept, and also
checks to see whether that belief is true; hence kknowval (….) is by default a check for
‗is it true?‘. Note, moreover, that preconditions are always checked from the point of
view of the agent/group/object or class from inside which they are executed. A when
condition about a belief that the agent does not even have will simply be skipped.
Hence, beliefs for agents are absolutely crucial in their workframes (and thoughtframes).
The Compiler will throw no error (because no error is there to be found), but all the
consequences after the do tag will be ignored. Note that in order to make an agent do
something when it does not have a belief about something (i.e. not even an uncertain
belief), you can write: unknown(current.attribute). On the other side, the situation
where an agent has an ‗uncertain‘ belief about something (for example, an agent who
has forgotten how hungry she is, but not about the fact that she has an ‗hungriness‘
attribute), might be represented with the following format: (current.howHungry !=

anynumber). A known precondition applied to an agent with such belief and referred to the
attributed howHungry will evaluate to true (and, of course, the knownval precondition will
evaluate to false).

Note how the not operator works when applied to beliefs about attributes and relations:

not(current contains object)

evaluates to false if the agent has a belief that she contains the object. The same thing
would happen by evaluating a belief under a different syntactical form: knownval(current
contains object is false). On the other side, if the agent does not have a belief,
not(current contains object) will evaluate to true simply because there is no belief;
but knownval(current contains object is false) will evaluate to false for the same
reason. With relations, most of the times not can be safely used rather than the is
false statement.

http://www.agentisolutions.com/documentation/language/ls_pre_stx.htm
http://www.agentisolutions.com/documentation/language/ls_con_stx.htm

Brahms Tutorial Version 1.2 Page 4-76
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Let‘s go back to the tutorial. If the conditions are met, the agent will first try to perform
the activity moveToRestaurant(); then, the agent will process some conclusions about
beliefs and facts of the world (in particular, about the fact/belief that he/she is less
hungry than before). Note that activities must always be called from a workframe. Of
course, you can re-use the same activity and make it be called by several workframes
with different parameters. Note, however, that moveToRestaurant() is different from
wf_moveToRestaurant. The latter is a workframe; the former is an activity, written
similarly to a method in Java, where inside the parenthesis parameters can be passed to
make the activity specific (in this case we are not passing any parameter, but we still
need to use the parenthesis).

So, workframes check the facts and beliefs in the world, and when their conditions are
met, they trigger activities and conclusions. But where are the activities explicitly
written? Who tells the agent what moveToRestaurant really means? We need to add
some more code for this purpose (aside: activities can be interrupted when conditions
are met that trigger new activities/workframes; however, when we use composite
activities things become much trickier: cf. 4.11). We will add this code right after the
activities tag, outside the workframe:

activities:

 move moveToRestaurant() {

 location: Telegraph_Av_2405;

 }

This is a simple move activity. We did not have to specify its duration because the
geography of this scenario has already been described in the AtmGeography file where
we have declared a path for the movement we are considering now. We could have
overridden those timings by imposing, for example,

 move moveToRestaurant() {

 random: true;

min_duration: 50;

 max_duration: 150;

 location: Telegraph_Av_2405;

 }

Now, try to compile this code. You can do it from the Compile Model command inside
the Composer, or you can do it manually as explained in Chapter 3.

18
 Remember in this

case that you must use the AtmModel.b file, which imports all the other files in the Atm
project/folder.

18
 The command should look like:

http://www.agentisolutions.com/documentation/language/ls_pac_stx.htm

Brahms Tutorial Version 1.2 Page 4-77
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

If everything worked out fine, you should now be able to see a message (in one of the
Composer‘s windows or in the command line interface) telling you that the model has
been successfully built. You might even want to open one of the xml files that have been
produced in the Atm folder. For example, there will be an Alex_Agent.xml file that will
look more or less like this:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE AGENT SYSTEM "file:///C:\Program Files\Brahms\AgentEnvironment

1.0\DTD\agent.dtd">

<!-- Generated at Sun Apr 15 18:23:02 PDT 2001 -->

<AGENT name="projects.Atm.Alex_Agent" display="Alex_Agent"

location="projects.Atm.SouthHall">

 <MEMBEROF ref="projects.Atm.Student" />

 <BELIEFS>

 <BELIEF>

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.howHungry" evalOp="eq" value="15.0"

valueType="double"/>

 </BELIEF>

 <BELIEF>

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.male" evalOp="eq" value="true"

valueType="boolean"/>

 </BELIEF>

 <BELIEF>

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.preferredCashOut" evalOp="eq" value="8.0"

valueType="double"/>

 </BELIEF>

 </BELIEFS>

 <FACTS>

 <FACT>

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.howHungry" evalOp="eq" value="15.0"

valueType="double"/>

 </FACT>

 <FACT>

C:\Program Files\Brahms\AgentEnvironment\bc.bat

c:\brahms\Projects\AtmModel\final_source -src

c:\brahms\Projects\AtmModel\final_source\gov\nasa\arc\brahms\atm\AtmModel.b

Brahms Tutorial Version 1.2 Page 4-78
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.male" evalOp="eq" value="true"

valueType="boolean"/>

 </FACT>

 <FACT>

 <OAV lObjRef="current" lObjType="Current"

attRef="projects.Atm.Student.preferredCashOut" evalOp="eq" value="8.0"

valueType="double"/>

 </FACT>

 </FACTS>

</AGENT>

Now, you are ready for the big step! Try running your simulation for the first time, the
way it was discussed in Chapter 3.

If everything goes fine, you will see something like:

Figure 12. The Simulation Engine (Virtual machine)

This means that the Virtual Machine has loaded all concepts, started the engine, and
run successfully the simulation. If the simulation never halts, or never even starts
because a java exception is thrown, there must be again an error in the code. Go back
and check it (we will discuss errors in detail over the next sections).

Brahms Tutorial Version 1.2 Page 4-79
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

On the other side, let‘s assume that you have made it till now. You might like to know
that a text file has been produced and saved (by default), in the
Brahms/AgentEnvironment/Databases directory, with a unique name that includes the
date and time of the simulation run (for example, it will look something like
AtmModel_20010415_134559.txt). Go and look for that file. It will be mostly
incomprehensible, now, but for future reference it is good to know it is there. It is the
history of your simulation that must be passed to the Agent Viewer for parsing, in order
to be transformed into a MySQL database file that the Agent Viewer can then display as
a 2-dimensional graph.

But let‘s go with order. The text file will look something like this:

precondition|PRE1|knownval(current.howHungry > 2.0)

precondition|PRE2|knownval(current.location != projects.Atm.Telegraph_Av_2405)

consequence|CON1|conclude((current.howHungry = current.howHungry - 5.0));

workframe|WFR1|wf_moveToRestaurant||PRE1,PRE2|MOV1,MOVE,CON1,CONSEQUENCE-MESSAGE

group|GRP2|Student||AGT1|WFR1

attribute|ATT1|howHungry

attribute|ATT3|preferredCashOut

attribute|ATT2|male

[…]

belief-he|BC0|belief: (projects.Atm.Alex_Agent.howHungry =

15.0)|NEW|COMPLETED|0|0|-1|none|HL2|BC0

belief-context|BC0|OBJ-ATT-

PAIR|AGT1|AGENT|ATT1|EQ|VALUE|NONE|NONE|NONE|15.0|belief:

(projects.Atm.Alex_Agent.howHungry = 15.0)|AGT1|INITIAL

belief-he|BC1|belief: (projects.Atm.Alex_Agent.male = true)|NEW|COMPLETED|0|0|-

1|none|HL2|BC1

belief-context|BC1|OBJ-ATT-

PAIR|AGT1|AGENT|ATT2|EQ|VALUE|NONE|NONE|NONE|true|belief:

(projects.Atm.Alex_Agent.male = true)|AGT1|INITIAL

belief-he|BC2|belief: (projects.Atm.Alex_Agent.preferredCashOut =

8.0)|NEW|COMPLETED|0|0|-1|none|HL2|BC2

If you can‘t read it, the Agent Viewer can! Open the application Agent Viewer, and click
on the top left menu button, called ‗Parse New File‘ (or just use the window menu). Look
for the history file when the selection window opens, and once you find it, select it. The
Agent Viewer will use an existing database sample file as a template to create the new
database file with the history of the simulation (do not delete or remove or change the
database file called brahms.mdb in the Database folder!!). It will create a new database
file, ask you to save it (with a name such as AtmModel_20010415_134559.mdb), and then it
will actually start parsing the file. If the parsing completes without sending out error
messages, click on the second leftmost menu button on the top, to open the newly
created file. Agent Viewer will by default try to open the most recently created database
file, so you will simply have to click on yes in the selection window.

Brahms Tutorial Version 1.2 Page 4-80
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Does the file load? You will see a screen like this:

Figure 13. The Agent Viewer and the Atm Scenario

The elements on the left are the components of your simulation. Click on the agent
folder and then once on Alex_Agent. Then zoom in or out in the picture (right menu
buttons on the top) until you see something like this:

Brahms Tutorial Version 1.2 Page 4-81
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 14. The First Activity in the Agent Viewer

Congratulations!! You have just completed and verified your first Brahms simulation.
Alex_Agent starts, as he should, in South Hall, and then moves to Telegraph Avenue
when he is hungry (and he is very hungry already at the beginning of the simulation).
Play around with the components of the Agent Viewer and of your model. Take some
time to check the various menus. You will see that the Agent Viewer can show things
like communications, thoughtframes (cfr. section 4.9) and much more. For example,
click once with the left mouse button on the workframe wf_moveToRestaurant. You will
access the Explanation Facility:

Brahms Tutorial Version 1.2 Page 4-82
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 15. The Explanation Facility in the Agent Viewer

From the explanation facility you can get a picture of (almost) anything that is going on
in the simulation: why workframes or activities are triggered (‗General‘ tag), with some
detail (‗Start‘ tag); what happens when (for example) the workframe is triggered (‗Active‘
and ‗End‘ tags); and all of the beliefs and facts that take place or change in the world of
your simulation (‗Fact or Belief‘ tag). The explanation facility will be a powerful tool to
debug and verify your simulation. Only in very extreme cases you will need to use
anything else (for example, the raw text file with you simulation‘s history).

Ok, before with go on with something else, this is a summary of the steps necessary to
use the Agent Viewer:

1. Open the application Composer and switch to the Agent Viewer view.

2. Click on the menu, File -> Agent Viewer -> New Database... .

3. Look for the history file when the selection window opens, and once you find it,
select it and press Open. Wait while the Agent Viewer parses the file.

Brahms Tutorial Version 1.2 Page 4-83
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4. When parsing is complete, the database should automatically be opened and its
results displayed, if not click on the menu File -> Agent Viewer -> Open
Database... to open the newly created database.

A few comments about activities and workframes.

First, preconditions are not compulsory – we can make an agent always do something
by eliminating the when condition and setting repeat to true.

Second, activities are not really simultaneous: if an agent walks, she cannot study: her
time is devoted to one only activity. It is possible, however, to model an activity like:
‗studying while walking‘; or to write a composite activity (cf. 4.11) and let more internal
workframes be triggered at the same moment by playing around with priorities,
preconditions and activity times. There are also special activities called ―composite
activities‖, but we will deal with those later in the Tutorial (cf. 4.11). For the moment, it
might suffice to know the following: if you have two workframes with preconditions that
are both satisfied by the beliefs of an agent, Brahms will create two workframe
instantiations. Both will be marked as available, but the agent will only work on one of
them. The workframe being worked on depends on the priority of the workframe, the
highest priority workframe is selected. If both frames have the same priority the frame
that is first in the list of available frames will be selected. Now, even if Brahms currently
does not support true multi-tasking, it does have a subsumption architecture that can
create some form of multi-tasking although not in the sense of operating systems by
using composite activities. For example, if I were to have a workframe A with a
composite activity doWork and in that composite activity doWork I have a workframe B:

composite_activity doWork() {

 workframes:

 workframe B {

 when(knownval(inbox.numOrders > 0))

 do {

 getOrderFromInbox();

 }

 }

 workframe A {

 when(knownval(agt.available = true)

 do {

 doWork();

 }

 }

Then, if the agent believes that it is available and that the number of orders in the inbox
is larger than 0, firstly workframe A is made available and active for the agent to work
on, and as soon as the agent starts doWork it will also have workframe B available and
will work on that instantiation as well.

Brahms Tutorial Version 1.2 Page 4-84
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Third, you might be interested in knowing whether there are if…then…else statements

in Brahms. The quick answer is: no. The explanation is that you can do exactly the
same by writing, for example, two or three thoughtframes. Declarative structures such
as if…then…else are not welcome in Brahms, because they are built to be checked in

specific orders, while Brahms works on rules, and all the preconditions of all rules are
always being checked. This is an important characteristic of rule-based programming.

Fourth, note that any workframe in a composite activity has access to the activities
defined within that same composite activity and to the activities defined at the same
level as the composite activity and the activities higher in the activity hierarchy above the
composite activity.

Sixth, Brahms does not yet support OR statements in workframes. In order to
accomplish the same results of OR statements, you would have to duplicate the body of
your workframe into a new workframe and use the OR'd preconditions.

when(

 knownval(car1.color = red) or

 knownval(car1.color = blue)) {

do {

 someActivity();

}

would have to be rewritten as two workframes with the bodies:

wf1:

when(knownval(car1.color = red))

do {

 someActivity();

}

wf2:

when(knownval(car1.color = blue))

do {

 someActivity();

}

Lastly, no nested expressions in the preconditions are allowed, and only simple ones in
the conclusions are.

But let‘s go back to our simulation. Why does the agent not do anything else after going
to the restaurant? Well, first of all, this statement is not entirely correct: if you check the
beliefs and the facts of the world from the ‗Fact or Belief‘ tag, you will see that your
agent is now less hungry than before (howHungry = 10.00).

After this, the agent has nothing to do: one of the two preconditions for triggering the
moveToRestaurant activity is not met – the agent is already at the Restaurant! So, let‘s
create some more movement. Let‘s say that whenever the agent goes to the restaurant,
after eating he moves back to South Hall to study. Let‘s add an activity ‗goToSouthHall‘:

 move moveToSouthHall() {

Brahms Tutorial Version 1.2 Page 4-85
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 location: SouthHall;

 }

Remember, we do not have to specify the path and the duration of this move action
because we have done so already in the geography file. Then, modify the workframe
wf_moveToRestaurant as follows:

workframe wf_moveToRestaurant {

repeat: true;

variables:

when

(knownval(current.howHungry > 2.00) and

 knownval(current.location != Telegraph_Av_2405))

do {

moveToRestaurant();

conclude((current.howHungry = current.howHungry - 5.00),

bc:100, fc:100);

 moveToSouthHall();

 }

}

and compile/run/parse your simulation as before to see what happens:

Brahms Tutorial Version 1.2 Page 4-86
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 16. More Complex Activities

As you can see, now the agents move back and forth South Hall and the Restaurant.
Note that order is important. If you have a conclude statement after a call to a move
action (or any other action), the conclusion is drawn after such action has been
completed. The order that the Compiler follows is left to right, top to bottom. The same
rule is applied to different workframes inside the body of – say – an agent. Keep this
simple rule in mind when unexpected things happen: it could well be a problem of
priorities between workframes (we will discuss priorities in section 4.13), an issue with
the order of the workframes and the preconditions that must be satisfied to trigger them,
or just a matter of the order you are triggering activities and conclusions within each
workframe. For example, processing beliefs could make some of the available frames
unavailable and could make unavailable frames become available (more on this in
section 4.11).

Brahms Tutorial Version 1.2 Page 4-87
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Note, moreover, that if the Agent Viewer crashes when opening a database it has
parsed correctly, it might be because no activity is really running. Furthermore, agents
need a location and a performed activity to be shown in the Agent Viewer; and
workframes that only triggers conclusions but do not trigger activities will not show up in
the Agent Viewer.

Brahms Tutorial Version 1.2 Page 4-88
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.8 LESSON VI: CLASSES, OBJECTS AND RELATIONS

4.8.1 INTRODUCTION

This chapter will teach you how to create objects as instances of classes in a Brahms
model, and will discuss relations between objects and agents.

4.8.2 TASK

Create the objects that are part of the simulation: the Atm(s), the campanile (to signal
the flow of time), the bank, the cash, the bank account, the restaurant diner, etc.,
together with their various attributes and their relations. Then, give the simulation a little
more ‗movement‘: Alex_Agent, as before, is hungry and needs food; therefore he goes
to the restaurant, where his ‗hungriness level‘ is automatically decreased. The diner is
an actual object with a specific location and some attributes (let‘s imagine all restaurants
in the simulation have fixed-price menus, and one such attribute is the cost of the
restaurant‘s fixed menu). In addition, now Alex needs money to pay for the restaurant: if
he does not have enough money, Alex will have to go to the Atm machine. While in that
location, he will automatically get our more cash. This will happen only once (it will be
replicated and extended in the next lessons…)

4.8.3 DESCRIPTION

4.8.3.1 OBJECTS

An ‗object‘ is the second most central element in a Brahms model. An object represents
a specific artifact in the world. It is possible to model the activities of an artifact in an
organization. For example the data processing activities of a computer system can be
modeled. The activities can be defined in the object‘s class (which will be inherited by
the object) and/or can be defined for the object itself. In Brahms there is a difference
between animate—intentional—objects (which we refer to as agents) and inanimate—
unintentional—objects (which we refer to as objects). In all other agent-languages there
is only one type of object, namely an intentional agent. In Brahms, agents are
intentional.

http://www.agentisolutions.com/documentation/language/ls_obj_stx.htm

Brahms Tutorial Version 1.2 Page 4-89
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

However, we also want to be able to describe artifacts in the real world as action-
oriented systems, but unintentional at the same time. We describe such an artifact as an
object. An example of an object in Brahms is a fax machine. If we want to describe the
behavior of a fax machine, we could argue that we could describe a fax machine as an
intentional agent. However, in the real world we would never ascribe intention to the
actions of a fax machine. A fax machine mainly reacts to facts in the world; such as a
person pushing the start button on the fax machine that makes the fax machine start
faxing the document. Since in Brahms we are interested in describing the world with its
animate and inanimate objects, we want the capability to make a difference between an
intentional object (an agent) like a human and an unintentional object (an object) like a
fax machine. There might be occasions when the intentional stance is appropriate for
objects. When this is the case, we might decide to represent a machine as an agent.
For example, in the Atm scenario the Atm machines and Bank computers might be
modeled as agents (there will be differences regarding detectables and what the objects
act upon, and we will analyze these differences soon).

To summarize, an object in Brahms is a construct that generally represents an artifact.
The key properties of objects are facts, workframes, and activities, which together
represent the state and causal behaviors of objects. Some objects may have internal
states, such as information in a computer, that are modeled as beliefs. Other artifact
states ––such as the fact that a phone is off hook–– are facts about the world.

On the other side, a conceptual object is used to allow for a user to track things that
exist as concepts in people‘s minds, like the concept of an order. The concepts do not
exist as such but do have incarnations in the form of real artifacts, such as a fax, a form,
or a database record. Through conceptual objects statistics can be generated such as
touch time and cycle time and object flows can be generated through a work process.

4.8.3.2 CLASSES

Classes in Brahms represent an abstraction of one or more object instances. The
concept of a ‗class‘ in Brahms is similar to the concept of a template or class in object-
oriented programming. It defines the activities and workframes, initial-facts and initial-
beliefs for instances of that class (objects). Brahms allows for multiple inheritances for
objects (note that objects currently do not inherit the cost, time-unit and resource values
– they must be specified in the object‘s body). Classes are used to define inanimate
artifacts, such as phones, faxes, computer systems, pieces of paper, etc.

http://www.agentisolutions.com/documentation/language/ls_cls_stx.htm

Brahms Tutorial Version 1.2 Page 4-90
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In a model, a hierarchy of classes can be built by defining the class inheritance. A class
can inherit from more than one class, so multiple inheritance is supported. When a class
is a subclass of a class the subclass will ‗inherit‘ the attributes, relations, initial-beliefs,
initial-facts, activities, workframes and thoughtframes from its parent classes. Private
attributes and relations are not inherited; only public and protected attributes and
relations are inherited. In case the same constructs are encountered in the inheritance
path always the most specific construct will be used, meaning that for example a
workframe defined for a class lowest in the hierarchy tree has precedence over a
workframe with the same name higher in the hierarchy.

Note that a conceptual object class defines a type of conceptual objects used in a
model.

4.8.3.3 ELEMENTS OF OBJECTS AND CLASSES

A Brahms object has all of the elements that an agent has, plus two additional elements;
conceptual object membership and resource. Furthermore, instead of having a group
membership relation with groups, an object can have class-inheritance relationships with
classes.

A Brahms object has the following extra elements:

Class-inheritance: An object can be an instance of one or more classes. In case
constructs with the same name are encountered in the inheritance path, always the
most specific construct will be used. For example, a workframe defined for the object
has precedence over a workframe with the same name defined in one of the classes of
which the object is an instance.

Conceptual-object membership: An object can be part of one or more conceptual
objects by defining the conceptual-object-membership for the object. This allows for
later grouping of statistical results and workflow.

Resource: The resource attribute defines whether or not the object is considered to be a
resource when used in an activity (resource attribute is set to true) or whether the object
is considered something that ―is worked on‖ (resource attribute is set to false).

Cost and Time-Unit The cost and time-unit are used for statistical purposes and define
the cost/time-unit (in seconds) for work done by instances of the class. The instances of
the class can override the cost and time-unit figures.

4.8.3.4 RELATIONS

Relations are used to represent the connections between two concepts. The first (left
hand side) concept is always the concept for which the relation is defined, the second
concept (right hand side) can be any concept.

http://www.agentisolutions.com/documentation/language/ls_rel_stx.htm

Brahms Tutorial Version 1.2 Page 4-91
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Relations are always defined within a group, agent, conceptual-class, conceptual-object,
class or object definition and cannot be defined outside any of these concepts or inside
of any other concepts. Relations can have different scopes within the specified concepts
defined by one of the keywords private, protected or public. The distinction is exactly
the same as that for attributes – hence we do not repeat it again here.

19

4.8.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_cls_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_obj_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_rel_stx.htm, and pages
linked from there.

4.8.5 TUTORIAL

Let‘s start creating now the objects that are important in our Atm scenario. We might
forget some, and we will add more on the way.

We certainly need banks (or, at least, bank central computers) that keep information
about bank accounts and communicate with Atms when agents visit them for cash.
Hence, we also need bankcards, to be used at Atms, and we need a formalism to model
cash itself. We will also need diners where the agents eat – such diners might be simply
modeled as locations (remember that locations can have attributes, such as the cost of
the diner and its name), or we might model diners as actual entities (for example
objects) at a specific location (as you have already understood, there are several ways
to model any scenario and you always have to find the one which is the more
appropriate, the one that balances complexity with realism).

So, let‘s start creating some new classes! We quite certainly need Atms. Thus, let‘s
create a new file Atm.b. As usual, remember to define the package at its beginning:

package gov.nasa.arc.brahms.atm;

class Atm {

 display: "Atm";

 cost: 0.0;

19
 As mentioned in a previous note, however, both relation and attribute scopes are currently not yet implemented in the language.
This implies that attribute/relation scope definitions will be ignored by the Compiler, and all attributes/relation will be treated (for
the time being) as public. This is why in the code examples presented in the text all attributes and relations are treated as ‗public‘.

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_cls_stx.htm
http://www.agentisolutions.com/documentation/language/ls_obj_stx.htm
http://www.agentisolutions.com/documentation/language/ls_rel_stx.htm
http://www.agentisolutions.com/documentation/language/ls_cls_stx.htm

Brahms Tutorial Version 1.2 Page 4-92
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 resource: false;

 attributes:

 public int currentAccountCode;

 public int currentAccountPin;

 public boolean checkedAccountCode;

 public boolean checkedAccountPin;

 relations:

 public Bank ownedbyBank;

 initial_facts:

 (current.checkedAccountCode = false);

 (current.checkedAccountPin = false);

}

Let‘s comment a little the code above. Apart from some differences that you should be
able to easily spot, the structure looks very similar to that of a group. We have already
coded some initial facts inside the class definition (rather than an object, specific
instance of that class) because we simply want all instances of Atms to start that same
way.

Note that objects do not need a location to exist and act in the world. On the other side,
what does it mean that objects react on facts only? Objects can have beliefs, and can
even have thoughtframes where they conclude new beliefs. However, they act on facts
only, in the sense that the preconditions of an object‘s workframe must be satisfied by
facts rather than beliefs. In fact, objects act on fact regardless of the beliefs they have
(or do not have)!

In addition, in the code above we have also used for the first time a relation:
ownedbyBank. This relation links a specific Atm to a specific Bank (which Atm and
which Bank is specified at the object level). So, let‘s now also define a Bank class:

package gov.nasa.arc.brahms.atm;

class Bank {

 display: "Bank";

 cost: 0.0;

 resource: false;

 attributes:

 public string name;

 public int receivedAccountPin;

 public int receivedAccountCode;

http://www.agentisolutions.com/documentation/language/ls_obj_stx.htm

Brahms Tutorial Version 1.2 Page 4-93
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 relations:

 initial_facts:

 activities:

 workframes:

}

Of course, as the tutorial proceeds, we will add many other attributes, as well as
activities and workframes. For the moment, we can note that we do not have to model
an inverse relation Bank owns Atm inside the Bank class – one relation will be enough
to make our model work, as we will see soon when we will be dealing with variables
(section 4.10). On the other side, we should start filling in the details of these classes
and populate the model with their instances. Let‘s imagine that there are two Banks in
our model of Berkeley: Bank of America and Wells Fargo. Each has one Atm in town.
So, we can write for the Atms:

package gov.nasa.arc.brahms.atm;

object Boa_Atm instanceof Atm {

 location: Telegraph_Av_113;

 initial_facts:

 (current ownedbyBank Boa_Bank);

}

and

package gov.nasa.arc.brahms.atm;

object WF_Atm instanceof Atm {

 location: Bancroft_Av_77;

 initial_facts:

 (current ownedbyBank WF_Bank);

}

and, for the Banks:

package gov.nasa.arc.brahms.atm;

object Boa_Bank instanceof Bank {

 display: "Boa_Bank";

Brahms Tutorial Version 1.2 Page 4-94
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 initial_facts:

 (current.name = BankofAmerica);

}

and

package gov.nasa.arc.brahms.atm;

object WF_Bank instanceof Bank {

 display: "WF_Bank";

 initial_facts:

 (current.name = WellsFargo);

}

We then need to model the Accounts of the agents and their BankCards. To keep things
very simple, a BankCard will keep stored its pin and its account code, that we can model
as attributes. We can also model Cash as an object whose attribute ‗balance‘ gives the
amount of the cash currently carried by the agent. Finally, a bank Account will have
some minimal attributes such as its code, its balance, and some relations, such as what
bank it has been opened with, or what agent it is owned by (which could be also
modeled from inside the Student declaration). Armed with this information, we can
create the following files: Account.b,

package gov.nasa.arc.brahms.atm;

class Account {

 display: "Account";

 cost: 0.0;

 resource: true;

 attributes:

 public double balance;

 public string typeof;

 public int code;

 public int pin;

 relations:

 public Bank openedWithBank;

 activities:

}

then Cash.b:

http://www.agentisolutions.com/documentation/language/ls_rel_stx.htm

Brahms Tutorial Version 1.2 Page 4-95
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

package gov.nasa.arc.brahms.atm;

class Cash {

 display: "Cash";

 cost: 0.0;

 resource: true;

 attributes:

 public double amount;

 activities:

}

and finally BankCard.b:

package gov.nasa.arc.brahms.atm;

class BankCard {

 display: "BankCard";

 cost: 0.0;

 resource: true;

 attributes:

 public int code;

 relations:

 public Account accesses;

 activities:

}

In a similar fashion, we start drawing the net of relations that link students to other
objects in the Atm universe. The first we can think about are Banks, bank Accounts, and
BankCards. Hence we write inside the body of the Student group:

 relations:

 public Account hasAccount;

 public Cash hasCash;

 public BankCard hasBankCard;

Brahms Tutorial Version 1.2 Page 4-96
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Finally, we must create the additional files for the specific instances of these classes
that belong to Alex_Agent: create therefore a file Alex_Account.b,

package gov.nasa.arc.brahms.atm;

object Alex_Account instanceof Account {

 display: "Alex_Account";

 initial_facts:

 (current.balance = 100.00);

 (current.typeof = checking);

 (current.code = 1212);

 (current.pin = 1111);

 (current openedWithBank Boa_Bank);

}

then a file Alex_Cash.b:

package gov.nasa.arc.brahms.atm;

object Alex_Cash instanceof Cash {

 initial_facts:

 (current.amount = 8.00);

}

and finally a file Alex_BankCard.b:

package gov.nasa.arc.brahms.atm;

object Alex_BankCard instanceof BankCard {

 initial_facts:

 (Alex_BankCard.code = 1212);

 (current accesses Alex_Account);

}

Of course, we must also modify the Alex_Agent file to reflect the new information. We
must update the beliefs (and the facts, where necessary) as follows:

 initial_beliefs:

 (current.howHungry = 15.00);

 (current.male = true);

 (current.preferredCashOut = 8.0);

 (current contains Alex_Cash);

 (current contains Alex_BankCard);

 (Alex_Account.balance = 100.00);

 (Alex_Account.code = 1212);

Brahms Tutorial Version 1.2 Page 4-97
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 (Alex_Account.pin = 1111);

 (Alex_Account openedWithBank Boa_Bank);

 (Alex_Cash.amount = 13.00);

 (current hasCash Alex_Cash);

 (current hasBankCard Alex_BankCard);

We can spend a few words here about how to express conditions (preconditions and
conclusions) about relations. The is true or is false statements are only used for
relations. (current hasBankCard bkc is false) is the right syntax to check whether the
relation (fact of belief thereof) is false. But if we wanted to check whether this relation
was actually true, we could just write: current hasBankCard bkc. In other words, the is
true form is not needed when checking or concluding conditions. One might ask what is
the difference between knownval((current.attribute = x) and
knownval(current.attribute = x) is true). Note that we are using the ‗contains‘
relation: it is a relation built-in the language that is very useful when we want to move
objects and agents together with what they are carrying.

The difference is that we can apply is true to relations (because, otherwise, it would be
impossible to create a false belief; in other words, an agent always believes its own
beliefs), but we do not use it for attributes. Therefore, when you want to express
conclusions about relations, if the conclusion is true, you can simply conclude (whoever
hasCard whatever); if false, you might instead conclude (whoever hasCard whatever is
false). Finally, in preconditions, knownval(whoever hasCard whatever is false) is
equivalent, but possibly slightly preferred, to: not(whoever hasCard whatever)

Let‘s go back to the model. With regards the diner, we leave it as an exercise for the
reader to create a Diner class, that would have attributes such as the cost of the fixed
menu. Two restaurants should be created: Raleigh and Blakes. Raleigh will be located
in Telegraph_Av_2405, and its attribute ‗foodcost‘ (that represents the cost of the fixed
menu) will be set equal to 4.0. Blakes will be located in Telegraph_Av_2134 and its
‗cost‘ will be set to 6.0 dollars. (Note that from Section 4.9 we will start presenting the
code of the Atm tutorial for your verification. If you need, you can start already browsing
those files from here).

Are you done with the restaurant files? Ok, now we are ready to play a little more with
the activities and workframes of our scenario. Let‘ say that we want our agents to move
to the Atm of the bank where they opened their account whenever the cash they are
carrying goes below a certain level. Let‘s say that this level is 10, a little above the cost
of a lunch at any of the two restaurants. We have modeled only Alex_Agent and his
objects, for the moment, so we will write something like this inside the Student group
(workframes: tag):

 workframe wf_moveToLocationForCash {

 repeat: true;

 variables:

../../../../Documents%20and%20Settings/Documents%20and%20Settings/acquisti/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Brahms_Tutorial.zip/Older_Tutorial_docs/ATM_Model_Files/Atm_Tutorial_Section_4-7/

Brahms Tutorial Version 1.2 Page 4-98
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 when(knownval(Alex_Cash.amount < 10.00))

 do {

 moveToLocationForCash(Telegraph_Av_113);

 conclude((Alex_Cash.amount = Alex_Cash.amount

+ current.preferredCashOut), bc:100, fc:100);

 moveToLocationForCash(SouthHall);

 }

 }

(we will see later - but you might as well imagine that already - that this is not a good
approach to a general solution of the issue: can you guess why?). Of course, we also
need to pass some new initial beliefs to the agent:

 initial_beliefs:

 (Blakes_Diner.location = Telegraph_Av_2134);

 (Raleigh_Diner.location = Telegraph_Av_2405);

 (Boa_Atm.location = Telegraph_Av_113);

Now we better create a new move activity, more generic than the ones we have used
before:

move moveToLocationForCash(Building loc) {

 location: loc;

}

where, of course, the location can be specified inside the workframe, as we have done
in the workframe MoveToLocationForCash.

We will also need to give the agent an idea of what the cost of each diner/restaurant is,
starting with Raleigh; so, modify the agent‘s initial beliefs:

 (Raleigh_Diner.foodcost = 4.0);

 (Blakes_Diner.foodcost = 4.0);

 and then modify also the moveToRestaurant workframe…

 workframe wf_moveToRestaurant {

 repeat: true;

 variables:

 when

 (knownval(current.howHungry > 2.00) and

 knownval(current.location != Telegraph_Av_2405))

 do

 {moveToRestaurant();

 conclude((current.howHungry = current.howHungry - 5.00),

bc:100, fc:100);

Brahms Tutorial Version 1.2 Page 4-99
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 conclude((Alex_Cash.amount = Alex_Cash.amount -

Raleigh_Diner.foodcost), bc:100, fc:100);

 moveToSouthHall();

 }

 }

Save everything and execute the usual steps to compile and parse your model. You
should get something like this:

Figure 17. The Agent Viewer and Other Activities

Our agent checks his location and compares it with the location of a restaurant; if the
two locations are the same, the agent realizes that he is already in the restaurant. Note
that we have not given the agent a belief about the location of the diner object. The
reason the agent is still able to derive this information lies in the fact that whenever an
agent reaches a location, she can see the other objects in that location (otherwise she
would have no idea of where a diner, is unless she is explicitly given a belief about that).

Brahms Tutorial Version 1.2 Page 4-100
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.9 LESSON VII: THOUGHTFRAMES AND OTHER ACTIVITIES

4.9.1 INTRODUCTION

This chapter will teach you how to use thoughtframes and other primitive activities (such
as communication activities) in Brahms models.

4.9.2 TASK

Now, try to connect the variation of an agent‘s hungriness to an object – the Campanile
– that at regular intervals broadcasts a signal to all objects and agents in the scenario.
The Campanile is actually signaling the flow of time. In this section you will have to use
communication activities (such as the broadcast activity executed by the Campanile)
and thoughtframes: when agents perceive the Campanile signal, their hungriness levels
increase; moreover, depending on how much cash they have left, they will decide which
restaurant to move to; finally, they will decide whether they need to go to the Atm even
before going to the restaurant and spending their money. For the moment, you will not
use variables – the choice of the different restaurants, for example, will be hard-coded in
the activities that make the agent actually go to a specific restaurant.

4.9.3 DESCRIPTION

4.9.3.1 THOUGHTFRAMES

Thoughtframes define deductions, mostly referred to as production rules.
Thoughtframes are similar to workframes, but are taken to be inferences an agent (or
object) makes without executing any activities. Thoughtframes have the same
preconditions and consequences as workframes. Thoughtframes have no activities,
consume no time, and cannot be interrupted. Once the preconditions of a thoughtframe
match the beliefs of the agent or object, its consequences are automatically executed,
similar to forward-chaining rules. An important point is that the preconditions in
thoughtframes for object always only match with the beliefs of the object. Another
important point is that the consequences in a thoughtframe can only create new beliefs
for the agent or object, and cannot create new facts in the world.

A thoughtframe is the Brahms equivalent of a production rule for an agent or object. A
thoughtframe allows an agent or object to deduce new beliefs from existing beliefs. The
difference between a thoughtframe and a workframe is that a thoughtframe can only
have consequences in its body. A thoughtframe consists of preconditions and
consequences.

Repeat

http://www.agentisolutions.com/documentation/language/ls_tfr_stx.htm

Brahms Tutorial Version 1.2 Page 4-101
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

A thoughtframe can be performed one or more times depending on the value of the
‗repeat‘ attribute. A thoughtframe can only be performed once if the repeat attribute is
set to false. A thoughtframe can be performed repeatedly if the repeat attribute is set to
true. In case the repeat attribute is set to false, the thoughtframe can only be performed
once for the specific binding of the variables at run-time. The scope of the repeat
attribute of a thoughtframe defined as part of a composite activity is limited to the time
the activity is active, meaning that the thoughtframe with a specific binding and a repeat
set to false will not execute repeatedly while the composite activity is active. As soon as
the composite activity is ended the states are reset and in the next execution of the
activity it is possible for the thoughtframe with the same binding to be executed. So only
for top-level thoughtframes the state will be stored permanently during a simulation run.

4.9.3.2 CREATE-OBJECT ACTIVITY

Primitive create-object activities allow the modeler to create new objects at runtime or to
make copies of existing objects dynamically. The modeler can specify when the actual
creation or copying takes place during the execution of the activity, by setting the when-
value to either start or end. Create-object activities can be used, for example, to model a
fax machine creating a new instance of a fax elsewhere, or a customer creating an
order. In addition, in a create-object activity, an object can automatically be connected to
a conceptual object or placed at a location.

4.9.3.3 COMMUNICATION ACTIVITY

The predefined primitive communication activities transfer beliefs to/from one agent to
one or several other agents, or to/from an (information carrier) object.

An agent can give (send) and request (receive) beliefs. One can think of the agent-to-
agent and agent-from-agent communication primitives as modeling a simple
conversation where agent A asks B to tell him anything B knows about subjects X (From
B), and likewise tells B anything that A knows about subjects Y (To A). In either case,
beliefs must be specified in so-called transfer-definitions. In the first case, it specifies
what beliefs will be transferred to the ―To‖ agent or object. In the second case, it
matches these beliefs against the beliefs of the ―From‖ agent or object. Only the agent
or object's beliefs that match the specified beliefs in the transfer-definition are
transmitted.

A belief specified in a primitive communication activity is deemed to match another belief
under the same conditions that a workframe known-type precondition is deemed to
match a belief. The specified beliefs are transmitted only if they are actually held by the
agent or object. In other words, an agent or object has to have the belief before it can
communicate (i.e. tell) the belief to another agent or object. The transmitted beliefs
overwrite any beliefs the recipient might have about the same object-attribute or object-
relation.

http://www.agentisolutions.com/documentation/language/ls_coa_stx.htm
http://www.agentisolutions.com/documentation/language/ls_com_stx.htm

Brahms Tutorial Version 1.2 Page 4-102
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Beliefs transferred to or from an object, model information stored in or on the object. For
example, a modeler can use a communication activity to model the reading of
information from, or the writing of information to, a fax, paper, bulletin-board, or a
computer system. If transmitted beliefs contain variables that remain unbound in the
recipient-initiator‘s workframe, then those variables are bound from matching beliefs
supplied by the sender-responder.

4.9.3.4 BROADCAST ACTIVITY

Primitive broadcast activities work like communication activities. Here, however, the
acting agent is broadcasting the matching beliefs to all other agents in the same location
as the acting agent. One can think of the broadcast activity as modeling an agent
shouting information to other agents.

When an agent broadcasts, the agent transmits beliefs to all other agents in the same
geographical area (location) if the agent has a location, or to all other agents if the agent
has no location. If an object broadcasts, the object most likely transmits a belief about
itself (e.g., a phone ringing), which will be received by the agents in the same location if
the object has a location, or by all agents if the object does not have a location.

4.9.3.5 JAVA ACTIVITY

A java activity is a primitive activity but its actual behavior is specified in Java code. The
java activity specifies the fully qualified name of the class that implements the
IExternalActivity interface or extends the AbstractExternalActivity class. When the java
activity is to be executed an instance of the class is created and the code for the activity
executed. If the class extends the AbstractExternalActivity class then the java code will
have access to the parameters passed to the activity, belief set of the agent or object
and the fact set of the world and will be able to conclude new beliefs and facts.

4.9.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_tfr_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_bac_stx.htm,
http://www.agentisolutions.com/documentation/language/ls_jac_stx.htm, and pages
linked from there.

http://www.agentisolutions.com/documentation/language/ls_bac_stx.htm
http://www.agentisolutions.com/documentation/language/ls_jac_stx.htm
http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_tfr_stx.htm
http://www.agentisolutions.com/documentation/language/ls_bac_stx.htm
http://www.agentisolutions.com/documentation/language/ls_att_stx.htm

Brahms Tutorial Version 1.2 Page 4-103
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.9.5 TUTORIAL

Up till now, the agents of the Atm world have been acting following basic needs, with no
sense of time. Now we will create a new class of objects – clocks – and a specific
instance (the Campanile) to signal the passage of time to all the participants to the
simulation. The Campanile will broadcast a signal at regular times. This signal will be
received by every agent, that might or might not modify her behavior accordingly.

Let‘s first consider a new MyClock.b class:

package gov.nasa.arc.brahms.atm;

class MyClock {

 attributes:

 public int time;

 activities:

 primitive_activity asTimeGoesBy() {

 random: false;

 max_duration: 3599;

 }

 broadcast announceTime() {

 random: false;

 max_duration: 1;

 about:

 send(current.time = current.time);

 when: end;

 }

 workframes:

 workframe wf_asTimeGoesBy {

 repeat: true;

 when(knownval(current.time < 20))

 do {

 aTimeGoesBy();

 conclude((current.time = current.time + 1),

bc:100, fc:100);

 announceTime();

 }

 }

}

http://www.agentisolutions.com/documentation/language/ls_bac_stx.htm

Brahms Tutorial Version 1.2 Page 4-104
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

This clock works in a very simple way: it spends 3599 time units (or seconds) waiting,
and then ‗signal‘ to the world (in one second, or unit of time) the fact that one hour has
passed. It does so for 20 hours (the usual working day of a Berkeley student – sleep is
not an option!). Then, it stops doing anything.

Now consider a specific instance of this class: let‘s call it Campanile_Clock.b.

package gov.nasa.arc.brahms.atm;

object Campanile_Clock instanceof MyClock {

// location: SouthHall;

// no location has been added, so that the Campanile can broadcast to

all the agents, wherever they are.

 initial_beliefs:

 (current.time = 1);

 initial_facts:

 (current.time = 1);

}

No location has been given to the Campanile, so that when it broadcasts, all the agents
and objects in the simulation, wherever they are, they will receive the signal.

Ok. Now we have to make our Students do ‗something‘ in response to these signals.
Let‘s go back to the Student.b file. Firstly, we add a new attribute:

 public int perceivedtime;

and we also give the Student (and all of them, rather than Alex_Agent alone) an
initial_belief about such perceivedtime:

(current.perceivedtime = 1);

(Campanile_Clock.time = 1);

(we need to give a belief about the Campanile only to ‗bootstrap‘ the simulation and in
particular the activity of studying for the agent. Note that it is not necessary in itself to
give any belief about the campanile‘s time to the agent, since the belief will be broadcast
and will enter the set of the agent‘s beliefs regardless of whether the agent had a prior
belief or not). Then, we create a new thoughtframe where we put these new concepts
into action. Thoughtframes can be used to model reasoning, problem-solving (for
example inside some composite activity – cf. 4.11), mental states… Here we interpret
hungriness as a (at least partially) mental state, and under the thoughtframe section of
the Student body declaration therefore we write:

thoughtframes:

 thoughtframe tf_feelHungry {

 repeat: true;

 when(knownval(Campanile_Clock.time >

current.perceivedtime))

http://www.agentisolutions.com/documentation/language/ls_bac_stx.htm
http://www.agentisolutions.com/documentation/language/ls_tfr_stx.htm

Brahms Tutorial Version 1.2 Page 4-105
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 do {

 conclude((current.perceivedtime =

Campanile_Clock.time), bc: 100);

 conclude((current.howHungry = current.howHungry +

3.00), bc:100);

 }

}

Note that thoughtframes act on beliefs and conclude only beliefs, and facts are ignored.

Then, we also add a new activity (Study) and another activity (Eat), so that we split into
smaller units the activity of going to the restaurant for food. Hence, let‘s write:

 workframe wf_study {

 repeat: true;

 when(knownval(Campanile_Clock.time < 20) and

 knownval(current.howHungry < 21) and

 knownval(current.location = SouthHall))

 do {

 Study();

 }

 }

This workframes is supposed to make the Student study, until he is very hungry. Modify
the goToRestaurantForFood workframe accordingly, i.e. set the value above which the
student will feel the urge to go to the diner as 20.00. You also need to write a new
primitive activity:

` primitive_activity Study() {

 max_duration: 1500;

 }

Then, let‘s modify the wf_moveToRestaurant workframe so to split it in 3 steps: 1) when
the agent is hungry, she moves to the restaurant; 2) at the restaurants, she eats; 3) she
goes back to study.

We will probably need just primitive activities: a generic moveToLocation(Building loc)
activity, whose parameter is used to make it more specific; and a primitive Eat() activity.
Let‘s then write (in the Student.b file):

activities:

move moveToLocation(Building loc) {

 location: loc;

 }

 primitive_activity eat() {

Brahms Tutorial Version 1.2 Page 4-106
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 max_duration: 400;

 }

which will be triggered by the following new workframes:

 workframe wf_moveToRestaurant {

 repeat: true;

 when(knownval(current.howHungry > 20.00) and

 knownval(current.location != Telegraph_Av_2405))

 do {

 moveToLocation(Telegraph_Av_2405);

 }

} // wf_moveToRestaurant

 workframe wf_eat {

 repeat: true;

 when(knownval(current.howHungry > 20.00) and

 knownval(current.location = Telegraph_Av_2405))

 do {

 eat();

 conclude((current.howHungry = current.howHungry -

5.00), bc:100, fc:100);

 conclude((Alex_Cash.amount = Alex_Cash.amount -

Raleigh_Diner.foodcost), bc:100, fc:100);

 conclude((current.readyToLeaveRestaurant = true),

bc:100);

 }

 } // wf_eat

 workframe wf_backToStudy {

 repeat: true;

 when(knownval(current.readyToLeaveRestaurant = true) and

 knownval(current.location = Telegraph_Av_2405))

 do {

 moveToLocation(SouthHall);

 conclude((current.readyToLeaveRestaurant = false),

bc:100);

 }

 } // wf_backToStudy

Brahms Tutorial Version 1.2 Page 4-107
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

You should have noted the presence of a new Student attribute:
readyToLeaveRestaurant. There are always several ways of dealing with a situation in
Brahms. In this case, the action of eating triggers several consequences, one of those
being a feeling of ‗satisfaction‘ that urges the agent to leave the restaurant having
satisfied his needs, and is modeled through the abovementioned attribute. If you decide
to follow this approach, then you must also remember to declare the attribute in the
agent‗s definition and give her an initial belief:

(current.readyToLeaveRestaurant = false);

Note that now you can also correct a non pleasant aspect of the
wf_MoveToLocationForCash workframe – the fact that it called the activity
moveToLocationForCash twice – also when the agent was actually going back to study.
Use the new activity and correct the workframe, now letting the student go back to a
University Hall after getting the money and before spending the cash at some restaurant
(the more realistic case is the one where the students goes straight to the restaurant
after getting the money: we will model this in section 4.13):

 workframe wf_moveToLocationForCash {

 repeat: true;

 variables:

 when(knownval(Alex_Cash.amount < 10.00))

 do {

 moveToLocation(Telegraph_Av_113);

 conclude((Alex_Cash.amount = Alex_Cash.amount +

current.preferredCashOut), bc:100, fc:100);

 moveToLocation(SouthHall);

 }

 }

As you can see, your model is getting step by step more general and re-usable. You can
verify and compare your code with the code we have prepared - here. In the next
section we will study how to make it even more general and adaptable.

../../../../Documents%20and%20Settings/Documents%20and%20Settings/acquisti/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Brahms_Tutorial.zip/Older_Tutorial_docs/ATM_Model_Files/Atm_Tutorial_Section_4-7/

Brahms Tutorial Version 1.2 Page 4-108
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.10 LESSON VIII: VARIABLES

4.10.1 INTRODUCTION

This chapter will teach you how to use variables in Brahms models.

4.10.2 TASK

Until now we have been using groups almost as if they were specific agents: referencing
specific objects such as Alex_BankCard, and sacrificing generality to simplicity. The
task in this lesson is to make the activities we have already created more general by
using variables: for example, the cash that the Student uses will not be Alex_Cash, but a
‗generic‘ cash that is bound as Alex only at run time. This way the same construct can
be used for any other agent. The same reasoning must hold for restaurants, banks,
bank cards, and so on, given that there is more than one restaurant, more than one
bank, etc.

4.10.3 DESCRIPTION

Variables can be used in a workframe or thoughtframe to write more generic work- and
thoughtframes. Before a variable can be used it has to be declared. The scope of the
variable is bound to the frame it is declared in. A variable that is not declared within the
workframe it is used in, must be declared higher up in the activity-tree the workframe is
part of. (The activity tree is created through composite activities.)

Variables in a frame make the frame a template for activities (workframe) or reasoning
(thoughtframe) that agents and objects may perform. Variables may have quantifiers, as
we will describe below. Brahms supports three quantifiers for variables: foreach, forone,
and collectall. Variables can be used in preconditions, consequences, detectables, and
as parameters for activities. The quantifier affects the way a variable is bound to a
specific instance of the defined type (group or object class) of the variable.

4.10.3.1 FOR-EACH

A for-each variable is bound to only one instance, but for each instance that can be
bound to the variable, a separate workframe instantiation is created. Consider, for
example, a precondition and workframe indicating:

workframe doWork {

variables:

foreach(Order) order;

http://www.agentisolutions.com/documentation/language/ls_var_stx.htm

Brahms Tutorial Version 1.2 Page 4-109
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

when (knownval(order is-assigned-to Allen))

do {

work-on(order);

}

}

If three Orders are assigned to agent Allen and agent Allen has beliefs for all three of
the orders matching the precondition, Brahms creates three workframe instantiations
(wfi‘s) for agent Allen, and in each wfi the for-each variable is bound to one of the three
orders. This means that Allen works on all three the orders, one order at a time. The
order in which Allen works on the three orders is undefined.

4.10.3.2 COLLECT-ALL

A collect-all variable can be bound to more than one instance. The variable is bound to
all matching belief-instances, and only one wfi is created. Consider the previous
example with a different variable declaration:

variables:

collectall(Order) order;

In this situation the simulation engine creates one wfi and binds the collectall variable to
a list of all three orders. This means that Allen works on all three orders at the same
time, cutting the actual activity duration in three.

4.10.3.3 FOR-ONE

A for-one variable can be bound to only one belief-instance, and only one wfi is created.
A for-one variable binds to the first belief-instance found and ignores other possible
matches. As far as the modeler is concerned, the selection is random, meaning it in the
case of multiple matches it is undefined which order is selected. In the previous example
workframe, the variable declaration would look like:

variables:

forone(Order) order;

In this situation, one wfi gets created, and only one of the three orders gets bound. This
means that Allen randomly works on just one of the orders, cutting the actual activity
duration in three as in the collectall case.

4.10.3.4 PRE-, POST- AND UNASSIGNED VARIABLES

The simulation engine makes a distinction in how variables are bound in a frame. The
three types of value assignments are pre-assigned, post-assigned and unassigned.

Brahms Tutorial Version 1.2 Page 4-110
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Unassigned variables are variables not used in any preconditions but that get their
binding in an activity. unassigned variable is unbound (that is, it does not get a value)
when a frame instantiation is created; an unassigned variable gets a value through a
communicated belief or object creation activity, which binds the variable to a newly
created object.

Pre-assigned variables are variables that get their values assigned in preconditions and
get a pre-binding before the preconditions are evaluated. Pre-assigned variables are
variables used in an object/attribute tuple (OA) or that are used in an object/relation
tuple (OR) or object/relation/object triplet (ORO) where the object is a variable. In case
of the ORO it could be one of the objects that is a variable or both. The simulation
engine makes sure that for each OA, OR (with an (un)known modifier) and ORO there is
at least one matching belief/fact before fully evaluating the preconditions. The variables
used in these condition elements will get a pre-binding by matching the variables with
the object values in the beliefs/facts. A final binding will be determined when the
preconditions are evaluated.

Post-assigned variables are variables that get their values assigned in preconditions as
well, but they will get a binding during the evaluation of the preconditions. These
variables have no pre-binding like pre-assigned variables do. Post-assigned variables
are the variables not used in any OA, OR, ORO condition elements but are usually
‗assignment‘ variables specified on the left hand side or right hand side of a value
condition, for example:

 <myagent>.car = <mycar>

<myagent> is part of an OA pair and is therefor a post-assigned variable. <mycar> is
not specified in any OA, OR, ORO condition element and is therefor a post-assigned
variable. The simulation engine will have found potential matched for the OA and will
have pre-bound the <myagent> variable. During the evaluation of the precondition the
simulation engine will then for each value of <myagent> get the belief/fact that caused
that value binding for <myagent> and retrieve its right hand side. Assume that the belief
was:

 John.car = car1

<myagent> is John and the right hand side is ‗car1‘. The simulation engine will now
assigne the value ‗car1‘ to the variable <mycar> during the evaluation of the
precondition.

Due to the distinction between pre- and post-assigned variables ordering of
preconditions is also important if no conflicts are to occur with the constraints listed
below. Assume a frame with the following preconditions:

 knownval(<totalOrders> = <numVMOrders>+Builder.numOrders)

 knownval(VM.numOrders = <numVMOrders>)

Brahms Tutorial Version 1.2 Page 4-111
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In this case the first precondition has two post-assigned variables <totalOrders> and
<numVMOrders>. The simulation engine can resolve Builder.numOrders to a value but
cannot resolve the values for the post-assigned variables. This would be an endless list
of possible values. The simulation engine would report an error and fail the evaluation of
the precondition. If the preconditions would now be reversed

knownval(VM.numOrders = <numVMOrders>) knownval(<totalOrders> =

<numVMOrders>+Builder.numOrders)

then the simulation engine resolves the <numVMOrders> post-assigned variable first, it
will bind a value to it by finding a belief of the form VM.numOrders = ? and assigning the
right hand side value to the variable. Then during the evaluation of the second
precondition the <numVMOrders> variable will have a value bound to it that can be used
together with the right hand side value of the belief Builder.numOrders = ? to assign a
value to <totalOrders>. The evaluation of all preconditions will succeed and the frame
can be made available.

The left hand side attribute type and the right hand side value-type or right hand side
attribute type of a value-expression must be the same.

The left hand side and right hand side types in a relational expression must match the
types as defined for the relation used in the relational expression.

4.10.4 SYNTAX

F Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_var_stx.htm, and pages
linked from there.

4.10.5 TUTORIAL

Let‘s go back to the code in Student.b. Let‘s check again how the student – any student
– decides whether he or she needs to get more cash from the Atm:

 workframe wf_moveToLocationForCash {

 repeat: true;

 variables:

 when(knownval(Alex_Cash.amount < 10.00))

 do {

 moveToLocation(Telegraph_Av_113);

 conclude((Alex_Cash.amount = Alex_Cash.amount +

current.preferredCashOut), bc:100, fc:100);

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_var_stx.htm

Brahms Tutorial Version 1.2 Page 4-112
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 moveToLocation(SouthHall);

 }

 }

so, every student will check the amount of cash of Alex, and every student will go for
cash to the Atm of the bank where Alex has his account! This of course is wrong.
Variables can correct this situation.

The way to solve this impasse is through matching, using variables in the precondition
of the workframe in the Student group. The same reasoning applies to relations. Say
that we have a relation in the student group: public Bankcard hasCard. To match a
specific student with a specific card, we need in the file of the agent (for example,
Alex_Agent) who is memberof Student, something like: initial_facts (or/and beliefs):

(current hasCard Alex_BankCard)

then, we would bind the agent to the proper card from inside the Student file with a code
like:

workframe matchBankcardExampleInGroupStudent {

repeat:false;

variables:

forone(BankCard) bc; // let's assume the student has only

 // one bankcard

when (knownval(current hascard bc)) // here the engine matches and

 // binds the var. bc

do {

doSomeActivityThatLowersBankCardBalanceWithThreeDollars();

conclude((bc.balance = bc.balance - 3.00), bc:100, fc:100);

}

}

Variables are powerful in rule-based programming. When you want to use an agent or
object or value from an agent's belief within a workframe or thoughtframe, you most
likely will have to use a variable in the precondition. You also use a variable to make the
matching of the rule more general (note, in fact, that in the example above the
precondition would match for every student and the bankcard that belongs to the
student. It would even be possible to have the student have multiple bankcards - i.e.
multiple beliefs with the relation; by using the forone variable - instead of a foreach -
the engine would simply match to one of the beliefs).

http://www.agentisolutions.com/documentation/language/ls_var_stx.htm

Brahms Tutorial Version 1.2 Page 4-113
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

When you use variables in workframes, the first thing the engine does it to checks all
the variables of that kind; the second thing consists of binding the variables to the
specific item we are considering in the preconditions. By giving it a name inside the
workframe, we become able to use them in methods being called, conclusions, etc. In
particular, their being used as parameters in activities is one of the most useful features
in the language. Note that, in fact, you can write something like:

knownval(p = current.something)

which will effectively create a binding and pass the current.something value to p, that could
be used as a parameter in a method/activity (importantly, you cannot pass a form like
object.attribute as a parameter for any action). For example, in the communicatePin
activity we can create a variable p for the pin and pass that as the parameter.

Similarly, we can use variables to specify the cost of the restaurants in lines such as;

conclude((current.howHungry = howHungry – amount_of_food_at_restaurant),

bc; 100);

where the variable that determines by how much the hunger of the agent has decrease
after eating might be decided and bound at run-time depending on which restaurant the
agent is in at that moment.

Consider also the following two lines:

knownval(current hasAccount bka) and

knownval(bka.pin = p) and

The first line binds a specific Account bka to the current agent; then, the second line will
bind the pin to that specific Account. In other words, when we use complex relations
(e.g., a son of b son of c son of…) we can bind them together by respecting their logical
order. Furthermore, the equality sign in the lines above will also give to p the value of
bka.pin.

Binding and beliefs are really crucial in workframes and thoughtframes. To use
variables, you have to bind them with the preconditions (there are exceptions to this
rule, and we will discuss them later in this section). But to evaluate the preconditions,
your agents need beliefs. If your code is not working as you expect, try checking first if
these crucial steps (beliefs and binding) have been coded correctly!

Be careful about using variables with locations: note that,

 forone(Cash) cs;

// forone(location) lc; this one would not work

forone(Building) bd; // this line will work

when(knownval(current hasCash cs) and

knownval(cs.amount < 16.00) and

Brahms Tutorial Version 1.2 Page 4-114
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

knownval(current.howHungry > 20.00))

 knownval(current.location = dn.location))

The first line will not work, the second will. A very general way to deal with locations and
geography concepts is to refer to them as AreaDef, which is a ‗meta type‘ (cf.
http://www.agentisolutions.com/documentation/language/ls_att_sem.htm). In the code
above for example you could write:

forone(AreaDef) bd; // this line will work

and this line will work regardless of whether bd is a building, a city, a world, etc…

Note that the above examples are assigned variables. Pre- and post- assigned variables
are both assigned variables (consider the example given earlier, <myagent>.car =
<mycar>, where myagent is pre-assigned and mycar is post-assigned; a further example:
in current.mytime = time, time is post-assigned). If we were using relations (that, as we
have discussed, can have multiple values) in combination with foreach statements, we
could produce multiple instantiations of the same workframe. With the collectall,
instead, we would have one only workframe instance that would process all the (eg the
variable contains instantiation of different attributes/relations). Unassigned variables
instead are not inserted (nor bound) in any preconditions – rather, they are used and get
their context in a create-object activity (unassigned variable will be bound to the
destination object), or in communications to bind the variable to a context based on what
is communicated. For example, in a communication activity where we want to transmit a
boolean whatever that can be either false or true, we can write:

Communication_activity […]

Send (current.whatever = current.whatever)

or also:

Send (current.whatever = anyvalue)

And both versions will work.

So, let‘s try to apply this new tools to the Atm case. We will have to modify the
workframe moveToLocationForCash as follows:

 workframe wf_moveToLocationForCash {

 repeat: true;

 variables:

 forone(Cash) cs;

 forone(Atm) at;

 forone(Bank) bk;

 forone(Building) bd;

 forone(Account) ac;

Brahms Tutorial Version 1.2 Page 4-115
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 when(knownval(current hasCash cs) and

 knownval(cs.amount < 10.00) and

 knownval(current hasAccount ac) and

 knownval(ac openedWithBank bk) and

 knownval(at ownedbyBank bk) and

 not(current.location = at.location) and

 knownval(at.location = bd) and

 knownval(current.readyToLeaveRestaurant = false))

 do {

 moveToLocation(bd);

 conclude((cs.amount = cs.amount + current.preferredCashOut),

bc:100, fc:100);

 moveToLocation(SouthHall);

 }

 }

(here we are still making the student first go back to a University Hall after she got her
money, before spending the cash at some restaurant, because it is simpler. But soon –
section 4.13 - you will be asked to model this more realistically by having the student go
straight to the restaurant after getting the cash). Remember to add Alex‘s initial beliefs:

 (current hasAccount Alex_Account);

 (Alex_Account openedWithBank Boa_Bank);

 (Boa_Atm ownedbyBank Boa_Bank);

and also modify the Study workframe as follows:

 workframe wf_study {

 repeat: true;

 variables:

 forone(Cash) cs;

 when(knownval(Campanile_Clock.time < 20) and

 knownval(current hasCash cs) and

 knownval(current.howHungry < 21) and

 knownval(current.location = SouthHall) and

 knownval(cs.amount >10.00))

 do {

 study();

 }

Brahms Tutorial Version 1.2 Page 4-116
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 }

There are some interesting issues in this construct. We have an example of the
successive binding we mentioned earlier, where variables are bound one after the other,
sequentially. We can also see how those variables can be used as parameters in the
activities that are triggered from inside the workframe, as well as in the conclusions.
Also, note that as the activities become more complex, so become their interactions.
Take the preconditions in the goToLocationForCash: try to see what happens if we
remove the precondition:

knownval(current.readyToLeaveRestaurant = false))

The reader should now try to apply these concepts to the diner case. Eating at the
restaurant is structured into the various steps above, that can be now made more
general by passing parameters and using variables. You should have preconditions in
the workframe wf_move that test in which location-restaurant your agent is. When
modeling the restaurants, you will have to consider the fact the restaurants have
different prices, and the agent might chose the restaurant each time after having
considered how money she is carrying. Such chosen restaurant can be modeled either
as a relation or as an attribute. What would be better? This is another open question of
modeling. One factor to consider might be, for example, the following: while attributes
can only hold (currently) single values, relations can be multiple.

After you attempt to complete this scenario, you can find comparison code up to this
section here.

../../../../Documents%20and%20Settings/Documents%20and%20Settings/acquisti/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Brahms_Tutorial.zip/Older_Tutorial_docs/ATM_Model_Files/Atm_Tutorial_Section_4-8/

Brahms Tutorial Version 1.2 Page 4-117
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.11 LESSON IX: COMPOSITE ACTIVITIES

4.11.1 INTRODUCTION

This chapter will teach you how to use composite activities in Brahms models.

4.11.2 TASK

This is an important Lesson: you need to organize the various activities that you wrote
earlier in the tutorial, into composite activity, and then increase the number of activities
to make the model more realistic. In particular: the activity ‗goToAtm‘, will be a
composite activity that will comprehend several different steps (moveGoAtm, insertCard,
getMoney, leaveAtm); goToRestaurant, similarly, will be composed of 3 activities:
moveToRestaurant, Eat, leaveRestaurant. You will try to use the same
‗moveToLocation‘ primitive activity for all the various cases: you will see that you can call
it from different workframes, and by passing the appropriate parameters, make it do
different things.

4.11.3 DESCRIPTION

The activities in a workframe are one or more primitive activities, one or more composite
activities or both. A composite activity includes one or more workframes, any of which
may trigger other composite activities, each with its own workframes (Figure 18). Other
than a few predefined atomic activities that have semantics, activities are differentiated
solely by the modeler‘s description and use of them (see the sections on primitive
activities and composite activities).

http://www.agentisolutions.com/documentation/language/ls_att_cac.htm

Brahms Tutorial Version 1.2 Page 4-118
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Workframe W
1

Activity A
1.1

(primitive)

Activity A
1.2

(composite)

Workframe W
1.2.1

Workframe W
1.2.n

...........

Activity A
1.2.1.2

(primitive)

Activity A
1.2.1.1

(composite)

...... Activity A
1.2.n.1

(primitive)

Workframe W
1.2.1.1.1

Activity A
1.2.1.1.1.1

(primitive)

Current Activity

Current Activity

Current Activity

Current WorkframeInstantiation

Figure 18. Workframe-Activity Hierarchy

4.11.3.1 PRIMITIVE ACTIVITIES

Primitive activities take time, which may be specified by the modeler as a definite
quantity or a random quantity within a range. However, because workframes can be
interrupted and never resumed, when an activity will finish cannot be predicted from its
start time. Primitive activities are atomic behaviors that are not decomposed. Whether
something is modeled as a primitive activity is a decision made by the modeler. A
primitive activity also has a priority that is used for determining the priority of
workframes.

Brahms Tutorial Version 1.2 Page 4-119
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.11.3.2 COMPOSITE ACTIVITIES

A composite activity expresses an activity that may require several workframes to be
accomplished. Since activities are called within the do-part of a workframe, each is
performed at a certain time within that workframe. The body of a workframe has a top-
down, left-to-right execution sequence. Preference or relative priority of workframes can
be modeled by grouping them into ordered composite activities. The workframes within
a composite activity, however, can be performed in any order, depending on when their
preconditions are satisfied. In this fashion, workframes can explicitly control executions
of composite activities, whereas execution of workframes depends not on their order but
on the satisfiability of their preconditions and the priorities of their activities (see Figure
18).

A composite activity can terminate in the following four ways. First, a composite activity
terminates whenever the workframe in which it is executed terminates, due to a
workframe detectable of type complete or aborts. Second, a composite activity
terminates whenever a detectable of type complete or abort is detected within the
composite activity. Third, a composite activity terminates immediately whenever an end
condition declared within the composite activity is activated. And fourth, a composite
activity terminates when the modeler has defined it to be ended ―when there is no more
work available‖ and no more workframes in the composite activity are available or being
worked on. During the execution of a composite activity, the engine continuously checks
whether the agent has received a belief that matches any end-conditions.

A composite activity is an activity that has to be decomposed into more specific
workframes. Unlike primitive activities no duration is specified for this activity. The
duration of this type of activity depends on the workframes that will be worked on as part
of the activity. Composite activities allow us to build a hierarchy of workframes.

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

4.11.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_att_cac.htm, and pages
linked from there.

http://www.agentisolutions.com/
http://www.agentisolutions.com/documentation/language/ls_att_cac.htm

Brahms Tutorial Version 1.2 Page 4-120
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.11.5 TUTORIAL

We will now try to add some complexity to the Atm scenario by modeling subactivities
with more details and representing them inside a composite activity. We will do this both
for the activities related to getting money out of an Atm, and also for those related to
eating at a restaurant.

We will start with the Atm case and we will use a composite activity that we will call:
useAtm. First, create a new workframe:

 workframe wf_useAtm {

 repeat: true;

 when(knownval(current hasCash cs) and

 knownval(cs.amount < 10.00) and

 knownval(current hasAccount ac) and

 knownval(ac openedWithBank bk) and

 knownval(at ownedbyBank bk) and

 not(current.location = at.location) and

 knownval(at.location = bd) and

 knownval(current.readyToLeaveRestaurant = false))

 do {

 useAtm();

 }

 }

Create new attributes that will be used for this activity:

 public Bank chosenBank;

 public boolean needCash;

 public boolean receivedCash;

 public boolean pinCommunicated;

 public boolean readyToLeaveAtm;

and give them the proper values in the agent body (all the booleans are false; for
Alex_Agent, the chosen bank is Boa_Atm). Now: useAtm is a composite activity. Its
workframe is defined as all others, after the workframes: tag. And the activity is placed
among other activities. The novelty is that the composite activity itself has, inside its
body, other activities and other workframes.

Brahms Tutorial Version 1.2 Page 4-121
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Here, your goal is to model a simple composite activity. The student goes to the Atm,
inserts the BankCcard, communicates the pin, and then (we assume, for the moment,
that the pin is correct) gets the card back and the preferred amount of cash. This is very
simplistic: there is not real interaction with the Atm, there are no errors with the
Pin…This is ok! This composite activity will be probably already enough to keep you
working for a little while – we will model more complex interactions in the next section.

A sketch of the code would be the following. Look at that code only after having
experimented yourself, and remember: this is only one of the many ways you could use
to reach your goal.

You will start defining a composite activity inside the activities: declaration:

 composite_activity useAtm() {

then, inside this composite activity, you will define the sub-activities and the related
workframes. In other words, the composite activity will work as if it were scaling down
the usual structure of an agent/object body:

 activities:

 primitive_activity insertBankCard() {

 max_duration: 45;

 }

 communicate communicatePIN(Atm at3, Account bka) {

 max_duration: 20;

 with: at3;

 about:

 send(bka.pin = p);

 when: end;

 }

 primitive_activity getCash() {

 max_duration: 50;

 }

Finally, as mentioned, you will add the workframes (yes, still inside the composite
activity body):

 workframes:

 workframe wf_moveToLocationForCash {

 repeat: true;

 variables:

Brahms Tutorial Version 1.2 Page 4-122
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 forone(Cash) cs;

 forone(Atm) at;

 forone(Bank) bk;

 forone(Building) bd;

 when(knownval(current hasCash cs) and

 knownval(current.chosenBank = bk) and

 knownval(at ownedbyBank bk) and

 knownval(cs.amount < 10.00) and

 not(current.location = at.location) and

 knownval(at.location = bd))

 do {

 moveToLocation(bd);

 }

 }

 workframe wf_insertBankCard {

 repeat: true;

 variables:

 forone(BankCard) bkc2;

 forone(Atm) at2;

 forone(Bank) bk2;

 forone(Building) bd2;

 when(knownval(current hasBankCard bkc2) and

 knownval(current.chosenBank = bk2) and

 knownval(at2 ownedbyBank bk2) and

 knownval(current.receivedCash = false) and

 knownval(current.location = at2.location) and

 knownval(current.pinCommunicated = false) and

 knownval(current contains bkc2))

 do {

 insertBankCard();

 conclude((current contains bkc2 is false), bc:100,

fc:100);

 conclude((at2 contains bkc2), bc:100, fc:100);

 }

 }

 workframe wf_communicatePIN {

Brahms Tutorial Version 1.2 Page 4-123
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 repeat: true;

 variables:

 forone(Account) bka;

 forone(BankCard) bkc3;

 forone(Atm) at3;

 forone(Bank) ba3;

 forone(Building) bd3;

 when(knownval(current hasBankCard bkc3) and

 not(current contains bkc3) and

 knownval(current hasAccount bka) and

 knownval(current.chosenBank = ba3) and

 knownval(at3 ownedbyBank ba3) and

 knownval(current.pinCommunicated = false) and

 knownval(current.location = at3.location) and

 knownval(at3 contains bkc3))

 do {

 communicatePIN(at3, bka);

 conclude((current.pinCommunicated = true), bc:100);

 conclude((current contains bkc3), bc:100, fc:100);

 conclude((at3 contains bkc3 is false), bc:100,

fc:100);

 }

 }

 workframe wf_getCash {

 repeat: true;

 variables:

 forone(BankCard) bkc4;

 forone(Cash) cs4;

 forone(Atm) at4;

 forone(Bank) bk4;

 when(knownval(current hasBankCard bkc4) and

 knownval(current hasCash cs4) and

 knownval(current contains bkc4) and

 knownval(current.chosenBank = bk4) and

 knownval(at4 ownedbyBank bk4) and

 knownval(current.pinCommunicated = true))

Brahms Tutorial Version 1.2 Page 4-124
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

 do {

 getCash();

 conclude((cs4.amount = cs4.amount +

current.preferredCashOut), bc:100, fc:100);

 conclude((current.pinCommunicated = false), bc:100);

 conclude((current.receivedCash = true), bc:100);

 conclude((current.readyToLeaveAtm = true), bc:100);

 }

 }

 workframe wf_BackToStudy {

 repeat: true;

 variables:

 forone(Atm) at5;

 when(knownval(current.readyToLeaveAtm = true) and

 knownval(current.location = at5.location))

 do {

 MoveToLocation(SouthHall);

 conclude((current.needCash = false), bc:100, fc:100);

 conclude((current.readyToLeaveAtm = false), bc:100);

 conclude((current.receivedCash = false), bc:100);

 }

 }

You should now apply the same strategy to the case of the restaurant, by making the
activities of going, eating and coming back from a generic restaurant a composite
activity. The choice of the restaurant should be modeled as a thoughtframe. Moreover,
this choice will have to be coordinated with a thoughtframe where the agent decides
whether she needs cash or not before going to the Atm (hint: you can use a new
needCash attribute to trigger the useAtm compostive activitiy). Be very precise when
using composite activities. Like normal activities, they can be interrupted and resumed.
However, if your code is not written properly a composite activity might create a loop or
an impasse that halts your simulation (see more on this in the section on debugging,
4.14.2).

Comparison code is offered here.

../../../../Documents%20and%20Settings/Documents%20and%20Settings/acquisti/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Brahms_Tutorial.zip/Older_Tutorial_docs/ATM_Model_Files/Atm_Tutorial_Section_4-9/

Brahms Tutorial Version 1.2 Page 4-125
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.12 LESSON X: MULTI-AGENT, RANDOMNESS, AND

COMPLEX INTERACTIONS

4.12.1 INTRODUCTION

This chapter will teach you how to use multiple agents and random elements in Brahms
models. It will also increase the complexity of the Atm scenario by explicitly modeling the
interaction between the Atm and the agent.

4.12.2 TASK

There are three goals in this Lesson. The first goal is to include another agent in the
model – Kim. She is member of the student group, like Alex, but she has different
tastes, habits, time schedules. For example, Kim and Alex feel hungriness in different
ways. The second goal is to randomize some of the elements of the simulation: for
example, when an agent hears the campanile signal, she might or might not get
hungrier; in front of the Atm, she might or might not remember the proper pin; and so
on. The third and more complex step is that of modeling the interaction between the Atm
and the agent. This description will still be rough – no interaction with the bank, no
checking of the balance, etc. – but will add some more realism to the simulation. One
note: this and the next Lesson will be more challenging than the previous ones – you will
be expected to reorganize the concepts you have been learning and reassemble the
code of your scenario.

4.12.3 DESCRIPTION

We do not need a new formal description of the concepts related to the use of multiple
agents, because there is nothing new here: we simply need to ‗throw‘ other agents into
the simulation. Similarly, the basic concepts related to randomness have been already
discussed: agents conclude beliefs or facts with certainty (bc and/or fc values set to
100) or uncertainty. The interesting thing here is to see the long-term effects of making
these changes. We will discuss them in the tutorial subsection below.

However, there is more to say about how the simulation engine decides to ‗direct‘ the
staging of your simulation. Since the more activities we model, the more complex the
simulation becomes, we need to be very clear about the steps the engine follows to
decide what to do at every specific step of the model.

In what follows, therefore, we discuss the model of execution for a Brahms model. The
model of execution defines how a Brahms model is executed, and thus describes a

Brahms Tutorial Version 1.2 Page 4-126
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

simulation of a model of work practice. As a multiagent system, a Brahms model
consists of a number of independent agents and objects that operate independently, but
interact with each other. Wooldridge (Wooldridge, 1992) describes two possible
execution models for multiagent systems, synchronous execution, and interleaved

execution. In both cases the execution of a multiagent system is defined by a state t of

the system at time t, and a state t+1 of the system at time t+1 caused by a state-

transition t at time t. Keeping track of the state changes of the system over time the
history of an executing system can be considered a sequence of state and state-
transitions.

Synchronous execution

In a synchronous execution system each agent and object has an initial state defined as
its initial belief set, closed under its deduction rules. This amounts to an initial state of
the system as a collection of initial belief sets for each agent, each set closed under the
agent‘s own deduction rules.

Agents are able to change their state by performing a move. A move is defined as a
tuple of actions. A transition is a collection of moves, specifically, one for each agent. In
other words, a move is a state-transition for an individual agent, whereas a transition is
the global state-transition for the whole system (i.e. all the agents and objects and
facts). In Brahms we use the synchronous execution model. The reason for this is
simply the fact that we simulating and not running in real-time. In our simulation model
our agents and objects need to be synchronized according to a unique global clock.

A world is the situation-specific model (SSM) of the simulation, at a specific moment in
the execution of the system (Clancey, 1992). A state is defined of as just the belief-set
of an individual agent, at a specific moment in the execution of the system. And, a
situation-specific model for an agent is defined by all the existing global facts, and all the
agent‘s beliefs at the moment of inquiry, as well as the current-, available-, and
interrupted workframe and thoughtframe instantiations, and the current activities.

A state-transition occurs when an agent, performing a work- or thoughtframe, executes
a consequence that creates a new belief or fact. A state-transition can also occur when
an agent receives a new belief as a result of a) a communication, b) the detection of a
fact, c) a move to a new location, or d) receiving time and date beliefs from the
simulation engine. During the state-transition the simulation engine determines the
effects of the transition on the agent‘s internal state, which can result in more
transitions.

Frame execution

An order of testing and execution must be imposed in any simulation tool on conditions
and operations that in principle apply or occur simultaneously. The following paragraphs
describe the order in which the parts of a workframe are evaluated and executed in an
implementation of Brahms.

Brahms Tutorial Version 1.2 Page 4-127
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

For each agent the preconditions are the first things checked in a frame (workframes
and thoughtframes). They are checked in the order in which they are declared within the
frame. When all of its preconditions match (i.e., are satisfied), a frame becomes
available. When a frame becomes available frame instantiations are created for each
set of variable bindings from the precondition matching. If a frame has multiple variables
that can be bound, there will be a frame instantiation created for each valid combination
of variable-bindings. Each frame instantiation is executed in sequence (i.e. one after
another). There can only be one frame instantiation executed at a time (in one clock-
tick). The order of the sequence is undetermined.

After the preconditions match and a workframe
20

 is selected it will start to work (one
frame instantiation for each set of valid variable-bindings). The working time will be
specified in the workframe; or, if the workframe contains any composite activities, the
working time will be the cumulative time of the executed composite activities. At any
time during this working time, a variety of things may happen. Consequences may be
asserted, facts may be detected, and communications may occur, depending on their
ordering in the do-part of the workframe. If the do-part includes one or more move
activities, the agent will go to the specified locations as the moves are executed.

Within a detectable, the modeler can specify when the agent or object can detect a fact.
When a workframe contains a composite activity, the modeler must specify the time to
be "whenever", because the engine cannot calculate the total working time for the frame
in advance.

When multiple detectables are declared within a workframe, they are checked in the
order in which they are declared. When two detectables are specified to be executed at
the same time, and the first states that the frame should be interrupted and the second
states that the frame should be aborted, the frame will be interrupted.

The do-part of a frame is ordered, and the simulation engine evaluates the do-part
components in the order in which they appear from top-to-bottom and left-to-right. The
do-part may include activities and composite activities for workframes, and
consequences that will be asserted as beliefs and/or facts for workframes and
thoughtframes.

Frame states and transitions

As described above, frames are stateless and serve as declarative definitions, whereas
frame instantiations are dynamically created, associated with a particular agent or
object, have state, and have a related context.

The possible states of a frame instantiation are set forth in the following table.

20
 The next parts are limited to workframes, because thoughtframes do not take time, and do not have activities and detectables in
them.

Brahms Tutorial Version 1.2 Page 4-128
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Table 1. Frame instantiation states

not-available

No instantiation exists for a given (frame,
agent or object, context) set. Either the
preconditions of the frame have no matches,
or previously active instantiations have all
completed and been reset with no matches.
This is more or less the start-state of every
frame instantiation.

available

The preconditions of the frame have been
satisfied for some context and agent or
object, but the frame instantiation has not yet
been started by the agent or object.

working

The agent or object is performing this frame
instantiation for the current clock-tick.

interrupted

The workframe instantiation has already had
at least one clock-tick worked on it, but the
agent or object is performing some other
workframe instantiation during the current
clock-tick.

Thoughtframe instantiations cannot be in this
state.

interrupted-

with-impasse

A detectable has caused the agent or object
to have an impasse with the workframe
instantiation. The workframe instantiation
cannot continue until the condition causing
the impasse is resolved.

Thoughtframe instantiations cannot be in this
state.

done

The agent or object has completed all the
activities in the frame instantiation. If the
reset-when-done attribute of the associated
frame is false, then the frame instantiation
will exist in the done state. Otherwise, the
preconditions will be evaluated and the frame
instantiation will become either available or
not-available (i.e., deleted).

Brahms Tutorial Version 1.2 Page 4-129
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Given these possible frame states, there are a number of different allowable state-
transitions for frame instantiations. These are shown in Figure 19.

NOT-AVAILABLE

AVAILABLE

INTERRUPTED WORKING

INTERRUPTED-WITH-

IMPASSE

DONE

Figure 19. State-transition diagram for frame instantiations

The allowable state transitions, shown in Figure 19, are listed in Error! Reference

source not found., with their causes and implications.

Table 2. Frame state-transitions

not-available 

available

When the preconditions of a frame are
satisfied for a particular agent or object and
context, then a frame instantiation is
created and put in the state available. This
frame instantiation can then be worked on
by the agent or object.

available  not-

available

If an available frame instantiation has not
been started, and the preconditions (which
were previously satisfied) become
unsatisfied, then the frame instantiation is
deleted, and thus becomes not-available.

Brahms Tutorial Version 1.2 Page 4-130
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

available 

working

If the frame instantiation becomes the
current-work of an agent or object, then the
frame instantiation has state working.

working 

interrupted

Whenever a different workframe
instantiation becomes the current-work of
an agent or object, the (previous) working
frame instantiation becomes interrupted.
Note that the agent can choose from the
union of the sets (available, working,
interrupted) for the current-work for the next
clock-tick. This resolution mechanism works
on the basis of priorities of the workframe
instantiations.

working 

interrupted-with-

impasse

This state change happens when the
following conditions are all met: (1) an
agent detects a fact, (2) the current working
workframe instantiation contains a
detectable that references that fact, (3) that
detectable is satisfied, and (4) the impasse-
type attribute of the detectable is impasse.
The agent cannot continue working on the
workframe instantiation until the impasse is
resolved, i.e. the detectable condition
becomes false due to a change in the
beliefs of the agent or object. The
workframe instantiation is set to interrupted-
with-impasse state.

working  done

When all activities of the frame instantiation
are completed after the current clock-tick,
then the frame instantiation becomes done,
iff the reset-when-done attribute of the
associated frame is false. Otherwise, the

transitions workingavailable, depending
on whether the preconditions are still being
satisfied. However, this is accomplished by
creating a new frame instantiation. When
done, the frame instantiation is deleted.

interrupted 

When the agent or object picks an
interrupted workframe instantiation to
become the current-work for the next clock-
tick, the frame instantiation becomes

Brahms Tutorial Version 1.2 Page 4-131
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

working working again.

interrupted-with-

impasse 

interrupted

When a belief of an agent or object causes
the detectable that caused an impasse to
be no longer satisfied, then the impasse is
removed, i.e. the belief causes the
detectable-condition to no longer match the
current beliefs of the agent or object. The
frame instantiation can be worked on once
again, so the state is changed from
interrupted-with-impasse to interrupted,
after which, in the next clock-tick the frame
instantiation could transition to a working
state.

To decide for each agent what to work on next, the simulation engine executes a
number of steps. At each clock tick, the simulation engine determines which workframe
should be selected to work on next. This selection is based on the priorities of available,
current and interrupted workframe instantiations. A current workframe instantiation is
selected in preference to interrupted or available workframe instantiations of equal
priority, so that an agent tends to continue doing what it was doing.

The selected workframe is then executed, leading to the agent detect things in the world
(through detectables) and possibly begin a subactivity. When a workframe instantiation
is interrupted, it is reexamined on subsequent clock-ticks to see whether it should be
considered for selection. When a composite activity is terminated, because its end-
condition is satisfied, the workframe instantiations below it are also terminated. When an
activity is interrupted, Brahms saves the workframe/activity-hierarchy so the context can
be reestablished after an interruption.

The questions remain; 1) How does a workframe get selected to become instantiated,
and 2) When multiple workframes are instantiated, how does the engine determine the
priority of a workframe instantiation?

Brahms Tutorial Version 1.2 Page 4-132
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

The answer to the first question is that at every clock-tick the simulation engine checks if
any of the preconditions of the agent's frames are satisfied (i.e. match with beliefs in the
agent's belief-set)

21
. When all preconditions in a frame match, the frame is instantiated

and each frame instantiation is set to the available state. At that moment, the engine
includes the frame instantiation in its decision to determine what frame instantiation to
work on next.

The answer to the second question, from above, tells us how this is done. Each
workframe instantiation has a priority. The priority of each workframe instantiation is set
based on the priorities of the primitive activities in the workframe. The priority of a
workframe is the priority of its highest priority primitive activity.

Thus, all in all, the emergent behavior of agents during a simulation depends on two
independent things. First, it depends on when preconditions of frames match on the
belief-set of the agent. Of course, the belief-set of an agent depends on many factors
during a simulation, such as detection of facts, moving to locations, communication with
others, etc. This means that the behavior of an agent is first and foremost dependent on
the behavior of other agents and objects in its environment, as well as the state of the
environment itself. Secondly, the behavior of an agent depends on which frames are
instantiated together at any moment in time. This is because each instantiated frame
has a specific priority, and it will depend on the priority of the other frame instantiations
whether a frame instantiation is picked as the next work to be done.

multi-tasking agents

In a Brahms simulation, an agent may engage in multiple activities at any given time, but
only one workframe is active at any one time. At each clock-tick, the simulation engine
determines which workframe should be selected, based on the priorities of available,
current and interrupted work (see previous section). Current work is selected in
preference to interrupted or available work of equal priority, so that an agent tends to
continue doing what it was doing. The selected workframe is then executed, leading the
agent to act in the world and possibly begin a subactivity. When a workframe is
interrupted, it is reexamined on subsequent clock-ticks to see whether it should be
considered for selection. When a composite activity is terminated because its end
condition is satisfied, the workframes below it are also terminated. When an activity is
interrupted, Brahms saves the line of activities and workframes so context can be
reestablished after an interruption.

21
 The speed at which this is done is heavily dependent on the implementation. In the old G2 engine this was done using a loop-
structure, where for every agent and object, all preconditions for all frames were checked at every clock-tick. In the new Java
engine, we have invented a multi-agent version of a Rete-like algorithm. We call this a Reasoning State Network (RSN). This
allows the engine to only check the those preconditions in frames that can potentially match with beliefs that just changed in the
agents' belief-set.

Brahms Tutorial Version 1.2 Page 4-133
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

An important consequence and benefit of this combined modeling and programming
paradigm is that all of the workframes of a model are simultaneously competing and
active, and the selection of a workframe to execute is made without reference to a stack
or tree of workframe execution history. This paradigm is a major difference from most
other goal-oriented problem-solving systems, such as Soar (Laird et al., 1987).

 ACTIVITY 4 ACTIVITY 3 ACTIVITY 1

(other

activities)
WF 1

(other

activities)

ACTIVITY 2

WF 2

ACTION X

(other

workframes)

WF 4

(impasse)
WF 5

ACTIVITY 6

(other

activities)

Figure 20. Multi-tasking in Brahms

An illustration of this is given in Figure 20. An agent (not shown) in a running model may
have multiple competing general activities in process: Activities 1, 3, and 4. Activity1 has
led the agent (through workframe WF1) to begin a subactivity, Activity2, which has led
(through workframe WF2) to a primitive activity ActionX. When Activity2 is complete,
WF1 will lead the agent to do other activities. Meanwhile, other workframes are
competing for attention in Activity1. Activity2 similarly has a competing workframes.
Priority or preference rankings led this agent to follow the path to ActionX, but
interruptions or reevaluations may occur at any time. Activity3 has a workframe that is
potentially active, but the agent is not doing anything with respect to this activity at this
time. The agent is doing Activity4, but reached an impasse in workframe WF4 and has
begun an alternative approach (or step) in workframe WF5. This produced a subactivity,
Activity6, which has several potentially active workframes, all having less priority at this
time than WF2.

With this activity-base paradigm, we can simulate the reactive situated behavior of
humans. People are always working on many different activities, but our context forces
us to be active in only one. However, at any moment we can change focus and start
working on another competing activity, while queuing others.

4.12.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 4-134
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_wfr_des.htm, and pages
linked from there.

4.12.5 TUTORIAL

The sketch of the coding will be the following.

For what refers to multiagent, you can create a new agent – Kim_Agent.b – and give her
the same attributes (with different values) that we have been giving to Alex_Agent.

For the randomization, you simply need to change things here and there. For example,
the agents will only detect with probably 50% that the Campanile has signaled a new
hour and will get hungrier only 50% of times (the two distributions are independent in the
example below):

 conclude((current.perceivedtime = Campanile_Clock.time), bc: 50);

 conclude((current.howHungry = current.howHungry + 3.00), bc: 50);

Recall that the property belief-certainty is the probability (with also a default value of
100%) that the belief will be changed or created, conditional on the fact being true. That
is, if the fact-certainty and the belief-certainty are each 50%, then 1 in 2 times the fact
will be created and 1 in 4 times the belief will be created. If the fact-certainty is zero,
then no fact will be created but the belief-certainty determines how often a belief is
created.

If you have not done so already, you should create a Wells Fargo Bank (WF_Bank) and
its Atm (WF_Atm). Then, you should write down accordingly the relations between Kim,
her account and the bank/Atm. Do not forget Kim's initial beliefs about these relations!
Thereafter, you must start modeling the Bank and the Atm themselves and the
interaction between the student and the Atm. Most of the activities needed for the
student have already been coded. You will probably need some changes and a new
'wait' activity for the moments when the student is waiting for replies from the Atm. You
should also add the stochastic possibility that the student makes error when trying to
remember or digit the pin. It will be likely that you will have to revise and update older
parts of your model to achieve these goals.

For the Atm, you will probably need activities to: get the account associated to the
bankcard; get the pin; pass the pin and the account to the bank; receive back the
authorization (or lack thereof) from the bank, dispense or not dispense the cash.
Similarly, the Bank will need activities to make it receive Pins and account numbers,
verify them with the information that it is stored in the bank computers, and authorize or
not authorize the payment. For the moment, just one possibility of error will suffice, and
no question to the student about how much money she wants to take out (we can
assume it is a fixed amount). We will complete these details in the next section, where
we will also present the complete files of the scenario.

http://www.agentisolutions.com/documentation/language/ls_wfr_des.htm

Brahms Tutorial Version 1.2 Page 4-135
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Brahms Tutorial Version 1.2 Page 4-136
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.13 LESSON XI: DETECTABLES, PRIORITIES AND THE COMPLETE

SCENARIO

4.13.1 INTRODUCTION

This chapter will tell you about detectables and priorities in Brahms models, and will
bring you to the completion of the Atm scenario.

4.13.2 TASK

Use detectables to interrupt, abort or then continue activities. The Atm machine will be
waiting for inputs until keys are pressed on its pad or replies are received by the Bank
computers. The student will be waiting for replies from the Atm. Use priorities:
workframes that might be triggered under the same conditions will follow the traditional
top/down, left/right order. To modify that order, you can use priorities.

Then, use these concepts to complete your Atm scenario! A scenario will be considered
complete when it will reproduce the following:

Model a day in the life of a student. Students spend most of their time

studying, but get hungrier as the time goes by (signaled by a clock).

When they are particularly hungry (the threshold level varying with the

student), they decide to move to one of the restaurants in town. Students

choose the restaurant according to how much money they are carrying. If a

student does not have enough money even for the cheapest restaurant, she

will decide to pass first by the Atm of the bank where she has her

account.

When she arrives at the Atm, the student inserts her bankcard and tries

to remember the PIN associated to her account. The Atm allows its users 3

attempts to digit the correct PIN, before refusing the card altogether.

The Atm communicates with the central bank computer to verify the

correctness of the information provided by the user. If the bank computer

communicates to the Atm that the PIN is correct and that the user has

enough balance in her account, the Atm will dispense the cash and will

print an invoice with the account number and the remaining balance.

Students need to have enough balance in their accounts to take out cash:

if they attempt to take out more money than they have, the bank computer

will notify the students (through the Atm) of the remaining amount of

dollars in the account. The student will modify her approach accordingly,

and take out just exactly the remaining dollars.

THE CAST (AGENTS and OBJECTS)

Students: Kim, Alex

Bank computers: Bank of America, Wells Fargo

Restaurants: Blakes, Raleighs

Brahms Tutorial Version 1.2 Page 4-137
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Studying Places: South Hall, Spraul Hall

Clock: the Campanile

Atms: one Atm for each bank

4.13.3 DESCRIPTION

4.13.3.1 DETECTABLES

A detectable is a mechanism by which, whenever a particular fact occurs in the world,
an agent or object may notice it. The noticing of the fact may cause the agent or object
to stop or to finish the workframe.

Two things occur in a detectable. First, the agent or object detects the fact and the fact
becomes a belief of the agent or object. Second, only in the case of an agent, the
beliefs of the agent are matched with the condition used in the detectable, and if there is
a match the then-part of the detectable is executed, which may abort or interrupt the
workframe. For objects, in the second step the facts in the world are matched with the
detectable condition and if there is a match, the then-part is executed. These two steps
are independent: Whether or not the fact is present in the world, the condition in the
second step is tested. For example, if "the color of the telephone-1 is blue" is a fact, and
a workframe contains the following detectable condition, "the color of the telephone-1 is
red", in the first step an agent will obtain the belief "the color of telephone-1 is blue". In
the second step, "red" would be compared with "blue" and the condition will fail, so the
then-part of the detectable would not be executed.

The action or then-part of a detectable defines the detectable type and is one of five
keywords: continue, abort, complete, impasse, and end-activity. Continue is the default:
the agent or object detects conditions, but the workframe proceeds unaffected. With
abort, a condition causes the agent or object to stop executing the workframe. With
complete, a condition allows the agent or object to only perform the remaining
consequences of the workframe, without doing the rest of the workframe‘s activities.
With impasse, the condition prevents the continuation of the workframe until the
condition is removed. In this case, the workframe goes into the interrupted-with-impasse
state End-activity is only meaningful when the detectable is in a composite activity: It
does not detect facts, but causes the activity to be terminated immediately, based on
matching the beliefs of the agent or object to the detectable condition. This allows an
agent or object to abort working on composite-activities.

It is worth emphasizing that the detectable mechanism is operative for all workframes on
the execution path of the agent or object‘s workframe-activity hierarchy (see Figure 18).
This even holds for workframes that are in an interrupted or impasse state, so that a
"whenever" detectable in any of those frames can detect a fact at any time.

http://www.agentisolutions.com/documentation/language/ls_att_det.htm

Brahms Tutorial Version 1.2 Page 4-138
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Detectables can also be used to model impasses. A common example of an impasse is
the case of inaccurate or missing information. Workframes may be written to handle
impasses. For example, if a supervisor is ready for a technician but does not know the
technician‘s telephone number, another workframe may lead the supervisor to look up
the number.

With a detectable, an agent may notice passive observables, as when someone shouts,
a fax machine beeps, or an agent is present vying for attention. Passive observables fall
into two general classes: sounds and visual states. Objects that cause a sound––fax or
phone––create the fact that represent the sound, which can then be detected. Sounds
may persist over many simulation clock-ticks. Propagation into the surrounding space
will recur as long as the object is making a sound. Propagation may be affected by
geography.

When

For each detectable needs to be specified when the agent or object can detect a certain
fact. There are two options:

whenever:

This means that the detectable is checked every time a new fact is asserted in the world
and for an agent also every time a new belief is asserted.

at a specified time:

For the detectable needs to be specified exactly when the detectable needs to be
checked by specifying the time relative to the workframe instantiation‘s start the
detectable needs to check the fact set and belief set.

Detect-certainty

The detect-certainty is a number ranging from 0 to 100 and represents the percentage
of chance that a fact will be detected based on the detectable. A detect-certainty of 0%
means that the fact will never be detected and basically means that the detectable is
switched off. A detect-certainty of 100% means that a fact will always be detected based
on the detectable.

Detectable action

There are 5 different detectable actions possible:

continue:

Has no effect, only used for having agents or object detect facts and turn them into
beliefs.

Brahms Tutorial Version 1.2 Page 4-139
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

impasse:

Impasses the workframe on which the agent or object is working until the impasse is
resolved.

abort:

Terminates the workframe on which the agent or object is working immediately.

complete:

Terminates the workframe on which the agent or object is working immediately, but still
executes all remaining consequences defined in the workframe. All remaining activities
are skipped.

end_activity:

This action type is only meaning full when used with composite activities. Causes the
composite activity on which the agent or object is working to be ended.

4.13.3.2 PRIORITIES

Activities can be assigned a priority. For example:

Move moveToLocation() {

[…]

priority: 2:

}

The priorities of activities in a workframe are used to define the priority of a workframe.
The workframe will get the priority of the activity with the highest priority defined in the
workframe.

Brahms Tutorial Version 1.2 Page 4-140
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

There are some interesting things to say about priorities and frames. Let us start with
thoughtframes. When thoughtframes have no priority, the engine consider them as
having priority 0. If more the one thoughtframe was available at the same time then it
was up to the engine to decide which one wouldbe fired first, as a modeler you would
have no control over that. The engine maintains a list of available thoughtframes
ordered by priority. Whichever thoughtframe becomes available first will be fired first.
Now that we have priorities you can control the execution sequence of thoughtframes if
more then one thoughtframeis available at the same time. Whenever a thoughtframe
becomes available the engine will retrieve the priority of the thoughtframe,if no priority is
set, 0 wil be used. The engine will then add the thoughtframe to the list of available
thoughtframes and keep the list sorted, highest priority first. Theoretically all available
thoughtframes are fired at the same time. Since no 'at the same time' exists in the
engine the engine will work through the list of available thoughtframes starting with the
highest priority thoughtframe. It fires it and processes any concluded beliefs. Processing
these beliefs could make some of the available thoughtframes unavailable and could
make unavailable thoughtframes become available. The newly available thoughtframes
are added to the list of available thoughtframes sorted on priority. The engine will keep
getting the highest priority available thoughtframe and process it until all available
thoughtframes are processed.

Once all thoughtframes are processed the engine will start checking the workframes
again. The priority of workframes can be set in one of two ways. One is to set the
priority on the workframe directly using the 'priority' attribute. The other method is what
we had in the past is to have the engine determine the priority of the workframe by
checking the priority of the activities. The engine will first check if the priority is set
directly on the workframe, if sothat priority will be used. If no priority is set the workframe
will get the priorities of the activities and use the priority of the activity with the highest
priority in the workframe. If no activities are used in a workframe and no priority is set for
the workframe then the priority 0 is used. Available workframes are also placed in a list
sorted by priority. We also have the interrupted workframes list sorted by priority. The
work selection algorithm determines what workframeis to be worked on next. The work
selection algorithm retrieves the highest priority available workframe, the highest priority
interrupted workframe and the workframe currently active (if one is active). Out of those
three workframes the workframe with the highest priority will be selected to work on. If
all three have the same priority, then the current work is selected. If both the interrupted
work and available work have the same higher priority then the current work then the
interrupted work will be selected (one tends to continue with the work that was started
before starting new work). If the availablworkframe has the highest priority of all three
then that workframe will be selected to work on.

4.13.4 SYNTAX

Syntax details are available at:

http://www.agentisolutions.com/documentation/documentation.htm

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 4-141
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

In particular, the concepts presented in this section are also discussed at
http://www.agentisolutions.com/documentation/language/ls_att_det.htm, and pages
linked from there.

4.13.5 TUTORIAL

Since you have done it till here, you should be able to complete this Lesson and the Atm
scenario by yourself. A few hints will be provided about detectables and priorities and
some new activities. More detailed information will have to be extraxted from the online
language specifications. You can of course check the provided code for comparison.
However, try to find alternative and interesting ways to model the interaction between
the student, the bank, and the Atm. Furthermore, now you should have the student go
straight to the restaurant after getting cash out of the Atm.

Let us assume that you have modeled a wait workframe for the student, when he is
waiting the reply from the Atm to know whether it will receive cash or not. You might
have written something like the following:

 workframe wf_waitAtmReply {

 repeat: true;

 variables:

 […]

 detectables:

 detectable AtmRepliesYes {

 when(whenever)

 detect((at4.cashCanBeDispensed = true), dc:100)

 then abort;

 }

 detectable AtmRepliesNo {

 when(whenever)

 detect((at4.cashCanBeDispensed = false), dc:100)

 then abort;

 }

 when([…])

 do {waitAtmReply();

 }

 }

This ‗wait‘, even if the waitAtmReply is allowed to last for hours, will halt when an answer
from the Atm is received. This is an example of how detectables can be used.

http://www.agentisolutions.com/documentation/language/ls_att_det.htm
http://www.agentisolutions.com/documentation/language/ls_att_det.htm

Brahms Tutorial Version 1.2 Page 4-142
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Be careful about detectables and objects. When an object detects a fact, it also creates
a belief and then triggers the conclusions based on that belief. However, the detectable
can also be triggered by a belief.

Note that objects react on facts and not beliefs. This raises an issue regarding when
objects should react to things that are communicated to them. It might happen that a
fact takes place and is communicated between objects – but the object receiving the
communication has already ‗known‘ about this change in the facts of the world (this will
probably happen when you model the communications between the bank and the Atm).
Using beliefs here is no solution, cause objects do not react on beliefs. This is one of
those examples where different approaches are possible, depending very much on the
interpretation you give to the model and its way of representing reality. You could
decide, for example, to transform the objects into agents given their high degree of
complexity and interaction with other agents. Or, you might want to adapt the code to
take into consideration these situations (as it has been done in the files we provide as a
‗solution‘ to the scenario). Or you might use dataframes, a new language construct
recently added to the language (for more on this, as usual refer to the online language
specifications).

For what relates to priorities, a possible way to use them is by inserting a parameter –
say, pri – in the activity being considered, for example:

 moveToLocation(Building loc, int prit) {

 Location: loc;

 Priority: pri;

 }

so that you can modify those priorities as the simulation goes on, when you call the
activities from a workframe.

However, be careful when using priorities to control the sequence of activities. The
sequence of activities is emergent in work practice and depends on the belief state of an
agent. Priorities can be used in situations where one activity clearly has a higher priority
then another activity, for example picking up a phone when it rings might get a higher
priority than reading a document. In other case, priorities might be less appropriate.
Priorities are probably best used when there exist some activities that can be performed
at the same time, and you do not want to tie those workframes together artificially.

Brahms Tutorial Version 1.2 Page 4-143
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

For what concerns the receipt that the Atm prints after the transaction has been
completed, one way to model this would be through a create_object activity. Details
about this activities can be found from the online language specifications
(http://www.agentisolutions.com/documentation/language/ls_coa_stx.htm; cfr. also
4.9.3.2). We will note here that when the activity is used to create a ‗copy‘ of an object,
the source of the copy will be the object, and the destination would be an unassigned
attribute, whose class will be the class of the newly created object. When the
create_object activity creates a new object, the source will be a class and the new object
will be an instance of that class. The destination will be an unassigned variable, that you
can immediately use in the rest of the workframe. Note furthermore that you can assign
a destination name to the newobject, or just let the engine call it ‗no_name_1‘,
‗no_name_2‘, etc.

As for the rest, you are on your own now! This section will be probably quite challenging
and require more time than any of the previous sections. It will force you to review parts
of the scenario you had already modeled, and assemble all the concepts you have met
in these Lessons together. Remember to use the Agent Viewer (and its explanation
facility) often: it will help you a lot! Your complete scenario might look like the following
two pictures:

http://www.agentisolutions.com/documentation/language/ls_coa_stx.htm

Brahms Tutorial Version 1.2 Page 4-144
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 21 - A screenshot from the complete Atm scenario

Figure 22 - A zoom in of the complete Atm scenario

You can also check and compare the final code for this scenario here. Recall that the
one provided is just one of the many ways you could code your model, and enjoy the
completion of the Atm tutorial!

../../../../Documents%20and%20Settings/Documents%20and%20Settings/acquisti/Local%20Settings/Temporary%20Internet%20Files/Local%20Settings/Temp/Temporary%20Directory%201%20for%20Brahms_Tutorial.zip/Older_Tutorial_docs/ATM_Model_Files/Atm_Tutorial_Final/

Brahms Tutorial Version 1.2 Page 4-145
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

4.14 CONCLUDING ISSUES

4.14.1 HOW TO BUILD YOUR NEXT MODEL

The steps we have followed in this tutorial were appropriate to learn progressively more
concepts of the Brahms language, but are not the best ones to build a new model when
you have already mastery of those concepts. The Brahms design team suggests these
steps for modelers who already know about Brahms structures and conventions:

1. Write a scenario of what the Brahms model is to model and define the
objectives.

2. Go through the scenario and make a list of all concepts in the scenario, concepts
like agents (people), artifacts (objects), areas (locations) and conceptual
objects.

3. Go through the scenario and find all attributes that say something about the
agents or objects in the scenario and list them with the appropriate agent or
object.

4. Do the same for relations. Find relationship between agent, objects, areas, and
conceptual objects, name them and assign them to one of the concepts you
listed in 2.

5. Go through the scenario and make a list of all the activities performed by the
agents and objects and place them with the agent or object for which
the activity was defined in the scenario.

6. Next, make a classification hierarchy for all the concepts with their attributes,
relations and activities. Like in object-oriented programming verify whether
certain attributes should be more generic and should be listed higher in the
hierarchy for re-use.

Brahms Tutorial Version 1.2 Page 4-146
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

7. Once you have your hierarchy defined, start thinking about the conditions under
which the activities are performed by again going back to the scenario. For each
activity and for each agent or object define the conditions under which the
activity will be performed. Also specify how long the activity should take
and what states can be concluded when the activity is performed. Also think
about the priorities of the activities. All this information will be used as the basis
for defining your workframes. When defining you conditions you have access to
the four precondition modifier (known, knownval, unknown, and not). Think also
about making workframes generic by using variables. Use variables also to
define how an agent or object will work on/with one or more variable bindings. As
a final though for activities think about whether the agent or object should be
able to detect something in the world, i.e. see something happening while
working on the activity (red light blinking on the phone) and define the exact
state that is to be detected.

8. For measurement purposes you should associate resources with activities. The
resource usage can in turn be used to do some statistical analysis to get
answers to your measurement questions.

9. Once you have defined the workframes for each agent and object you can
simulate your model and see what happens. Let the work process emerge and
you might find interesting observations. Before you see the process emerge you
most likely have to fine-tune your model. You might find that certain activities are
not being performed due to conditions not being correct, activities not being
performed because priorities are not set correctly, etc. This will be your
debugging cycle. You will go back and forth between your Brahms model design,
implementation and simulation results.

4.14.2 DEBUGGING TIPS

The Agent Viewer and its ExplanationFacility are the best places to start debugging your
simulation (assuming you have one and that the Brahms Composer did not throw out
errors when compiling the Brahms files).

In some cases, the Brahms Composer will work fine but the simulation run will never
end. This might be due to the fact that the simulation is truly not supposed to end. But it
might also be a loop or a composite activity with an ‗hole‘ inside (a missing step where
no activity inside the composite activity is not triggered). In these cases, you might halt
the simulation manually if you have previously an (undocumented) flag –ui in the bvm
bat file. This flag will let you halt the simulation in a smooth way, so that you can then
use the Agent Viewer to see what was going on. Remember, however, that in some
cases it might prove useful to go through the text file containing the simulation history
itself, because it can be telling about what is going wrong.

Brahms Tutorial Version 1.2 Page 4-147
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

You can also set your VM to have debug information as output. In the vm.cfg you modify
the ‗information‘ line by adding the 'debug'. Furthemore, you might also check the Logs
directory in AgentEnvironment and open the log file. You might also open
eventinformation.txt, and the event history .txt file itself that is going to be parsed by
the Agent Viewer.

Some common problems are workframes continuously repeated, workframes not
triggered (in which case you must find out which preconditions do not hold and make the
conclusions be skipped), thoughtframes always repeating (recall that thoughtframes
take no time, so you must be careful with their repetitions). You must also pay a lot of
attention to the order at which things happen (or should happen). The VM checks all the
workframes everytime an action or a conclusion takes place, to see which must be
activated next. Sometimes an apparently trivial issue of ordering might cause the
continuous repetitions of the same activity. Furthermore, composite activities must be
used with attention: the simulation might get stuck if you do not have a coherent flow of
procedures inside the composite activity itself. Finally, a simulation might never halt, as
long as some workframe is active (a simulation might also never halt if the Virtual
Machine has entered some kind of loop or impasse).

Remember how binding and beliefs are really crucial in workframes and thoughtframes
(for what relates to beliefs, we are referring to agents here; objects act on facts). To use
variables, you have to bind them with the preconditions (there are exceptions to this
rule, and we will discuss them later in this section). But to evaluate the preconditions,
your agents need beliefs. If your code is not working as you expect, try checking first if
these crucial steps (beliefs and binding) have been coded correctly!

A final tip: remember to clean up the folder with the Brahms files you are working on
from time to time, especially the bcc files - older versions might accumualate when you
change the names of components, and create either confusion or compilation/simulation
errors.

4.14.3 VALIDATION

Apart from debugging, you might want to know whether your simulation is really doing
what you expect it to do. This is not an easy task when the simulation is complex and its
behavior, by definition, unpredictable. The next chapter of this tutorial deals at length
with these issues and is taken from Maarten Sierhuis‘s PhD dissertation.

4.14.4 FURTHER ISSUES AND EXERCISES

In this tutorial we have not covered all the aspects of the Brahms universe. If you want
to know more, for example, about conceptual objects, java activities, and the Brahms
real time components, you are invited to visit regularly the www.agentisolutions.com
website. You might also want to consider the following developments for further
exercises in the Atm scenario:

http://www.agentisolutions.com/

Brahms Tutorial Version 1.2 Page 4-148
TM01-0002 3/31/2011 Atm Scenario

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

- what if each bank has more than one Atm? can you make the agent choose the closest
one?

- can you model the objects (say, Banks and Atms) as agents? what will change? do you
notice changes in the behavior related to detectables and communications?

- what if more students go to the same Atm at the same time? can you make the Atm
handle just one order at a time, but the Bank central computer multiple orders coming
from several Atms?

- can you make the agents randomly meet and interact (e.g., say hello each to the other)?

- what if you want the Atm to remember the number of the cards if has refused?

Brahms Tutorial Version 1.2 Page 5-149
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

5. VALIDATION
22

In this chapter we will discuss issues related to the validation of your Brahms models:
how do you know that they are doing what they should?

This is a more difficult question than what it might initially look like. Even when a model
is compiling and is working, it might be doing something wrong. The more complex the
model, the more difficult it is to validate. The Agent Viewer will be the best tool to help
you validate a model. In this chapter, we will discuss what kind of considerations you
should keep in mind when trying to use the Agent Viewer to validate your models.

5.1 MODELING WORK PRACTICE

Brahms was created to model and represent work practices. In order to use simulation
as the method for understanding the work practice of an organization, we need a
representational scheme that allows us to represent work practice, and a computational
paradigm to simulate a model developed using the representational scheme. How can
we achieve this result? This question leads to the main subsidiary question:

1. How can we model an organization‘s work practice in such a way that we include
people‘s collaboration, ―off-task‖ behaviors, multi-tasking, interrupted and resumed
activities, informal interaction, knowledge and geography?

One answer to this question is to develop a modeling language and simulation program in
which we can represent the way an individual or group of individuals work—i.e. their practice.
This leads to further related questions:

a. What is meant by the concepts in the question stated above?

Ethnographic fieldwork in the work place has shown that in looking at the way people work in
practice we see a number of important aspects:

(1) People collaborate with each other to accomplish what they have to do.

(2) People often work on seemingly non-task related things, so called ―off-task‖
behaviors.

(3) People often work on more than one task at the same time, so called multi-
tasking.

22
 Source: Maarten Sierhuis‘ PhD Thesis.

Brahms Tutorial Version 1.2 Page 5-150
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

(4) People are often interrupted in their activities, and will resume what they were
working on, after the interruption is over.

(5) People have many interactions with others that were not planned before
hand, and/or not part of the task at hand, so called informal interactions.

(6) People use their domain knowledge, as well as their social knowledge about
the organization and the culture to perform their daily work activities.

(7) The environment is for most part a given. People are always situated in a
three-dimensional space. Most of the time, people cannot change the work
environment, and they can never ignore the constraints that the environment
places on their activities.

Next, we need to operationalize these concepts. That is, to put them into a form in which
they can be subject to testing by experiment. This leads to the following operational
questions:

b. What interpretation should be placed on these aspects of work practice?

In other words: How can we model them?

c. How can these aspects be included in a computational modeling language?

In other words: What formal language can we create that makes it possible to simulate?

5.2 COMPUTATIONAL MODELS IN SIMULATION

We distinguish two aspects of a system, the structural aspect of the system and the
behavioral aspect of the system. Computational models are models that show the
behavioral aspects of a system, by simulating the behavior of the system over time. This
is in contrast with static models, which only show the structural aspects, i.e. the system
elements and their relations at one moment in time. As the complexity of a system
increases, understanding how the system changes over time - its behavior - becomes
increasingly difficult. This is especially true for non-linear systems. A computational
model allows us to observe the result of changes in the system as time moves forward.

Brahms Tutorial Version 1.2 Page 5-151
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

There are many ways in which computational models can be used in solving problems.
However, we can classify the use of computational models in one of three ways (Table
3). Descriptive models are behavioral models of an existing system. The purpose of
descriptive models is to describe the system in a way that makes us better understand
the complexity of the system. Descriptive models are useful in analysis activities of
complex dynamic environments. Predictive models are models that predict the way an
existing system behaves in the future. The purpose of predictive models is to be able to
know beforehand how the system will behave in the future. Such models are useful in
tasks in which we need to make decisions based on future data from a complex
dynamic environment. Prescriptive models are models of future—not yet existing—
systems. The purpose of prescriptive models is to prescribe what a future system will or
should look like. Such models are useful in design activities for complex dynamic
environments.

Table 3. Use of Computational Models

Type of computational model Use in problem domains

Descriptive model Describe an existing system in order to

understand it.

Predictive model Predict the future of an existing system.

Prescriptive model Prescribe a future system that does not exist yet.

5.3 TYPES OF MODELING SYSTEMS

Models help us to understand systems. There are four basic levels of knowledge about
a system recognized by Klir (1985). At each level we know some important things about
the system we did not know at lower levels (Table 4). The lowest level, the source level,
identifies what part of the real world system we want to model, and the means by which
we are going to observe it. It identifies the variables to measure and how to observe
them. The next level, the data level, is the database of observations in terms of
measurements of the variables from the source system. At the third level, the generative
level, we have a model that can generate the data from the previous level. This is the
level of system knowledge most people refer to as a model the system. At the fourth
and highest level, the structure level, we have a description of the total system by
coupling all generative components from the lower level together into a generative
system for simulation.

Table 4. Klir's Levels of System Knowledge

Level Name System Knowledge

3 Structure Components (at lower levels) coupled together to form

a generative system, i.e. a simulation

2 Generative Means to generate data in a data system

Brahms Tutorial Version 1.2 Page 5-152
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

1 Data Data collected from source system

0 Source What variables to measure and how to observe them

Zeigler et al (2000), define three basic ways to deal with system problems, based on
Klir's system knowledge levels; system analysis, system inference and system design.
They allow us to move from one level of system knowledge to another. In System
analysis, we try to understand the behavior of an existing or hypothetical system based
on its known structure. System Inference is performed when we do not know the
structure of the system before hand—we try to guess the structure from observations,
allowing us to use this to predict future data. Finally, in system design we are
investigating the alternative structures for a completely new system or the redesign of
an existing system.

The important notion in Klir's levels of system knowledge is that in system analysis we
are not generating new knowledge, as we move from a higher-level to a lower-level
description of the system. In system analysis we are only making explicit what is implicit
in the higher-level description. Klir does not consider this kind of subjective (modeler-
dependent) understanding. Making something explicit that was implicit before, however,
will lead to insight and understanding, which is a form of new knowledge. Even though in
Klir's sense system analysis might not generate new knowledge, interesting properties
of the system will come to light of which we were not aware before the analysis.

In both system inference and system design we move from lower levels to higher levels
of system knowledge. Therefore, in these activities we are creating new knowledge that
did not exist before, according to Klir's definition.

In Table 5, Zeigler's fundamental system problems are related firstly to the transitions in
terms of Klir's levels, and secondly to the types of computational models that we are
developing at the generative level. When we are in a system analysis activity we are
developing a descriptive model of the system. The development of a descriptive
computational model leads to an increased understanding of how the system works. In
system inference we are trying to create a predictive model. Predictive in the sense that
once we have created a computational model that can explain the generation of
observed data, we can now use this model to predict future data of the system not yet
observed. In system design we are developing a prescriptive model, in the sense that
the model prescribes a future system.

Table 5. System problems related to model use and types

System problems Model use Transition between

Klir's levels

Type of

computational model

System Analysis The system exists, and

we try to understand its

behavior.

Moving from a higher to

a lower level of

description, e.g. using

information at the

generative level to

Descriptive model

Brahms Tutorial Version 1.2 Page 5-153
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

generate the source

data at the data level.

System Inference The system exists, and

we try to infer how it

works from

observations of its

behavior.

Moving from a lower to

a higher level, e.g.

having data and trying

to find a means to

generate it.

Predictive model

System Design The system does not

yet exist in the form

we're contemplating,

and we try to come up

with a good design for

it.

Moving from a lower to

a higher level, e.g.

having a means to

generate data based a

design at the

generative level.

Prescriptive model

5.4 VERIFICATION AND VALIDATION

Let us define the concepts verification, validation, and to be complete, credibility as follows:

 Verification is the process whereby the modeler asks if the model is performing as it was
designed. In this step in the V & V process, the objective is to determine if the logic of the
computer model correctly implements the assumptions made in the conceptual model.

 Validation is the process whereby the modeler asks how accurately the model is
representing reality. Here the objective is to determine whether the alternative hypothesis
(the model does not represent reality) holds or not.

 A credible model is one that the client accepts as being valid enough to use in making
decisions. It should be noted that in this experiment we do not have a client that will
make such a credibility judgement. In some sense the reader is the one that will make a
credibility judgement about the model representing the work practices of the Apollo 12
astronauts.

5.4.1 THE PURPOSE OF VERIFICATION AND VALIDATION

An important part of modeling and simulation is the verification and validation (V & V) of
the model and the results of the simulation. Without a thorough V & V there is no ground
in having any confidence in the model and the results of the simulation. Although it is
important to realize that it is impossible to prove that a model is a general valid model.
The reason for this is the fact that:

1. A model is only valid with respect to its purpose. For instance, a model that has been
created for the purpose of predicting the future state of a system might not be valid
as a prescriptive model of the current system.

Brahms Tutorial Version 1.2 Page 5-154
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

2. There are different interpretations of the real world possible. Depending on our
worldview, or Weltanschaüng, we have a different interpretation of the real world and
therefore, of the model and its validity .

3. The data used to develop the model may be inaccurate. Even if that is not the case,
it should be realized that the data used and the data generated by the simulation are
but a small data sample. Therefore, they can only be seen as a probabilistic answer
and not a definitive one.

The conclusion is that, although in theory a model is either valid or invalid, in practice it is
not easy and often not possible to prove that a model is valid. Therefore, we have to
think in terms of the confidence we can place in the model. The V & V of the model in
this experiment is not one of demonstrating that the model is correct, but in contrast it is
a process of falsification of the model, i.e. demonstrating that the model is incorrect. In so
doing, the purpose of V & V is to increase the confidence in the model, even though we
might find inconsistencies and problems with the model according to the real-world data.

5.4.2 THE VERIFICATION AND VALIDATION PROCESS

Many authors have described the process of a successful simulation . All of them mention a
series of processes that need to be followed. The high-level processes are shown in Figure
23, which is borrowed from Robinson (1999). A simulation study first starts with
understanding the real world, as well as the problem to be tackled. When the real world is
sufficiently understood the modeling activity starts, and a conceptual model is described.
After this, the model can be coded into a computer model, in this case the Brahms language.
When the model is complete, experiments are run to develop solutions to the real-world
problem being handled. In this case, a greater understanding of the real world was obtained.
In real-world projects it is hoped that the solutions found in the experiments can be
implemented in the real world, or that the better understanding of the problem will lead to
better decision making. Even though there is a natural sequence to following these steps, it
is obvious that the real process is not strictly sequential, and that several iteration through the
steps are necessary.

Brahms Tutorial Version 1.2 Page 5-155
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 23. Simulation model verification and validation in the modeling process (borrowed from

(Robinson, 1999))

5.4.3 DATA VALIDATION

As is shown in Figure 23, data validation is important at every step of the simulation
process, because at each step in the process you use data. It can thus be said that, if
the simulation data is verified against the original scenario‘s data, and it can be shown
that the outcome is correct in relation to this data, the validity of the simulation model is
high.

5.4.4 CONCEPTUAL MODEL VALIDATION

The purpose of the conceptual model validation is to determine that the scope and level
of detail of the proposed model is sufficient, and that all assumptions are correct. To
describe this validation, let me take a step back and restate the real-world problem I
addressed in this study. The problem in this study was that of showing that the Brahms
modeling and simulation language is powerful enough to describe the work practices.
The level of model detail that is needed to test this hypothesis is given by the definition
of what to include in a model of work practice.

Brahms Tutorial Version 1.2 Page 5-156
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 24. An Example of Conceptual Model for the Simulation of an Apollo Mission

If we take as a given the aspects of work practice, then we can validate that these
aspects are indeed included in the model. Therefore, the validation method we can use
for the conceptual model is to analyze the important aspects of modeling work practice,
as described in the theory, and to make sure that the conceptual model included all of
them.Computer model verification

The next phase in the modeling process is the design and implementation of the Brahms
model source code. In this phase, the modeler needs to translate the activities, groups,
agents, classes and objects represented in the conceptual model into the Brahms language.
To do this, the modeler needs to be proficient in the Brahms language, and specifically in the
multi-agent and activity programming concepts in Brahms. For first time Brahms modelers
this is a painstaking process, and is similar to the compile-debug cycle in traditional
programming languages, such as C++ or Java.

Brahms Tutorial Version 1.2 Page 5-157
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

Figure 25. Brahms Compile-Debug Cycle

shows the modeling cycle, which first continues until the complete model can be
compiled without syntax errors by the Brahms Compiler. However, verifying the model is
more than getting the Brahms Compiler to compile the model without syntax errors.
Although this is of course a first and important step in the process, the most important
step is to compare the "functioning" of the model with the conceptual model. The model
validation and verification steps are driving the Brahms model development process,
shown in Figure 26.

Figure 26. Brahms Model Development Cycle

The functioning of the model is visually verified using the Agent Viewer application. Using the
Agent Viewer it is possible to visually inspect the simultaneous behavior of the agents and
objects, and compare the expected behavior from the conceptual model with the actual
behavior during the simulation.

Brahms Tutorial Version 1.2 Page 5-158
TM01-0002 3/31/2011 Validation

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

5.4.5 EXPERIMENTATION VALIDATION

1. Comparing the model output to data from the real system is the most objective and
scientific method of validation. Of course, this type of validation can only be performed if
there is a real system, and real-world data that correspond to the simulation parameters
are available – for example, historical data available to validate our model.

5.4.5.1 WHITE-BOX VERSUS BLACK-BOX VALIDATION

We consider two types of real-world data validation, white-box and black-box validation. The
model verification described in section 0 is considered a white-box validation. Validating the
simulated activity times with the timing of the activities based on the transcript of the voice
loop communication is also a type of white-box validation. However, the second validation,
that of the actual voice loop data, is considered a black-box validation.

White-box validation is a micro validation of the content of the model. In a white-box
validation we try to validate the model by investigating the model content in detail. The
purpose of this type of validation is to ensure that the content of the model is true to the real
world. The use of a graphical visualization and spreadsheet tools are very appropriate in this
type of validation.

Figure 27 Black-box validation: comparison with the real system (from (Robinson, 1994))

In a black-box validation we are not looking inside the model, but we are validating the
overall behavior of the model with the output of pre-specified real-world data. In this type
of validation we need to validate that when we specify input data to the simulation model
that is similar to that of the real system, the output data from the simulation should be
relatively similar to that of the real system as well. This is a validation of the alternative
hypothesis H1 (Figure 27).

Brahms Tutorial Version 1.2 Page 6-159
TM01-0002 3/31/2011 Index

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

6. INDEX
account2-6, 2-7, 2-9, 2-10, 4-34, 4-58, 4-63, 4-72, 4-88, 4-94, 4-97, 4-112, 4-113, 4-134, 4-136
activities2-5, 2-7, 2-10, 2-11, 2-12, 3-28, 4-35, 4-49, 4-50, 4-51, 4-52, 4-55, 4-57, 4-64, 4-65, 4-66, 4-67, 4-68, 4-69,

4-73, 4-76, 4-82, 4-83, 4-86, 4-88, 4-89, 4-90, 4-93, 4-94, 4-95, 4-97, 4-100, 4-101, 4-102, 4-103, 4-105, 4-108, 4-
113, 4-116, 4-117, 4-118, 4-119, 4-120, 4-121, 4-124, 4-125, 4-126, 4-127, 4-128, 4-130, 4-132, 4-133, 4-134, 4-
136, 4-137, 4-139, 4-142, 4-145, 4-146, 4-147, 5-149, 5-150, 5-151, 5-152, 5-156, 5-158

Activities2-5, 4-52, 4-66, 4-67, 4-68, 4-69, 4-100, 4-117, 4-133, 4-139
agency 4-49
Agent Viewer3-14, 3-24, 3-26, 3-28, 3-30, 4-79, 4-80, 4-81, 4-82, 4-99, 5-149
AgentiSolutions 3-31
Agents2-5, 2-11, 4-42, 4-49, 4-50, 4-52, 4-59, 4-61, 4-126
AgentViewervi, 3-14, 3-17, 3-25, 3-27, 3-28, 3-31, 4-81, 4-82, 4-87, 4-143, 4-147, 5-149
area2-6, 4-37, 4-41, 4-42, 4-44, 4-45, 4-48, 4-67, 4-74, 4-102
Atm2-11, 3-15, 4-34, 4-74, 4-97, 4-103, 4-125, 4-134, 4-136, 4-144
Atm Files 3-15
attributes2-7, 2-9, 4-35, 4-42, 4-48, 4-49, 4-50, 4-51, 4-52, 4-53, 4-55, 4-56, 4-57, 4-61, 4-62, 4-75, 4-88, 4-90, 4-91,

4-92, 4-93, 4-94, 4-95, 4-97, 4-103, 4-116, 4-120, 4-134, 4-145
bank2-6, 2-7, 2-9, 2-11, 4-34, 4-56, 4-58, 4-63, 4-88, 4-92, 4-93, 4-94, 4-95, 4-97, 4-108, 4-112, 4-120, 4-125, 4-134,

4-136, 4-137, 4-142, 4-148
Beliefs 2-5, 4-52, 4-58, 4-60, 4-61, 4-102
Brahms Builder 3-17, 3-24, 4-55, 4-146
Brahms Compiler 3-14
Brahms concepts 2-4, 4-36, 4-39, 4-40
BrahmsBuilder.bat 3-23, 3-30
Bvm 3-26
Classes 2-5, 4-88, 4-89
communication2-5, 2-11, 4-62, 4-100, 4-101, 4-102, 4-126, 4-132, 4-142, 5-158
Compilation Unit 4-37
composite2-5, 4-66, 4-67, 4-68, 4-76, 4-83, 4-101, 4-108, 4-117, 4-119, 4-120, 4-121, 4-124, 4-127, 4-131, 4-132, 4-

137, 4-139, 4-146, 4-147
consequences2-5, 4-75, 4-100, 4-107, 4-108, 4-127, 4-137, 4-139
debugging 4-146, 4-147
Debugging 3-31
Detectable 4-65, 4-138
detectables4-62, 4-65, 4-66, 4-89, 4-108, 4-127, 4-131, 4-136, 4-141, 4-148
Facts 2-5, 4-52, 4-58, 4-59, 4-61
first-order predicate 4-52, 4-59
Geography 2-5, 2-12, 4-41
Groups 2-5, 4-49, 4-50

import 2-6, 3-23, 3-26, 4-37, 4-38, 4-40

Index 3-33, 6-159
Installation v, 3-13, 7-161
Intended Audience 1-2
invoice 2-6, 4-34, 4-136
Models 2-11, 3-22, 5-151
movement 2-5, 4-44, 4-84
object-oriented 1-1, 2-6, 2-10, 4-49, 4-89
Objects 2-5, 2-11, 4-61, 4-88, 4-92, 4-138
OOSee object-oriented, See object-oriented, See object-oriented, See object-oriented, See object-oriented
Overview 2-4, 3-13
package2-7, 3-23, 4-37, 4-38, 4-39, 4-40, 4-44, 4-54, 4-55, 4-56, 4-60, 4-91, 4-92, 4-93, 4-94, 4-95, 4-96, 4-103, 4-

104
PIN 2-6, 4-34, 4-136
preconditions2-5, 4-62, 4-65, 4-66, 4-69, 4-71, 4-72, 4-75, 4-83, 4-84, 4-86, 4-92, 4-97, 4-100, 4-108, 4-110, 4-111,

4-113, 4-116, 4-119, 4-127, 4-128, 4-129, 4-130, 4-132, 4-147

Brahms Tutorial Version 1.2 Page 6-160
TM01-0002 3/31/2011 Index

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

primitive2-5, 2-7, 4-64, 4-67, 4-68, 4-69, 4-100, 4-101, 4-102, 4-103, 4-105, 4-117, 4-118, 4-119, 4-121, 4-132, 4-133
priorities4-35, 4-66, 4-68, 4-83, 4-86, 4-119, 4-130, 4-131, 4-132, 4-136, 4-139, 4-141, 4-142, 4-146
Private 4-53, 4-90
Protected 4-53
Public 4-53
random 4-35, 4-69, 4-76, 4-103, 4-109, 4-118, 4-125
relations2-7, 2-9, 4-35, 4-40, 4-42, 4-49, 4-51, 4-52, 4-55, 4-56, 4-75, 4-88, 4-90, 4-92, 4-93, 4-94, 4-95, 4-97, 4-112,

4-113, 4-116, 4-134, 4-145, 5-150
restaurant2-6, 2-11, 4-34, 4-58, 4-64, 4-74, 4-75, 4-84, 4-88, 4-97, 4-98, 4-99, 4-100, 4-105, 4-107, 4-108, 4-113, 4-

116, 4-124, 4-136
Simulation Engine 3-14
student2-6, 2-7, 2-10, 2-11, 4-34, 4-45, 4-47, 4-49, 4-56, 4-63, 4-74, 4-75, 4-105, 4-111, 4-112, 4-121, 4-125, 4-134,

4-136, 4-141
Support 3-31
thoughtframes2-5, 2-8, 2-11, 4-35, 4-50, 4-51, 4-52, 4-53, 4-55, 4-57, 4-84, 4-90, 4-92, 4-100, 4-101, 4-104, 4-108,

4-127, 4-147
variables2-8, 4-35, 4-65, 4-66, 4-68, 4-69, 4-70, 4-72, 4-74, 4-85, 4-93, 4-97, 4-98, 4-100, 4-101, 4-102, 4-107, 4-

108, 4-109, 4-110, 4-111, 4-112, 4-113, 4-114, 4-115, 4-116, 4-121, 4-122, 4-123, 4-124, 4-127, 4-141, 4-146, 5-
151, 5-152

Venn diagram 4-60
Virtual Machine3-13, 3-16, 3-17, 3-25, 3-31, 4-147, See Simulation Engine
workframes2-5, 2-8, 4-35, 4-50, 4-51, 4-52, 4-53, 4-55, 4-57, 4-62, 4-64, 4-65, 4-66, 4-68, 4-69, 4-74, 4-76, 4-82, 4-

83, 4-86, 4-89, 4-90, 4-93, 4-97, 4-100, 4-103, 4-105, 4-106, 4-113, 4-117, 4-118, 4-119, 4-120, 4-121, 4-127, 4-
131, 4-132, 4-133, 4-136, 4-137, 4-142, 4-146, 4-147

Workframes 2-5, 4-52, 4-64, 4-65, 4-66, 4-138
xml 3-22, 3-24, 3-25, 4-48, 4-77

Brahms Tutorial Version 1.2 Page 7-161
TM01-0002 3/31/2011 References and Other Links

Printed on: This is an uncontrolled copy when printed.

3/31/11 3:08 PM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 2001-2011 NASA Ames Research Center. All Rights Reserved.

7. REFERENCES AND OTHER LINKS

Brahms Development Team (1999-). Brahms TM99-0008 - Brahms Language
specification, http://agentisolutions.com/documentation/language/ls_title.htm

Brahms Development Team (1999-). Brahms Installation readme.txt,
http://agentisolutions.com/download/download.htm

Brahms Development Team (2001). Brahms TM01-0002 – Brahms Tutorial Lite,
http://agentisolutions.com/documentation/tutorial/tt_title.htm

Klir, G. J. (1985). Architecture of Systems Complexity, Sauders, New York.

Robinson, S. (1994). Successful Simulation: A Practical Approach to Simulation
Projects, McGraw-Hill, Maidenhead, UK.

Robinson, S. (1999). "Simulation Verification, Validation and Confidence: A Tutorial."
Transactions of The Society for Computer Simulation International, Vol. 16(Number
2):63-69.

Sierhuis, M. (2001). Modeling and Simulating Work Practice: Brahms, A multiagent
modeling and simulation language for work systems analysis and design, PhD thesis,
University of Amsterdam,
ftp://www.agentisolutions.com/anonymous/MXSthesis/PrintVersion/.

Zeigler, B. P., H. Praehofer, and Kim, T. G. (2000). Theory of Modeling and Simulation,
Academic Press, San Diego, CA.

http://agentisolutions.com/documentation/language/ls_title.htm
http://agentisolutions.com/download/download.htm
http://agentisolutions.com/documentation/tutorial/tt_title.htm
ftp://www.agentisolutions.com/anonymous/MXSthesis/PrintVersion/

	Brahms Tutorial
	TM01-0002
	Version 1.2
	30 March 2011
	Technical Memorandum
	CONTACT
	ABSTRACT
	This document is a guide to programming in Brahms, an agent-oriented modeling language.
	Date: 30 March 20
	Keywords: Brahms, Tutorial
	Contributors
	Approved
	Figures
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Document Summary
	1.4 Document Conventions
	1.5 Acknowledgements
	1.6 Contacts and Help

	2. Overview of Brahms and the Atm Scenario
	2.1 What Is Brahms? An Introduction to its Theoretical Foundations and Concepts
	2.2 Anatomy of a Brahms Model: The Atm Scenario
	2.3 Object-Oriented Programming and Brahms
	2.3.1 The Atm case in object-oriented programming
	2.3.1.1 the scenario in an object-oriented framework
	2.3.1.2 the “models” in object-oriented programming

	2.3.2 The Atm case in Brahms
	2.3.2.1 the scenario in brahms
	2.3.2.2 the “models” in brahms

	3. Installation and Components
	3.1 Brahms Overview
	3.2 Installation
	3.2.1 Installing Brahms Agent Environment
	3.2.2 Installing MySQL
	3.2.3 Installing the License File
	3.2.4 Choosing the Brahms Model Directory
	3.2.5 The Atm Files
	3.2.6 To Summarize: What you Will Need

	3.3 Description of Components
	3.3.1 Introduction: The Life of a Brahms Simulation
	3.3.2 The Brahms Composer: Opening, Creating, and Building a Model
	3.3.3 The Brahms Composer and the Virtual Machine: running a Model
	3.3.3.1 IMPORTANT: When things don’t work…

	3.3.4 Brahms Agent Viewer

	3.4 Summary of Steps
	3.5 A Note on Debugging…
	3.6 Known Bugs in Brahms Agent Environment
	3.7 Contacting the Brahms Project Team for Technical Support
	3.8 Other Important Documents
	3.9 Latest Changes
	3.10 Document Index

	4. Atm Scenario
	4.1 Structure of the Scenario
	4.2 Expectations and Goals
	4.3 Lesson I: Getting started
	4.3.1 Introduction
	4.3.2 Task
	4.3.3 Description: compilation unit
	4.3.4 Tutorial
	4.3.5 Syntax

	4.4 Lesson II: Geography
	4.4.1 Introduction
	4.4.2 Task
	4.4.3 Description
	4.4.4 Syntax
	4.4.5 Tutorial

	4.5 Lesson III: Groups, Agents and Attributes
	4.5.1 Introduction
	4.5.2 Task
	4.5.3 Description
	4.5.3.1 agents & groups
	Groups and members of groups
	Elements of agents and groups

	4.5.3.2 attributes
	Attribute scope
	Private attributes:
	Protected attributes:
	Public attributes:

	Value assignment

	4.5.4 Syntax
	4.5.5 Tutorial

	4.6 Lesson IV: Facts and Beliefs
	4.6.1 Introduction
	4.6.2 Task
	4.6.3 Description
	4.6.3.1 beliefs
	4.6.3.2 facts

	4.6.4 Syntax
	4.6.5 Tutorial

	4.7 Lesson V: Workframes and Primitive Activities
	4.7.1 Introduction
	4.7.2 Task
	4.7.3 Description
	4.7.3.1 workframes
	4.7.3.2 activities
	4.7.3.3 preconditions
	4.7.3.4 consequences

	4.7.4 Syntax
	4.7.5 Tutorial

	4.8 Lesson VI: Classes, Objects and Relations
	4.8.1 Introduction
	4.8.2 Task
	4.8.3 Description
	4.8.3.1 objects
	4.8.3.2 classes
	4.8.3.3 elements of objects and classes
	4.8.3.4 relations

	4.8.4 Syntax
	4.8.5 Tutorial

	4.9 Lesson VII: Thoughtframes and Other Activities
	4.9.1 Introduction
	4.9.2 Task
	4.9.3 Description
	4.9.3.1 thoughtframes
	4.9.3.2 create-object activity
	4.9.3.3 communication activity
	4.9.3.4 broadcast activity
	4.9.3.5 java activity

	4.9.4 Syntax
	4.9.5 Tutorial

	4.10 Lesson VIII: Variables
	4.10.1 Introduction
	4.10.2 Task
	4.10.3 Description
	4.10.3.1 for-each
	4.10.3.2 collect-all
	4.10.3.3 for-one
	4.10.3.4 pre-, post- and unassigned variables

	4.10.4 Syntax
	4.10.5 Tutorial

	4.11 Lesson IX: Composite Activities
	4.11.1 Introduction
	4.11.2 Task
	4.11.3 Description
	4.11.3.1 primitive activities
	4.11.3.2 composite activities

	4.11.4 Syntax
	4.11.5 Tutorial

	4.12 Lesson X: Multi-agent, Randomness, and Complex Interactions
	4.12.1 Introduction
	4.12.2 Task
	4.12.3 Description
	4.12.4 Syntax
	4.12.5 Tutorial

	4.13 Lesson XI: Detectables, Priorities and the Complete Scenario
	4.13.1 Introduction
	4.13.2 Task
	4.13.3 Description
	4.13.3.1 detectables
	4.13.3.2 priorities

	4.13.4 Syntax
	4.13.5 Tutorial

	4.14 Concluding Issues
	4.14.1 How to build your next model
	4.14.2 Debugging tips
	4.14.3 Validation
	4.14.4 Further issues and exercises

	5. Validation
	5.1 Modeling Work Practice
	5.2 Computational Models in Simulation
	5.3 Types of Modeling Systems
	5.4 Verification and Validation
	5.4.1 The purpose of verification and validation
	5.4.2 The verification and validation process
	5.4.3 Data validation
	5.4.4 Conceptual model validation
	5.4.5 Experimentation validation
	5.4.5.1 White-box versus black-box validation

	6. Index
	7. References and Other Links

