
Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2007 NASA Ames Research Center. All Rights Reserved.

BRAHMS

Language Specification

TM99-0008

Version 3.0 Final

2 December 2009

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2007 NASA Ames Research Center. All Rights Reserved.

Technical Memorandum

TM99-0008

BRAHMS LANGUAGE SPECIFICATION

 VERSION 3.0 – FINAL

CONTACT

Brahms Contact

Maarten Sierhuis – Project Manager (650) 604-4917

ABSTRACT

This document describes the Brahms language. It specifies the language in the Backus-Naur
Form. This document specifies all language constructs in the Brahms language syntactically
and semantically. Models written using this version of the language specification can only be
run in the Brahms Virtual Machine.

DATE: 2 December 2009

KEYWORDS: Brahms, Language, Backus-Naur Form, Syntax, Semantics, Element Description

This document has not been reviewed by the Intellectual Property Organization.

Brahms Language Specification Version 3.0 Final Page i
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

CONTRIBUTORS

William J. Clancey

Ron van Hoof

Maarten Sierhuis

Robert Nado

Brahms Language Specification Version 3.0 Final Page ii
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

APPROVED

Maarten Sierhuis Date

Project Manager

Brahms Language Specification Version 3.0 Final Page iii
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

REVISION HISTORY

Version Contact Action

Version 0.1 Draft

01/29/1997

Ron van Hoof

203/531-4741

New Initial Version

Version 0.2 Draft

02/10/1997

Ron van Hoof

203/531-4741

Add Added precondition, consequence, detectable, transfer-

definition, module and made language more consistent.

Version 0.3 Draft

02/11/1997

Ron van Hoof

203/531-4741

Add,

Change

Changed „end‟ statements in syntax. Added descriptions and

semantics for model, version information, group, and agent.

Version 0.4 Draft

02/12/1997

Ron van Hoof

203/531-4741

Add Completed descriptions for all model elements.

Version 0.5 Draft

02/20/1997

Ron van Hoof

203/531-4741

Change Changed syntax definitions based on comments from Maarten

Sierhuis and Bill Clancey.

Version 0.6 For Review

02/27/1997

Ron van Hoof

203/531-4741

Add Added semantics for all concepts.

 Added chapter with keywords.

Version 1.0 For Review

01/29/1997

Ron van Hoof

203/531-4741

Add,

Change

Changes after review. Added geographical definitions, area-

def, area and path. Added location attribute to agent and

object. Made parameter lists for activities more general,

removed specific parameters. Corrected punctuation where

necessary. Made separation between string and symbol type.

Added current limitations sections in semantics where

appropriate. Added list types for parameters.

Version 1.0 Final

03/20/1997

Ron van Hoof

203/531-4741

Add,

Change

Added „type‟ attribute to communicate activity. Simplified

activity references not to include „move‟, „create-object‟,

„communicate‟, or „broadcast‟, but just the name. activity. Simplified activity references

Version 1.1 Draft

04/17/1997

Ron van Hoof

203/531-4741

Change Modifications after external review. Changes opening and

closing symbols from „:‟ and „end‟ to „{„ and „}‟. Modified

attributes and relations to be more flexible for future

extensions. Changed float into double. Removed keywords

goal-location, destination-location and destination-conceptual-

object. Changed into location and conceptual-object.

Version 1.2 Draft

04/30/1997

Ron van Hoof

203/531-4741

Change Added meta class keywords „Class‟, „Group‟,

„ConceptualClass‟, „AreaDef‟. Changed classtypedef to

include type casting for the ID and added the new meta

classes as possible class types. Added keyword „workframe‟

and „thoughtframe‟ to their definitions for consistency.

Version 1.3 Draft

07/29/1997

Ron van Hoof

203/531-4741

Change Removed the type casting requirement for ID‟s, ID‟s of all

objects have to be unique. Added „not‟ modifier to

precondition.

Brahms Language Specification Version 3.0 Final Page iv
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Version 1.4 Draft

08/05/1997

Ron van Hoof

203/531-4741

Change Changed keywords, eliminated the use of „-„. Removed

model-construct allowing for concepts to be stored in

separate files. Changed import statement to make use of the

ability to store concepts in separate files and to allow for

better use of libraries. Removed the merging requirement,

meaning that concept names have to be unique and will not

automatically be merged. Removed the version information

construct.

Version 1.5 Draft

09/04/1997

Ron van Hoof

203/531-4741

Add Added ability to define an icon for the concepts.

Version 1.6 Draft

11/18/1997

Ron van Hoof

203/531-4741

Add Added ability to define the name of the destination object in

create-object activity.

Version 1.6 Final

11/18/1997

Ron van Hoof

203/531-4741

Change Changed status to final after approval.

Version 1.7 Draft

04/12/1999

Ron van Hoof

203/531-4741

Add

Change

Added package-declaration. Changed Model to Compilation

unit. Created new section for model for future use. Created

separate section for import declaration.

Version 1.7 For Review

04/12/1999

Ron van Hoof

203/531-4741

Change Completed draft, changed status to For Review.

Version 1.7 Final

04/28/1999

Ron van Hoof

203/531-4741

Change Version 1.7 has been approved without changes.

Version 1.8 Draft

11/11/1999

Ron van Hoof

203/531-4741

Change Added ability to specify object and attribute tuple using dot

notation (obj.att). Removed ability for consequences,

detectables and transfer definitions to have expressions on

the left hand side. Made correction in valid value

comparisons. OArO and OrO specified that r could be an

evaluation operator, this is incorrect and should be an equality

operator.

Version 1.8 For Review

11/11/1999

Ron van Hoof

203/531-4741

Change Completed draft, changed status to For Review.

Version 1.8 Final

11/17/1999

Ron van Hoof

203/531-4741

Change Removed ability to specify the relational operators „>‟, „<‟, „>=‟,

„<=‟ for initial beliefs/facts, consequences, detectables, and

transfer definitions.

Version 2.0 Draft

12/13/1999

Ron van Hoof

203/531-4741

Add

Change

Added support for class hierarchies for conceptual classes

and area definitions. Added meta types Object, Area,

ConceptualObject, Concept, ActiveConcept, ActiveClass,

ActiveInstance, GeographyConcept, ConceptualConcept.

Allowing for „location‟ as the name for an attribute. Updated

base model.

Version 2.0 For Review

12/13/1999

Ron van Hoof

203/531-4741

Change Completed draft, changed status to For Review.

Brahms Language Specification Version 3.0 Final Page v
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Version 2.0 Final

12/15/1999

Ron van Hoof

203/531-4741

Change Changed status to final after review with no comments.

Version 2.1 Draft

03/09/2000

Ron van Hoof

203/531-4741

Change Changed the syntax of preconditions to prevent the use of a

right hand side in comparisons in case of a known or

unknown modifier. Updated the semantics for the

preconditions to reflect the syntax changes and to add

additional notes regarding the allowable expressions in a

condition that cannot be checked by the compiler but will be

detected at runtime in the virtual machine.

Version 2.1 For Review

03/09/2000

Ron van Hoof

203/531-4741

Change Completed draft, changed status to For Review.

Version 2.1 Final

03/16/2000

Ron van Hoof

203/531-4741

Change Added an additional constraint for the preconditions stating

that no nested expressions are allowed. Removed all

restrictions that were added for running models in the G2

based simulation engine.

Version 2.2 Final

09/09/2000

Ron van Hoof

203/531-4741

Change Added Java Activity and updated semantics of move, and

create object activity to describe in more detail the behavior of

the activity in the virtual machine.

Version 2.3 Final

05/16/2001

Ron van Hoof

203/531-4741

Change Added External Agent.

Version 2.4 For Review

05/29/2001

Ron van Hoof

203/531-4741

Change Added Put and Get activities to manage containment.

Version 2.4 Final

07/09/2001

Ron van Hoof

203/531-4741

Change Marked document as final after review by the Brahms team

without comments.

Version 2.5 For Review

07/09/2001

Ron van Hoof

203/531-4741

Change Added create_agent activity to allow for dynamic creation of

agents in a model.

Version 2.5 Final

07/30/2001

Ron van Hoof

203/531-4741

Change No comments after review, marked document as final.

Version 2.6 For Review

08/06/2001

Ron van Hoof

203/531-4741

Change Enabled the use of „unknown‟ as a value in (initial) beliefs,

facts, and all conditions as well as the use of „unknown‟ for

the truth-value of a relationship.

Version 2.6 Final

08/14/2001

Ron van Hoof

203/531-4741

Change Added support for priorities in thoughtframes. Added section

on „unknown values‟.

Version 2.7 Final

09/04/2001

Ron van Hoof

203/531-4741

Change Based on user feedback added the ability for transferring

contained items from/to a location, object or agent using the

put and get activities. Added „destination‟ attribute to the put

activity and added the „source‟ attribute to the get activity.

Version 2.8 Final

09/19/2001

Ron van Hoof

203/531-4741

Change Added a „type‟ property to the definition of a workframe for a

class/object. The type attribute can have as value „factframe‟

or „dataframe‟ and specifies whether its preconditions are to

be matched against facts or beliefs.

Brahms Language Specification Version 3.0 Final Page vi
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Version 2.9 Final

12/04/2001

Ron van Hoof

203/531-4741

Change Expanded the control for model builders in specifying to what

areas a broadcast travels to and in specifying what areas can

detect the arrival and departure of a moving agent. The

appropriate properties have been added to the broadcast

activity and move activity. The semantics of the areas has

been modified to include that the virtual machine will generate

facts about the area hierarchy.

Version 2.10 Final

4/09/2002

Ron van Hoof

203/531-4741

Change Added Gesture Activity to allow agent gestures to be

visualized in a three-dimensional view of a simulation.

Version 2.11 Final

6/20/2002

Ron van Hoof

203/531-4741

Change Added Create Area Activity to allow agents to dynamically

create new areas.

Version 2.12 Final

11/6/2003

Ron van Hoof

732/632-9459

Change Now allowing detectable conditions to use the relational

operators >, >=, <, <= in addition to = and !=.

Version 2.13 Final

10/26/2006

Ron van Hoof

732/632-9459

Add

Change

Added support for two new attribute types, long and map. The

map type is a collection type for which indices/keys are used

to retrieve the attribute values. The initial statements and

conditions have been modified to support these collection

indices. Added a section on the use of the map collection

type.

Version 2.14 Final

11/1/2006

Ron van Hoof

732/632-9459

Change Added support for activity overloading. Names of activities no

longer need to be unique within the declaration of an activities

section, however their signatures do need to be unique

(activity name plus the types of the argument list in the order

the arguments are declared).

Version 2.15 Final

11/6/2006

Ron van Hoof

732/632-9459

Change Added support for a <class type> variable on the left hand

side of detectables allowing detectables to detect any fact

with a concept on the left hand side that is type compatible

with the class type concept declared in the detectable

condition as: <concept class>.attribute = ?. The trigger uses

this same variable to trigger the action but matched against

beliefs.

Added support for a new way to declare relations as part of

the attributes section.

Added support for allowing attributes, variables and

parameters to be of a Java type, with support for Java specific

import statements required to resolve Java types.

Version 2.16 Final

6/29/2007

Ron van Hoof

732/632-9459

Change Added support for using a CommunicativeAct from the

communications library as the content to be communicated to

a recipient and if a CommunicativeAct is used to only allow for

the reading of the contents of that CA but not the „reading‟ of

a CA from another agent.

Version 2.17 Final

7/16/2007

Ron van Hoof

732/632-9459

Change Added support for the „delete‟ operation.

Brahms Language Specification Version 3.0 Final Page vii
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Version 2.18 Final

5/19/2009

Robert Nado

650/604-0413

Change Unified syntax for transfer definition conditions and detectable

conditions, allowing use of class variables in transfer

definition conditions. Added support for using a „?‟ wildcard

on the right-hand side of these conditions or omitting the

right-hand side entirely.

The modifier of a frame precondition may now be omitted,

defaulting to „knownval‟ or „known‟ depending on whether the

precondition has a right-hand side.

Version 3.0 Final

12/2/2009

Robert Nado

650/604-0413

Add

Change

Added support for :

Java objects to be used as the object in an object/attribute
statement.

new Brahms primitive types: byte, char, short, and float

local variables in the body of a workframe

generalized conclude statement

assignments, Java method invocations, Java constructor
invocations, Java array creation and access in the body of a
workframe

Actions Taken are: New = new document, Add/Delete/Change = a section or topic has been added, or deleted, or changed.

Brahms Language Specification Version 3.0 Final Page viii
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1 PURPOSE .. 1
1.2 USAGE OF THIS DOCUMENT ... 1
1.3 INTENDED AUDIENCE .. 2
1.4 SUMMARY ... 2

2. LANGUAGE DEFINITION .. 3

2.1 IDENTIFIERS (ID) .. 3
2.2 COMPILATION UNIT (CUN) .. 4

2.2.1 Description ... 4
2.2.2 Syntax .. 4
2.2.3 Semantics .. 4

2.3 PACKAGE DECLARATION (PCK) ... 5
2.3.1 Description ... 5
2.3.2 Syntax .. 5
2.3.3 Semantics .. 5

2.4 IMPORT DECLARATION (IMP)... 6
2.4.1 Description ... 6
2.4.2 Syntax .. 6
2.4.3 Semantics .. 7

2.5 MODEL (MOD) .. 8
2.5.1 Description ... 8
2.5.2 Syntax .. 8
2.5.3 Semantics .. 8

2.6 GROUP (GRP) .. 9
2.6.1 Description ... 9
2.6.2 Syntax .. 9
2.6.3 Semantics .. 11

2.7 AGENT (AGT) ... 12
2.7.1 Description ... 12
2.7.2 Syntax .. 12
2.7.3 Semantics .. 13

2.8 OBJECT CLASS (CLS) .. 14
2.8.1 Description ... 14
2.8.2 Syntax .. 14
2.8.3 Semantics .. 14

2.9 OBJECT (OBJ) .. 16
2.9.1 Description ... 16
2.9.2 Syntax .. 16
2.9.3 Semantics .. 16

2.10 CONCEPTUAL OBJECT CLASS (COC) ... 17
2.10.1 Description ... 17
2.10.2 Syntax .. 17
2.10.3 Semantics .. 18

2.11 CONCEPTUAL OBJECT (COB) .. 18
2.11.1 Description ... 18
2.11.2 Syntax .. 18

Brahms Language Specification Version 3.0 Final Page ix
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.11.3 Semantics .. 19
2.12 AREA DEFINITION (ADF) ... 19

2.12.1 Description ... 19
2.12.2 Syntax .. 20
2.12.3 Semantics .. 20

2.13 AREA (ARE) .. 21
2.13.1 Description ... 21
2.13.2 Syntax .. 21
2.13.3 Semantics .. 21

2.14 PATH (PAT) .. 22
2.14.1 Description ... 22
2.14.2 Syntax .. 22
2.14.3 Semantics .. 23

2.15 ATTRIBUTE (ATT) ... 23
2.15.1 Description ... 23
2.15.2 Syntax .. 23
2.15.3 Semantics .. 25

2.16 RELATION (REL) .. 28
2.16.1 Description ... 28
2.16.2 Syntax .. 28
2.16.3 Semantics .. 28

2.17 VARIABLE (VAR) .. 29
2.17.1 Description ... 29
2.17.2 Syntax .. 30
2.17.3 Semantics .. 30

2.18 INITIAL-BELIEF (BEL) .. 32
2.18.1 Description ... 32
2.18.2 Syntax .. 33
2.18.3 Semantics .. 34

2.19 INITIAL-FACT (FCT) .. 34
2.19.1 Description ... 34
2.19.2 Syntax .. 34
2.19.3 Semantics .. 35

2.20 WORKFRAME (WFR) .. 35
2.20.1 Description ... 35
2.20.2 Syntax .. 36
2.20.3 Semantics .. 36

2.21 THOUGHTFRAME (TFR) .. 37
2.21.1 Description ... 37
2.21.2 Syntax .. 38
2.21.3 Semantics .. 38

2.22 PRIMITIVE ACTIVITY (PAC) .. 39
2.22.1 Description ... 39
2.22.2 Syntax .. 39
2.22.3 Semantics .. 40

2.23 MOVE ACTIVITY (MOV) ... 42
2.23.1 Description ... 42
2.23.2 Syntax .. 43
2.23.3 Semantics .. 43

2.24 CREATE AGENT ACTIVITY (CAA) .. 46

Brahms Language Specification Version 3.0 Final Page x
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.24.1 Description ... 46
2.24.2 Syntax .. 46
2.24.3 Semantics .. 47

2.25 CREATE OBJECT ACTIVITY (COA) .. 49
2.25.1 Description ... 49
2.25.2 Syntax .. 50
2.25.3 Semantics .. 51

2.26 CREATE AREA ACTIVITY (CRA) .. 53
2.26.1 Description ... 53
2.26.2 Syntax .. 53
2.26.3 Semantics .. 54

2.27 COMMUNICATE ACTIVITY (COM) .. 56
2.27.1 Description ... 56
2.27.2 Syntax .. 56
2.27.3 Semantics .. 57

2.28 BROADCAST ACTIVITY (BCT) ... 59
2.28.1 Description ... 59
2.28.2 Syntax .. 60
2.28.3 Semantics .. 60

2.29 JAVA ACTIVITY (JAC) .. 62
2.29.1 Description ... 62
2.29.2 Syntax .. 62
2.29.3 Semantics .. 63

2.30 GET ACTIVITY (GET) .. 65
2.30.1 Description ... 65
2.30.2 Syntax .. 65
2.30.3 Semantics .. 66

2.31 PUT ACTIVITY (PUT) ... 68
2.31.1 Description ... 68
2.31.2 Syntax .. 68
2.31.3 Semantics .. 69

2.32 GESTURE ACTIVITY (GAC) .. 71
2.32.1 Description ... 71
2.32.2 Syntax .. 71
2.32.3 Semantics .. 72

2.33 COMPOSITE ACTIVITY (CAC) ... 73
2.33.1 Description ... 73
2.33.2 Syntax .. 73
2.33.3 Semantics .. 74

2.34 PRECONDITION (PRE) .. 75
2.34.1 Description ... 75
2.34.2 Syntax .. 75
2.34.3 Semantics .. 76

2.35 CONSEQUENCE (CON) ... 82
2.35.1 Description ... 82
2.35.2 Syntax .. 82
2.35.3 Semantics .. 83

2.36 DETECTABLE (DET).. 89
2.36.1 Description ... 89
2.36.2 Syntax .. 89

Brahms Language Specification Version 3.0 Final Page xi
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.36.3 Semantics .. 90
2.37 TRANSFER DEFINITION (TDF) .. 93

2.37.1 Description ... 93
2.37.2 Syntax .. 93
2.37.3 Semantics .. 93

2.38 DELETE (DEL) ... 95
2.38.1 Description ... 95
2.38.2 Syntax .. 99
2.38.3 Semantics .. 99

2.39 JAVA EXPRESSION (JAV) .. 100
2.39.1 Description ... 100
2.39.2 Syntax .. 100
2.39.3 Semantics .. 101

2.40 THE „UNKNOWN‟ VALUE .. 103
2.41 COLLECTION TYPES .. 103

2.41.1 Map .. 104
2.42 JAVA INTEGRATION ... 111

3. KEYWORDS .. 116

4. BASE MODEL ... 118

APPENDIX A: JAVA INTEGRATION EXAMPLE .. 126

A.1 Brahms Group and Agent Definitions ... 126
A.2 Java Person Class Definition ... 127
A.3 Java Person Class with PropertyChangeSupport ... 129

Brahms Language Specification Version 3.0 Final Page xii
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

TABLES

TABLE 1: SYNOPSIS OF THE NOTATION USED IN BNF GRAMMAR RULES ... 1

REFERENCES

1. The Java Language Specification, Third Edition, James Gosling and Bill Joy and Guy Steele and

Gilad Bracha, Sun Microsystems, Inc., http://java.sun.com/docs/books/jls/third_edition/
html/j3TOC.html.

Brahms Language Specification Version 3.0 Final Page 1
TM99-0008 12/2/2009 Introduction

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

1. INTRODUCTION

1.1 PURPOSE

This document contains the language definition for the Brahms system. This document
serves two purposes:

1. Defining the modeling capabilities of Brahms. This document gives descriptions of
the modeling concepts, the formal syntax for the modeling concepts and the
semantics related to the modeling concepts. This document describes the language
to be used for building Brahms models.

2. A requirements specification for the parser for Brahms models. The parser will check
the model for errors and will create a „compiled‟ version of the model that serves as
the input for the simulation engine.

1.2 USAGE OF THIS DOCUMENT

This document defines the modeling language for Brahms. This document is to be used
by model builders to create Brahms models. Brahms model builders will have to comply
to the language as defined in this document. This document is also used as a
requirements specification for the parser that needs to be build to parse these models.

The language elements are defined in BNF (Backus-Naur Form) grammar rules. The
notation used in these grammar rules is given in table 1.

Construct Interpretation

::= * + {} [] | . Symbols part of the BNF formalism

X ::= Y The syntax of X is defined by Y

{X} Zero or one occurrence of X

X* Zero or more occurrences of X

X+ One or more occurrences of X

X | Y One of X or Y (exclusive or)

[X] Grouping construct for specifying scope of operators e.g. [X|Y] or [X]*

symbol Predefined terminal symbol of the language

s y m bol User-defined terminal symbol of the language

symbol Non-terminal symbol

Table 1: Synopsis of the notation used in BNF grammar rules

Brahms Language Specification Version 3.0 Final Page 2
TM99-0008 12/2/2009

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

1.3 INTENDED AUDIENCE

This document is intended for anyone who wants to build models in Brahms. They will
have to comply to the syntax as defined in this document. This document is also
intended for the design team designing the parser for the Brahms models.

1.4 SUMMARY

Chapter 2 describes the modeling constructs, the syntax for the modeling constructs
and the semantics for the modeling constructs. The semantics describe additional
constraints for the syntax that cannot be defined using the BNF grammar rules (static
semantics) and describe the meaning of some of the constructs where additional
explanation is required (dynamic semantics).

Chapter 3 gives an overview of all the keywords defined for Brahms models.

Chapter 4 defines the concepts that will serve as the basis for every new concept
(BaseGroup, BaseClass, BaseAreaDef, BaseConceptualClass).

Brahms Language Specification Version 3.0 Final Page 3
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2. LANGUAGE DEFINITION

2.1 IDENTIFIERS (ID)

name ::= [letter][letter | digit | „-„]*

qualified-name ::= name [„.‟ name]*

letter ::= „a‟ | ‟b‟ |…| ‟z‟ | ‟A‟ | ‟B‟ |…| ‟Z‟ | ‟_‟

digit ::= „0‟ | ‟1‟ |…| ‟9‟

blank-character ::= „ „ | „\t‟ | „\n‟ | „\f‟ | „\r‟

number ::= [integer | long | double | float]

integer ::= { + | - } unsigned

long ::= { + | - } unsigned { l | L }

unsigned ::= [digit]+

double ::= [integer.unsigned]

float ::= [integer.unsigned]{ f | F }

truth-value ::= true | false | unknown

literal-string ::= “ [letter | digit | „-„ | „:‟ | „;‟ | „.‟]* ”

literal-character ::= „ [letter | digit | „-„ | „:‟ | „;‟ | „.‟] „

literal-symbol ::= name

literal ::= number | truth-value | literal-string |
 literal-character | literal-symbol

It is possible to add comments to models. One line comments need to start with „//‟.
Multi-line comments have to start with „/*‟ and end with „*/‟.

Brahms Language Specification Version 3.0 Final Page 4
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.2 COMPILATION UNIT (CUN)

2.2.1 Description

A compilation unit is the goal symbol for the syntactic grammar of Brahms models. A
compilation unit consists of three parts, each of which is optional.

 A package declaration, giving the fully qualified name of the package to which the
compilation unit belongs

 Brahms import declarations that allow Brahms types from other packages to be
referred to using their simple names

Java import declarations that allow Java types to be referred to using their simple
names

 Type declarations of group, agent, class, object, conceptual object class, conceptual
object, area definition, area and path types.

2.2.2 Syntax

compilation-unit ::= [PCK.package-declaration]
[IMP.import-declaration]*

 [GRP.group |
 AGT.agent |
 CLS.object-class |
 OBJ.object |
 COC.conceptual-object-class |
 COB.conceptual-object |

 ADF.area-def |
 ARE.area |
 PAT.path]*

2.2.3 Semantics

A compilation unit is a file in a file system with the extension „.b‟. The compiler loads a
„.b‟ file when it is references in an import declaration.

Brahms Language Specification Version 3.0 Final Page 5
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.3 PACKAGE DECLARATION (PCK)

2.3.1 Description

A package declaration appears within a compilation unit to indicate the package to
which the compilation unit belongs. A package can also be referred to as a library. A
compilation unit that has no package declaration is part of an unnamed package.

2.3.2 Syntax

package-declaration ::= package package-name ;

package-name ::= ID.qualified-name

2.3.3 Semantics

The package name mentioned in a package declaration must be the fully qualified name
of the package.

If a type named T is declared in a compilation unit of a package whose fully qualified
name is P, then the fully qualified name of the type is P.T; thus in the example:

package nasa.phonemodel;

group PhoneUsers { }

the fully qualified name of group PhoneUsers is nasa.phonemodel.PhoneUsers.

The package declaration is used to find Brahms concepts in the file system. A package
is to be mapped to a directory in the file system. The package declaration represents a
hierarchical directory structure. The package nasa.phonemodel maps to a directory
nasa\phonemodel in the file system. If the group PhoneUsers were defined in a file
named PhoneUsers.b then this file would be located in the nasa\phonemodel directory.
The compiler and Brahms virtual machine use the library path to find concepts in a
specific package relative to the library path.

Compilation units that do not have a package statement are part of an unnamed
package. The compiler and Brahms virtual machine use the library path to find concepts
in an unnamed package by trying to locate them in the directory specified by the library
path. It is the responsibility of the model builder to prevent naming conflicts in concepts
that are part of an unnamed package. It is highly recommended to use packages for all
Brahms concepts.

Brahms Language Specification Version 3.0 Final Page 6
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.4 IMPORT DECLARATION (IMP)

2.4.1 Description

The Brahms language support two types of import declaration, a Brahms import
declaration and Java import declaration.

The Brahms import declaration allows a Brahms type declared in another package to be
referred to by a simple name that consists of a single identifier. When a Brahms model
is compiled in compatibility mode the Brahms import declaration makes concepts
defined in other compilation units available as one model, i.e. the import declaration is
global, a concept imported in one compilation unit can be referenced from another
compilation unit without requiring it to be imported into that compilation unit. However
when the compiler is set to be strict (the preferred setting going forward) then each
compilation unit must declare imports for every Brahms type used within the compilation
unit, i.e. the imports are local to the compilation unit and an imported Brahms type would
not be available to another compilation unit unless it is imported in that compilation unit.
The change to the strict setting allows for multiple concepts with the same simple name
but different qualified names to be used within a model.

The Java import declaration allows for a Java type to be referred to by its simple name.
The Brahms compiler uses the Java import declarations to resolve and locate the Java
Class file for the Java type to ensure validity of the Java type.

2.4.2 Syntax

Import-declaration ::= [brahms-import-declaration
 | java-import-declaration]

brahms-import-declaration ::= [import brahms-single-type-import ;

 | import brahms-multi-type-import ;]

brahms-single-type-import ::= concept-name |

 package-name . concept-name

concept-name ::= ID.name

brahms-multi-type-import ::= * | package-name . *

java-import-declaration ::= [jimport java-single-type-import ;

 | jimport java-type-import-on-demand ;]

java-single-type-import ::= ID.name |

 package-name . ID.name

Brahms Language Specification Version 3.0 Final Page 7
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

java-type-import-on-demand ::= package-name . *

2.4.3 Semantics

The Brahms import declaration allows for the import of specific concepts or for the
import of a library of concepts defined in a package. The import of a specific concept is
realized by referencing its name. The name of the concept must be the same as the
name of the file in which it is stored. The extension of the file must always be „.b‟.

To reference a specific concept in a library the package name can be used. The
package name reflects the directory in which the concept is stored with a „library-path‟
as its base path. So for example if the library-path is

library-path = C:\brahms

and I have an import statement like

 import nasa.phonemodel.PhoneUsers;

then the concept PhoneUsers is expected to be defined as

package nasa.phonemodel;
group PhoneUsers { }

and is expected to be found in the file

 C:\brahms\nasa\phonemodel\PhoneUsers.b

It is also possible to reference all concepts in a specific library. The wildcard „*‟ can be
used in place of a specific concept-name. The following import statement will import all
concepts in the phonemodel library:

 import nasa.phonemodel.*;

This statement will import all concepts defined in the directory C:\brahms\nasa\
phonemodel defined in the files with the extension „.b‟ assuming the library-path is set to
„C:\brahms‟.

The import statement:

 import *;

will import all concepts defined in the files with extension „.b‟ that are in the same
directory as the file in which the import statement is defined.

Brahms Language Specification Version 3.0 Final Page 8
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

By default every model imports the „brahms.base.*‟ library (referred to as the
„BaseModel‟) containing base constructs for groups and classes and containing
standard available classes and relations. The import of this library does not have to be
defined explicitly.

A java single type import declaration imports a single name type, by mentioning its
canonical name.

A java type-import-on-demand declaration imports all the accessible types of a named
type or package as needed. The import of java.lang.* is not required, the compiler
always includes that package in its search path.

A java import declaration makes Java types available by their simple name only within
the compilation unit that actually contains the import declaration.

2.5 MODEL (MOD)

2.5.1 Description

A Brahms model may be thought of, or expressed, as statements in a formal language
developed for describing work practice. The language is domain-general, in the sense
that it refers to no specific kind of social situation, workplace, or work practice; however
it does embody assumptions about how to describe social situations, workplaces and
work practice.

2.5.2 Syntax

model ::= [PCK.package-declaration]
[IMP.import-declaration]*

2.5.3 Semantics

A model is defined by defining a compilation unit that can contain a package declaration
and one or more import statements. The import statements are used to import those
Brahms agents and objects that make up the model. This special compilation unit is
compiled by the Brahms compiler into a model file with references to those imported
agents and objects. When the Brahms virtual machine is told to load this model file it will
load, initialize and start the agents and objects defined in this model file.

Brahms Language Specification Version 3.0 Final Page 9
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.6 GROUP (GRP)

2.6.1 Description

The concept of a “group” in Brahms is similar to the concept of a template or class in
object-oriented programming. A group represents a collection of „agents‟ that can
perform similar work and have similar beliefs. A group defines the work activities
(activity frames and thought frames), the initial-beliefs of members in the group and the
initial-facts in the world. The difference with classes in object-oriented programming is
that the relationship between a group and its members is not an IS-A relationship, but a
MEMBER-OF relationship. This is why we speak of “a member of a group” instead of
“an instance of a group.”

Functional Roles

In terms of organizations the concept is similar to that of functional roles in an
organization. A group in Brahms could represent a typical role in an organization; The
work activities that someone performs when he or she plays that role. For example, we
could represent the role of Maintenance Technician or Central Office Engineer as a
“group”.

Structural Groupings

A group in Brahms can also depict an organizational group. For example, we can define
a group as “Members of the Work System Design group at S&T.” We could now
describe the work-activities, and initial-beliefs of members of the WSD group at S&T.

Conceptual Groupings

We can also create informal groups related to conceptual definitions that make sense in
the modeling activity. For instance, in modeling the people at S&T we could create a
group “People at 400 Westchester Avenue.” We can now describe the activities and
initial-beliefs that people at 400 Westchester Avenue have in common. This might not
be that interesting, but in modeling people‟s interactions with legacy systems in NYNEX
we could define a conceptual group of “LMOS users.” In this group we could now
describe how people interact with LMOS, and what initial-beliefs LMOS users have (for
instance, the initial-belief that LMOS has data about today‟s trouble tickets).

2.6.2 Syntax

group ::= group simple-group-name { group-membership }

{

 { display : ID.literal-string ; }

 { cost : ID.number ; }

Brahms Language Specification Version 3.0 Final Page 10
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { time_unit : ID.number ; }

 { icon : ID.literal-string ; }
 { attributes }
 { relations }
 { initial-beliefs }
 { initial-facts }
 { activities }
 { workframes }
 { thoughtframes }

 }

simple-group-name ::= ID.name

group-name ::= ID.qualified-name

group-membership ::= memberof group-name [, group-name]*

attributes ::= attributes : [ATT.attribute]*

relations ::= relations : [REL.relation]*

initial-beliefs ::= initial_beliefs : [BEL.initial-belief]*

initial-facts ::= initial_facts : [FCT.initial-fact]*

activities ::= activities : [activity]*

activity ::= [CAC.composite-activity |
PAC.primitive-activity |
MOV.move-activity |

 CAA.create-agent-activity |
COA.create-object-activity |
CRA.create-area-activity |
COM.communicate-activity |
BCT.broadcast-activity |
JAC.java-activity |
GET.get-activity |
PUT.put-activity |
GAC.gesture-activity]

workframes ::= workframes : [WFR.workframe]*

thoughtframes ::= thoughtframes : [TFR.thoughtframe]*

Brahms Language Specification Version 3.0 Final Page 11
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.6.3 Semantics

Group membership

In a model a hierarchy of groups can be built by defining the group-membership. A
group can be a member of more than one group. When a group is a member of a group
the member-group will „inherit‟ the attributes, relations, initial-beliefs, initial-facts,
activities, workframes and thoughtframes from its parent groups. Private attributes and
relations are not inherited, only public and protected attributes and relations are
inherited. In case the same constructs are encountered in the inheritance path always
the most specific construct will be used, meaning that a workframe defined for a group
lowest in the hierarchy tree has precedence over a workframe with the same name
higher in the hierarchy.

Cost and Time-Unit

The cost and time-unit are used for statistical purposes and define the cost/time-unit (in
seconds) for work done by members of the group. The members of the group can
override the cost and time-unit figures.

Defaults

Every group in a model is by definition a member of „BaseGroup‟ defined in the
„BaseModel‟ library which is imported by definition for every model. The „BaseGroup‟
defines built-in attributes, relations, initial-beliefs, initial-facts, workframes and
thoughtframes as defaults for groups. The „BaseGroup‟ membership does not have to
be defined explicitly. Other defaults are:

 display = <group-name>
 cost = 0
 time_unit = 0

Constraints

1. The name of a group must be unique amongst all concepts defined in the same
package.

2. The time_unit defines the time in seconds.

Brahms Language Specification Version 3.0 Final Page 12
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.7 AGENT (AGT)

2.7.1 Description

An agent in Brahms is the most central construct in a Brahms model. An agent
represents an interactive system, a subject with behavior interacting with the world. An
agent can for example represent a person in an organization, but could also represent
an animal in a forest. A Brahms model is always about the activities of agents in a work
process. In Brahms it is also possible to implement the behavior of an agent in Java
instead of in the Brahms language. This is done by defining an external agent. An
external agent can interact with the Brahms agents and Brahms agents can interact with
external agents. External agents do not have any reasoning capabilities unless these
capabilities are built-in by the implementer of the external agent.

To develop external agents the JAPI is required. The JAPI is part of the Brahms Virtual
Machine. The API documentation provides all the information needed to develop
external agents. The documentation specifies what API functions are available
(http://www.agentisolutions.com/documentations/vmapi/index.html).

2.7.2 Syntax

agent ::= agent simple-agent-name { GRP.group-membership }

{

 { display : ID.literal-string ; }

 { cost : ID.number ; }

 { time_unit : ID.number ; }

 { icon : ID.literal-string ; }

 { location : ARE.area-name ; }
 { GRP.attributes }
 { GRP.relations }
 { GRP.initial-beliefs }
 { GRP.initial-facts }
 { GRP.activities }
 { GRP.workframes }
 { GRP.thoughtframes }

 }

externalagt ::= external agent agent-name ;

simple-agent-name ::= ID.name

agent-name ::= ID.qualified-name

http://www.agentisolutions.com/documentations/vmapi/index.html

Brahms Language Specification Version 3.0 Final Page 13
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.7.3 Semantics

Group membership

An agent can be a member of one or more groups. When an agent is a member of a
group the agent will „inherit‟ attributes, relations, initial-beliefs, initial-facts, activities,
workframes and thoughtframes from the group(s) it is a member of. All attributes and
relations are inherited including private ones (an agent can be seen as an instance of a
group in terms of object oriented practices). In case the same constructs are
encountered in the inheritance path always the most specific construct will be used,
meaning that a workframe defined for the agent has precedence over a workframe with
the same name defined in one of the groups of which the agent is a member.

Defaults

Every agent in a model is by definition a member of „BaseGroup‟ defined in the
„BaseModel‟ library which is imported by definition for every model. The „BaseGroup‟
defines built-in attributes, relations, initial-beliefs, initial-facts, activities, workframes and
thoughtframes as defaults for agents and groups. The „BaseGroup‟ membership does
not have to be defined explicitly. Other defaults are:

 display = <simple-agent-name>
 cost = 0
 time_unit = 0
 location = none

Constraints

1. The name of an agent must be unique amongst all concepts defined in the same
package.

2. The time_unit defines the time in seconds.

3. The Java class name of an external agent must be identical to the agent‟s name as
defined in the Brahms model. The Java class must also be in the same package as
the package the external agent is defined in.

Brahms Language Specification Version 3.0 Final Page 14
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.8 OBJECT CLASS (CLS)

2.8.1 Description

The concept of a „class‟ in Brahms is similar to the concept of a template or class in
object-oriented programming. It defines the activities (workframes), initial-facts and
initial-beliefs for instances of that class (i.e. „objects‟). Classes are used to define
inanimate artifacts, such as phones, faxes, computer systems, pieces of paper, etc.

2.8.2 Syntax

object-class ::= class simple-class-name { class-inheritance }

{

 { display : ID.literal-string ; }

 { cost : ID.number ; }

 { time_unit : ID.number ; }

 { icon : ID.literal-string ; }

 { resource : ID.truth-value ; }
 { GRP.attributes }
 { GRP.relations }
 { GRP.initial-beliefs }
 { GRP.initial-facts }
 { GRP.activities }
 { GRP.workframes }
 { GRP.thoughtframes }

 }

simple-class-name ::= ID.name

object-class-name ::= ID.qualified-name

class-inheritance ::= extends object-class-name [, object-class-name]*

2.8.3 Semantics

Class inheritance

In a model a hierarchy of classes can be built by defining the class inheritance. A class
can inherit from more then one class, so multiple inheritance is supported. When a class
is a subclass of a class the subclass will „inherit‟ the attributes, relations, initial-beliefs,
initial-facts, activities, workframes and thoughtframes from its parent classes. Private
attributes and relations are not inherited, only public and protected attributes and
relations are inherited. In case the same constructs are encountered in the inheritance

Brahms Language Specification Version 3.0 Final Page 15
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

path always the most specific construct will be used, meaning that for example a
workframe defined for a class lowest in the hierarchy tree has precedence over a
workframe with the same name higher in the hierarchy.

Cost and Time-Unit

The cost and time-unit are used for statistical purposes and define the cost/time-unit (in
seconds) for work done by instances of the class. The instances of the class can
override the cost and time-unit figures.

Resource

The resource attribute defines whether or not instances of the class are considered to
be a resource when used in an activity (resource attribute is set to true) or whether the
instances of the class are considered something that is worked on (resource attribute is
set to false). The resource attribute is used in relation with the touched-objects definition
for activities (see the semantical description of touched-objects in the definition of the
primitive-activity).

Defaults

Every class in a model is by definition a member of „BaseClass‟ defined in the
„BaseModel‟ library which is imported by definition for every model. The „BaseClass‟
defines built-in attributes, relations, initial-beliefs, initial-facts, workframes and
thoughtframes as defaults for classes. The „BaseClass‟ membership does not have to
be defined explicitly. Other defaults are:

 display = <simple-class-name>
 cost = 0
 time_unit = 0
 resource = false

Constraints

1. The name of a class must be unique amongst all concepts defined in the same
package.

2. The time_unit defines the time in seconds.

Brahms Language Specification Version 3.0 Final Page 16
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.9 OBJECT (OBJ)

2.9.1 Description

An „object‟ in Brahms is the second most central element in a Brahms model. An object
represents a specific artifact in the world. It is possible to model the activities of an
artifact in an organization. For example the data processing activities of a computer
system can be modeled. The activities can be defined in the object‟s class (which will be
inherited by the object) and/or can be defined for the object itself.

2.9.2 Syntax

object ::= object simple-object-name

 instanceof object-class-name
 { COB.conceptual-object-membership }

{

 { display : ID.literal-string ; }

 { cost : ID.number ; }

 { time_unit : ID.number ; }

 { icon : ID.literal-string ; }

 { resource : ID.truth-value ; }

 { location : ARE.area-name ; }
 { GRP.attributes }
 { GRP.relations }
 { GRP.initial-beliefs }
 { GRP.initial-facts }
 { GRP.activities }
 { GRP.workframes }
 { GRP.thoughtframes }

 }

simple-object-name ::= ID.name

object-name ::= ID.qualified-name

2.9.3 Semantics

Conceptual object membership

An object can be part of one or more conceptual objects by defining the conceptual-
object-membership for the object. This allows for later grouping of statistical results for
the object with other objects in one conceptual object.

Brahms Language Specification Version 3.0 Final Page 17
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Resource

The resource attribute defines whether or not the object is considered to be a resource
when used in an activity (resource attribute is set to true) or whether the object is
considered something that is worked on (resource attribute is set to false). The resource
attribute is used in relation with the resources definition for activities (see the semantical
description of resources in the definition of the primitive-activity).

Defaults

 display = <simple-object-name>
 cost = 0
 time_unit = 0
 resource = <the resource attribute value of object-class-name>
 location = none

Constraints

1. The name of an object must be unique amongst all concepts defined in the same
package.

2. The time-unit defines the time in seconds.

2.10 CONCEPTUAL OBJECT CLASS (COC)

2.10.1 Description

A conceptual object class defines a type of conceptual objects used in a model. For the
definition of conceptual objects see the section on conceptual objects.

2.10.2 Syntax

conceptual-object-class ::= conceptual_class simple-class-name
{ conceptual-class-inheritance }

{

 { display : ID.literal-string ; }

 { icon : ID.literal-string ; }
 { GRP.attributes }
 { GRP.relations }

 }

Brahms Language Specification Version 3.0 Final Page 18
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

simple-class-name ::= ID.name

conceptual-class-name ::= ID.qualified-name

conceptual-class-inheritance ::= extends conceptual-class-name

[, conceptual-class-name]*

2.10.3 Semantics

Conceptual class inheritance

In a model a hierarchy of conceptual classes can be built by defining the conceptual
class inheritance. A conceptual class can inherit from more then one conceptual class,
so multiple inheritance is supported. When a conceptual class is a subclass of a
conceptual class the subclass will „inherit‟ the attributes and relations from its parent
conceptual classes. Private attributes and relations are not inherited, only public and
protected attributes and relations are inherited. In case the same constructs are
encountered in the inheritance path always the most specific construct will be used,
meaning that for example an attribute defined for a class lowest in the hierarchy tree has
precedence over an attribute with the same name higher in the hierarchy.

Defaults

 display = <simple-class-name>

Constraints

1. The name of a conceptual-object-class must be unique amongst the concepts
defined in the same package.

2.11 CONCEPTUAL OBJECT (COB)

2.11.1 Description

A conceptual object is used to allow for a user to track things that exist as concepts in
people‟s minds, like the concept of an order. The concepts do not exist as such but do
have incarnations in the form of real artifacts, such as a fax, a form, or a database
record. Through conceptual objects statistics can be generated such as touch time and
cycle time and object flows can be generated through a work process.

2.11.2 Syntax

conceptual-object ::= conceptual_object simple-object-name

Brahms Language Specification Version 3.0 Final Page 19
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 instanceof conceptual-class-name
 { conceptual-object-membership }

{

 { display : ID.literal-string ; }

 { icon : ID.literal-string ; }
 { GRP.attributes }
 { GRP.relations }

 }

simple-object-name ::= ID.name

conceptual-object-name ::= ID.qualified-name

conceptual-object-membership ::=

partof conceptual-object-name

[, conceptual-object-name]*

2.11.3 Semantics

Conceptual-object-membership

A conceptual-object can in itself be a member of other conceptual object forming a
hierarchy of concepts for grouping statistical results.

Defaults

 display = <simple-object-name>

Constraints

1. The name of a conceptual-object must be unique amongst all concepts defined in
the same package.

2.12 AREA DEFINITION (ADF)

2.12.1 Description

An area definition is used for defining area constructs used for representing
geographical information in a model. Area definitions are similar to classes in their use.
Examples of area definitions are „World‟, „Building‟, and „Floor‟.

Brahms Language Specification Version 3.0 Final Page 20
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.12.2 Syntax

area-definition ::= areadef simple-area-def-name { area-def-inheritance }

{

 { display : ID.literal-string ; }

 { icon : ID.literal-string ; }
 { GRP.attributes }

 { GRP.relations }

 { GRP.initial-facts }

 }

simple-area-def-name ::= ID.name

area-def-name ::= ID.qualified-name

area-def-inheritance ::= extends area-def-name [, area-def-name]*

2.12.3 Semantics

Area definition inheritance

In a model a hierarchy of area definitions can be built by defining the area definitions
inheritance. An area definition can inherit from more then one area definition, so multiple
inheritance is supported. When an area definition is a subclass of another area
definition the subclass will „inherit‟ the attributes, relations, and initial-facts from its
parent area definitions. Private attributes and relations are not inherited, only public and
protected attributes and relations are inherited. In case the same constructs are
encountered in the inheritance path always the most specific construct will be used,
meaning that for example an attribute defined for an area definition lowest in the
hierarchy tree has precedence over an attribute with the same name higher in the
hierarchy.

Defaults

 display = <simple-area-def-name>

Constraints

1. The name of an area definition must be unique amongst the concepts defined in the
same package.

Brahms Language Specification Version 3.0 Final Page 21
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.13 AREA (ARE)

2.13.1 Description

An area represents a geographical location and is used to create a geographical
representation for use in the model. Examples are „NewYorkCity‟, „SandTBuilding‟, etc.
Area‟s are instances of area definitions.

2.13.2 Syntax

area ::= area simple-area-name

 instanceof area-def-name

{ partof area-name }

{

 { display : ID.literal-string ; }

 { icon : ID.literal-string ; }
 { GRP.attributes }
 { GRP.relations }
 { GRP.initial-facts }

 }

simple-area-name ::= ID.name

area-name ::= ID.qualified-name

2.13.3 Semantics

Area Decomposition

Brahms Language Specification Version 3.0 Final Page 22
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Areas can be decomposed into sub-areas. For example a building can consist of one or
more floors. The decomposition can be modeled using the part-of relationship. Model
builders have indicated that they frequently want to reason about the area
decomposition in their models. The virtual machine therefore generates a set of initial
facts about the decomposition of the areas in a model. The virtual machine generates
initial facts using the built-in relations „isSubAreaOf‟ and „hasSubArea‟ defined in the
BaseAreaDef area definition. For each area an initial fact is generated about its
aggregate area using the „isSubAreaOf‟ relation, only one initial fact can be generated
since an area can only be part of one other area. For each area we also generate an
initial fact for every sub area of the area using the „hasSubArea‟ relation. Agents can
detect any of these facts as needed by these agents. Note that the virtual machine only
generates the initial facts for the direct relation between areas and sub-areas and not
the indirect relations. If area A1 has a sub-area B1 and B1 has a sub-area C1 then we
only generate the initial facts relating A1 to B1 and B1 to C1 but we do not generate the
initial facts relating A1 to C1. This relationship would have to be deduced by the model
builder if it is required for a model.

Defaults

 display = <simple-area-name>

Constraints

1. The name of an area must be unique amongst the concepts defined in the same
package.

2.14 PATH (PAT)

2.14.1 Description

A path connects two areas together and represents a route that can be taken by an
agent or object to travel from one area to another. For the path is specified how long it
takes to travel from one area to the other.

2.14.2 Syntax

path-def ::= path simple-path-name

 {

 { display : ID.literal-string ; }

 area1 : ARE.area-name ;

 area2 : ARE.area-name ;

 { distance : ID.unsigned ; }

}

Brahms Language Specification Version 3.0 Final Page 23
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

simple-path-name ::= ID.name

path-name ::= ID.qualified-name

2.14.3 Semantics

Distance

The distance represents the time it takes to move from area1 to area2 and vice versa. In
future versions of the language the distance will represent the actual distance and
based on the transportation used to travel over the path the duration will be calculated.

Defaults

 display = <simple-path-name>
 distance = 0

Constraints

1. The name of a path must be unique amongst the concepts defined in the same
package.

2. The distance represents the travel duration in seconds.

2.15 ATTRIBUTE (ATT)

2.15.1 Description

Attributes represent a property of a group, agent, object class or object. Attributes may
also represent properties of Java objects. Attributes have values. Attributes of a class or
value type are single-valued attributes, attributes of a collection type are multi-valued.
The value of an attribute is defined through facts and/or beliefs. For more information
about collection types see section 2.41.

2.15.2 Syntax

attribute ::= { private | protected | public }
attribute-type-def
attribute-name
{ attrib-body }

;

Brahms Language Specification Version 3.0 Final Page 24
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

attribute-name ::= location | ID.name

attribute-type-def ::= [type-def
 | collection-type-def
 | relation-type-def]

type-def ::= [class-type-def
 | value-type-def
 | java-type-def]

class-type-def ::= [Agent |

 Group |

 Class |

 Object |

 ActiveClass |

 ActiveInstance |

 ActiveConcept |

 ConceptualClass |

 ConceptualObject |

 ConceptualConcept |

 AreaDef |

 Area |

 GeographyConcept |

 Concept |
 GRP.group-name |

 CLS.object-class-name |
 COC.conceptual-class-name
 ADF.area-def-name]

value-type-def ::= [int | long | double | symbol | string | boolean |

char | byte | short | float]

collection-type-def ::= [map]

relation-type-def ::= relation (class-type-def)

java-type-def ::= java (java-ref-type-def)

java-ref-type-def ::= java-class-or-interface-type-def [[]]*

java-class-or-interface-type-def ::=
 java-type-decl-specifier { java-type-arguments }

java-type-decl-specifier ::=

 [ID.name [. ID.name]*

 | java-class-or-interface-type-def . ID.name]

Brahms Language Specification Version 3.0 Final Page 25
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

java-type-arguments ::= < java-type-argument [, java-type-argument]* >

java-type-argument ::= [java-ref-type-def

 | ? { java-wildcard-bounds }]

java-wildcard-bounds ::=

 [extends java-ref-type-def

 | super java-ref-type-def]

attrib-body ::= {

 { display : ID.literal-string ; }

 }

2.15.3 Semantics

Attribute scope

Attributes are always defined within a group, agent, conceptual-class, conceptual-object,
class or object definition and cannot be defined outside any of these concepts or inside
of any other concepts. Attributes can have different scopes within the specified concepts
defined by one of the keywords private, protected or public.

Private attributes:

Private attributes are scoped down to only the concept for which it is defined. The
private attribute is not inherited by sub groups or sub classes (agents /objects that are
members/instances of the group/class will inherit the attribute) and the private attribute
can only be referenced by initial beliefs, initial facts, workframes and thoughtframes for
that specific concept.

Protected attributes:

Protected attributes are inherited by sub groups and sub classes. Protected attributes
can only be referenced by initial beliefs, initial facts, workframes and thoughtframes of
the concept for which the attribute is specified or any of the sub groups/sub classes and
of agents/objects that are members/instances of the sub group(s)/class(es).

Public attributes:

Public attributes are similar to protected attributes, the only difference is that they can be
referenced by initial beliefs, initial facts, workframes and thoughtframes in any group,
agent, class or object.

Value assignment

Brahms Language Specification Version 3.0 Final Page 26
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Value assignment of attributes differs from value assignments in third and fourth
generation computer languages (which usually use an assignment operator like „=‟ or
„:=‟. Assignment of a value for an attribute is done through beliefs and facts.

Meta types

The meta types allow for binding of concepts that are considered to be a subtype of the
meta types. The following concepts can be bound to the specified meta types:

 Group any group
 Agent any agent regardless of the group it is a member of
 Class any class
 Object any object regardless of the class it is an instance

of
 ActiveClass any group and class
 ActiveInstance any agent and object
 ActiveConcept any active class and active instance
 ConceptualClass any conceptual class
 ConceptualObject any conceptual object
 ConceptualConcept any conceptual class and conceptual object
 AreaDef any area definition
 Area any area
 GeographyConcept any area definition and area
 Concept any active concept, conceptual concept and

geograpy concept

Collection types

The collection types allow for attributes to have multiple values assigned to them. The
following collection types are currently supported:

 map collection for which values are accessible via a
 unique index or key being either an integer or
 string.

Relation types

The relation type is a new way to declare relations in the language in the attributes
section as an alternative to declaring the relations in the relations section. This is in
preparation for eliminating all section headers and would still allow for the notion of
relations since they require a different notation and different handling in conditions
compared to regular attributes. For more on relations see the section on relations 2.16.

Java types

Attributes, variables and parameters can now also be declared to be of any Java
reference type allowing for the modeler to directly reference Java objects. Note that the
Brahms language assumes at a minimum Java 5.0, the Brahms language supports the
generics notations. For more information on Java reference types see the Java
Language Specification [1].

Brahms Language Specification Version 3.0 Final Page 27
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Attributes of Java Objects

Attributes may be used to represent the values of properties of Java objects in Brahms
facts and beliefs. An attribute of a Java object is not explicitly declared in the Brahms
language; rather, it is resolved to a Java property whenever there is an occurrence of
object.attribute (see BEL.obj-attr) where object is a variable or parameter that has been
declared to be of a Java type. Based on the context of use, the Java property may be
required to be readable or writable.

In determining the property of a Java object that is referenced by an attribute name,
Brahms first looks for public methods defined on the Java object‟s class following the
Java Beans naming convention. For an attribute “foo”, it will look for zero argument
methods with a declared return type named “getFoo” or “isFoo” and single argument
void methods named “setFoo”. If Brahms fails to find a method using these names, it
will look for a public method with the same name as the attribute, in this case “foo”, that
is either a zero argument method with a declared return type or a single-argument
method with a void return type. Finally, if no such method can be found, Brahms will
look for a field ”foo” declared in the class with any scope (public, private, package, or
protected).

Currently, Brahms represents properties of Java objects as single-valued attributes. A
Java object cannot have a collection type attribute or participate in Brahms relations.

Defaults

The default scope of an attribute is „public‟.

 display = <attribute-name>

Constraints

1. The name of an attribute must be unique within the definition of a group, agent,
class or object. In case of a name conflict in multiple inheritance (two different
concepts from which is inherited define an attribute with the same name) the
following conflict resolution strategy is chosen. If both attributes are of the same type
just one definition will remain with the same name and same type. If the types of the
attributes differ an error will be generated.

2. If the name of the attribute is location, its type must be the name of an area
definition or the meta-type Area.

3. If a Java type is used as the type of the attribute the Java type must reference a
Java type that is either referenced by its simple name or by its fully qualified
name(s). If the simple name is used the simple name must be resolvable to a fully
qualified name using the Java import statements (jimport). The compiler must be
able to load the Java Class for the type, the compiler uses this method to ensure
that the Java type is valid. The Java Classes for the types used in the Brahms
language must therefore be in the Java classpath.

Brahms Language Specification Version 3.0 Final Page 28
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.16 RELATION (REL)

2.16.1 Description

Relations represent a relation between two concepts. The first (left hand side) concept is
always the concept for which the relation is defined, the second concept (right hand
side) can be any concept.

NOTE: The syntax for the declaration of the relation will be replaced by the preferred
syntax of declaring an attribute to be of a relation type. See the previous section for
details.

2.16.2 Syntax

relation ::= { private | protected | public }
 ATT.class-type-def
 relation-name
 { attrib-body }

 ;

relation-name ::= ID.name

2.16.3 Semantics

Relation scope

Relations are always defined within a group, agent, conceptual- class, conceptual-
object, class or object definition and cannot be defined outside any of these concepts or
inside of any other concepts. Relations can have different scopes within the specified
concepts defined by one of the keywords private, protected or public.

Private relations:

Private relations are scoped down to only the concept for which it is defined. The private
relation is not inherited by sub groups or sub classes (agents /objects that are
members/instances of the group/class will inherit the relation) and the private relation
can only be referenced by initial beliefs, initial facts, workframes and thoughtframes for
that specific concept.

Protected relations:

Brahms Language Specification Version 3.0 Final Page 29
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Protected relations are inherited by sub groups and sub classes. Protected relations can
only be referenced by initial beliefs, initial facts, workframes and thoughtframes of the
concept for which the relation is specified or any of the sub groups / sub classes and of
agents/objects that are members/instances of the sub group(s)/class(es).

Public relations:

Public relations are similar to protected relations, the only difference is that they can be
referenced by initial beliefs, initial facts, workframes and thoughtframes in any group,
agent, class or object.

Defaults

The default scope of a relation is „public‟.

 display = <relation-name>

Constraints

1. The name of a relation must be unique within the definition of a group, agent, class
or object. In case of a name conflict in multiple inheritance (two different concepts
from which is inherited define a relation with the same name) the following conflict
resolution strategy is chosen. If both relations are of the same type just one
definition will remain with the same name and same type. If the types of the relations
differ an error will be generated.

2.17 VARIABLE (VAR)

2.17.1 Description

Variables can be used in a workframe or thoughtframe to write more generic work- and
thoughtframes. Before a variable can be used it has to be declared. The scope of the
variable is bound to the frame it is declared in. A variable that is not declared within the
workframe it is used in, must be declared higher up in the activity-tree the workframe is
part of. (The activity tree is created through composite activities.)

Variables can be declared either in the variables section of a workframe or thoughtframe
definition or in the body of a workframe definition. Frame variables declared in the
variables section have scope throughout the frame definition, including preconditions
and detectable conditions. Local variables are declared in the body of a workframe and
have a scope that is limited to subsequent body elements.

Brahms Language Specification Version 3.0 Final Page 30
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.17.2 Syntax

variable ::= [collectall | foreach | forone]

 ([ATT.type-def])
 variable-name
 { variable-body }

 ;

variable-name ::= ID.name

variable-body ::= {

 { display : ID.literal-string ; }

 }

local-variable ::= ATT.type-def variable-name
{ „=‟ JAV.initializer-expression }

;

2.17.3 Semantics

Quantification

Frame variables are of one of three quantification types: collect-all, for-each and for-
one. The difference between the three quantification types is the way variables are
bound to a specific context of a defined type (agent, object, or other value). The
difference in binding is as follows:

for-each variable:

A for-each variable is bound to only one context. For each context that can be bound to
the variable a separate instance is created for the workframe in which the variable is
bound.

For example in the following frame:

 workframe DoSomething {
 variables:
 foreach(Order) order;

 when (

knownval(order is-assigned-to current))
 do {
 workOnOrder();
 }
 }

Brahms Language Specification Version 3.0 Final Page 31
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

There are three Order instances in the model (order1, order2, and order3) satisfying the
precondition. For this workframe three instances will be created in which the for-each
variable is bound to one of the orders in each frame instantiation. This means that the
agent for which the workframe is defined can only work on one order at a time and will
work on them in consecutive order if no interruptions take place.

collect-all variable:

A collect-all variable can be bound to more than one context. The variable will be bound
to all contexts satisfying the condition in which it is defined. Only one frame instantiation
will be created as a result of the binding with the collect-all variable. If we consider the
same example as for for-each variables changing the quantification of the variable to
collect-all.

 workframe DoSomething {
 variables:
 collectall(Order) order;

 when (

knownval(order is-assigned-to current))
 do {
 workOnOrder();
 }
 }

Also assume that again three orders match with the precondition based on the beliefs of
the agent, then all three orders are bound to the variable and one frame instantiation will
be created for the agent to work on. This means that the agent for which this workframe
is defined will work on all orders at the same time.

for-one variable:

A for-one variable can be bound to only one context. Only one frame-instantiation will be
created as a result of the binding with the for-one variable. A for-one variable binds to
the first context satisfying the condition in which it is defined. If we consider the same
example as for for-each variables changing the quantification of the variable to for-one.

 workframe DoSomething {
 variables:
 forone(Order) order;

 when (

knownval(order is-assigned-to current))
 do {
 workOnOrder();
 }
 }

Also assume that again three orders match with the precondition based on the beliefs of
the agent, then one of the orders will be bound to the variable and one frame
instantiation will be created for the agent to work on. This means that the agent only
works on one order and it doesn‟t matter on which order. The other two orders will not
be worked on.

Brahms Language Specification Version 3.0 Final Page 32
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

local variable:

Once a frame variable has been bound in a particular frame instantiation it may not be
bound to a new value or values by a frame body element. Local variables, on the other
hand, may be freely rebound to new values by body elements that follow their
declarations.

A local variable is not declared to have one of the three quantification types. A local
variable is most similar to a for-one frame variable in that it may only be bound to a
single value at a time for any frame instantiation.

A local variable declaration may have an optional initializer expression that is evaluated
to produce an initial binding for the variable, The initializer expression may be a Brahms
expression, a Java expression or (for a variable of type Java array) an array initializer.
The syntax and semantics of an initializer expression are presented in the Java
Expression section (JAV). If the initializer expression evaluates to multiple values due to
the presence of collect-all variables or parameters bound to collect-all variables, only the
first value will be bound to the local variable by default. However, as explained in the
Java Expression section, if the local variable has a suitable Java List or Collection type
then multiple values will be accumulated into a list and bound to the local variable.

Defaults

A variable is by default an assigned variable unless otherwise specified.

 display = <variable-name>

Constraints

1. The name of the variable must be unique within the definition of a workframe or
thoughtframe.

2.18 INITIAL-BELIEF (BEL)

2.18.1 Description

A belief is a first-order predicate statement about the world. Beliefs are always local to
an agent or object, i.e. only the agent/object can access its beliefs, no other
agent/object can. This allows us to represent how a specific agent „views‟ the state of
the world. For objects beliefs represent information stored in/on the object. Agents act
based on their beliefs. Beliefs are the „triggers‟ of agent‟s actions.

Brahms Language Specification Version 3.0 Final Page 33
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Initial beliefs define the initial state for an agent and define the initial information for
objects. Initial beliefs are turned into actual beliefs for the agent when the model is
initialized for a simulation run. Beliefs can also be created by consequences in work-
and thoughtframes, by detectables as well as through communications.

2.18.2 Syntax

initial-belief ::= ([value-expression | relational-expression]) ;

value-expression ::= obj-attr equality-operator value |

 obj-attr equality-operator sgl-object-ref

equality-operator ::= = | !=

evaluation-operator ::= BEL.equality-operator | > | >= | < | <=

obj-attr ::= tuple-object-ref . ATT.attribute-name

 { (collection-index) }

tuple-object-ref ::= AGT.agent-name |

OBJ.object-name |

ARE.area-name |

VAR.variable-name |

PAC.param-name |

current

collection-index ::= ID.literal-string |

 ID.unsigned |

 VAR.variable-name |

 PAC.parameter-name

sgl-object-ref ::= AGT.agent-name |

OBJ.object-name |

ARE.area-name |

Brahms Language Specification Version 3.0 Final Page 34
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

VAR.variable-name |

PAC.param-name |

 unknown |

current

value ::= ID.literal-string | ID.number | PAC.param-name | unknown

relational-expression ::= tuple-object-ref REL.relation-name sgl-object-ref

 { is ID.truth-value }

2.18.3 Semantics

Constraints

1. Variables and parameters are not allowed in the definition of an initial belief.

2. The attribute type and the right hand side value-type of a value-expression must be
the same, except in the case the attribute type is a collection type.

3. The left hand side and right hand side types in a relational expression must match
the types as defined for the relation used in the relational expression.

2.19 INITIAL-FACT (FCT)

2.19.1 Description

Facts represent the state of the world. A fact is a first-order predicate statement about
the world. Facts are in contrast to beliefs, global. Any agent can detect a fact in the
world and turn it into a belief and act on it. Objects on the other hand, react to facts (in
workframes).

Initial facts define the initial state of the world. Initial facts are turned into actual facts in
the world when the model is initialized for a simulation run. Facts can also be created by
consequences in workframes (not in thoughtframes).

2.19.2 Syntax

initial-fact ::= ([BEL.value-expression | BEL.relational-expression]) ;

Brahms Language Specification Version 3.0 Final Page 35
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.19.3 Semantics

Constraints

1. Variables and parameters are not allowed in the definition of an initial fact.

2. The attribute type and the right hand side value-type of a value-expression must be
the same, except in the case the attribute type is a collection type.

3. The left hand side and right hand side types in a relational expression must match
the types as defined for the relation used in the relational expression.

2.20 WORKFRAME (WFR)

2.20.1 Description

A workframe is an action rule for an agent or object. It is a declarative description of
under what condition (in case of an agent, beliefs that an agent has or in case of an
object, the facts or beliefs in the world depending on the workframe type) the
agent/object will perform the activities specified in the body of the rule. Workframes are
treated like data-driven (forward chaining) production rules. However, workframes are
different from production rules, in that they specify activities that agents and objects can
perform (are engaged in) - production rules specify what conclusions can be drawn
based on the conditions that are met.

In Brahms we separate facts in the world from beliefs that agents have. For example, in
Brahms we can have a fact „the color of John’s Car is red‟. Agent John might have the
belief „the color of John’s Car is red‟, but agent Caroline might have the belief „the color
of John’s Car is green‟. Agent workframes get „worked on‟ (in production rules systems
we call this „get fired‟) based on the beliefs that agents have. This means that, in the
example above, if John and Caroline have the same workframe using the belief of
John‟s Car is red as a condition for the activation of the workframe; John will start
working on the workframe, whereas Caroline will not start working on the workframe.
Using this separation of beliefs and facts in the world allows Brahms to model agent‟s
activities, based on changes in the world (facts) detected through detectables, and the
agent-specific beliefs that are created. For objects beliefs are the information that an
object carries. By default workframes for objects are only triggered by facts in the world,
the type of the workframe is by default „factframe‟. If the type of the workframe is set to
„dataframe‟ then the workframe will be triggered by the beliefs of the object. The
workframe is in that case an information processing frame. It is not possible to specify
the type of the workframes for agents. Agent‟s workframes are only activated by beliefs
matching the preconditions.

Brahms Language Specification Version 3.0 Final Page 36
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.20.2 Syntax

workframe ::= workframe workframe-name

{

 { display : ID.literal-string ; }

 { type : factframe | dataframe ; }

 { repeat : ID.truth-value ; }

 { priority : ID.unsigned ; }
 { variable-decl }
 { detectable-decl }
 { [precondition-decl workframe-body-decl] |
 workframe-body-decl }

 }

workframe-name ::= ID.name

variable-decl ::= variables : [VAR.variable]*

detectable-decl ::= detectables : [DET.detectable]*

precondition-decl ::= when ({ [PRE.precondition] [and PRE.precondition]* })

workframe-body-decl ::= do { [workframe-body-element]*

 }

workframe-body-element ::= [PAC.activity-ref |
 CON.consequence |
 DEL.delete-action |

 VAR.local-variable |

 JAV.assignment |
 JAV.method-invocation-statement]

2.20.3 Semantics

Type

The type attribute can only be set for workframes defined for classes and objects. The
value for the type attribute can be one of „factframe‟ or „dataframe‟. The default value is
„factframe‟ If the value is „factframe‟ then the workframe‟s preconditions are matched
against the facts in the world. If the value is „dataframe‟ then the workframe‟s
preconditions are matched against the beliefs of the object for which the workframe is
specified. A dataframe is a workframe processing the data/information maintained by an
object allowing the processed data/information to result in actions that change the state
in the world.

Brahms Language Specification Version 3.0 Final Page 37
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Repeat

A workframe can be performed one or more times depending on the value of the
„repeat‟ attribute. A workframe can only be performed once if the repeat attribute is set
to false. A workframe can be performed repeatedly if the repeat attribute is set to true.
In case the repeat attribute is set to false, the workframe can only be performed once
for the specific binding of the variables at run-time. The scope of the repeat attribute of
a workframe defined as part of a composite activity is limited to the time the activity is
active, meaning that the workframe with a specific binding and a repeat set to false will
not execute repeatedly while the composite activity is active. As soon as the composite
activity is ended the states are reset and in the next execution of the activity it is
possible for the workframe with the same binding to be executed. So only for top-level
workframes the state will be stored permanently during a simulation run.

Priority

The workframe priority can be set in one of two ways. The priority can be set by setting
the value for the priority attribute or the priority can be deduced based on the priorities of
the activities defined within the workframe, the workframe will get the priority of the
activity with the highest priority. If no priority is specified the priority will be deduced from
the activities, otherwise the specified priority is used.

Defaults

 display = <workframe-name>
 type = factframe
 repeat = false
 priority = 0

Constraints

1. The workframe name has to be unique within the definition of a group, agent, object-
class or object.

2.21 THOUGHTFRAME (TFR)

2.21.1 Description

A thoughtframe is the Brahms equivalent of a production rule for an agent or object. A
thoughtframe allows an agent or object to deduce new beliefs from existing beliefs. The
difference between a thoughtframe and a workframe is that a thoughtframe can only
have consequences in its body. A thoughtframe consists of preconditions and
consequences.

Brahms Language Specification Version 3.0 Final Page 38
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.21.2 Syntax

thoughtframe ::= thoughtframe thoughtframe-name

 {

 { display : ID.literal-string ; }

 { repeat : ID.truth-value ; }

 { priority : ID.unsigned ; }
 { WFR.variable-decl }
 { [WFR.precondition-decl thoughtframe-body-decl] }

 }

thoughtframe-name ::= ID.name

thoughtframe-body-decl ::= do { [thoughtframe-body-element ;]*

 }

thoughtframe-body-element ::= CON.consequence

2.21.3 Semantics

Repeat

A thoughtframe can be performed one or more times depending on the value of the
„repeat‟ attribute. A thoughtframe can only be performed once if the repeat attribute is
set to false. A thoughtframe can be performed repeatedly if the repeat attribute is set to
true. In case the repeat attribute is set to false, the thoughtframe can only be performed
once for the specific binding of the variables at run-time. The scope of the repeat
attribute of a thoughtframe defined as part of a composite activity is limited to the time
the activity is active, meaning that the thoughtframe with a specific binding and a repeat
set to false will not execute repeatedly while the composite activity is active. As soon as
the composite activity is ended the states are reset and in the next execution of the
activity it is possible for the thoughtframe with the same binding to be executed. So only
for top-level thoughtframes the state will be stored permanently during a simulation run.

Priority

Setting the thoughtframe priority allows the model builder to control the execution
sequence of thoughtframes if more then one thoughtframe is available at the same time.
The priority can be set by setting it to a value greater than 0. Note that it is not
recommended to use priorities to control the sequence of thoughtframe execution. A
better modeling practice is to define better preconditions for the thoughtframes.

Brahms Language Specification Version 3.0 Final Page 39
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Defaults

 display = <thoughtframe-name>
 repeat = false
 priority = 0

Constraints

1. The thoughtframe name has to be unique within the definition of a group, agent,
object-class or object.

2. It is not possible to use unassigned variables in thoughtframes, therefor the
definition of these variables is not allowed.

3. The consequences in thoughtframes can only conclude beliefs.

2.22 PRIMITIVE ACTIVITY (PAC)

2.22.1 Description

A primitive activity is the lowest level of activity an agent or object works on for a
specified amount of time. A primitive activity has no side-effects.

2.22.2 Syntax

primitive-activity ::= primitive_activity activity-name (

{ param-decl [, param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | param-name] ; }

 { random : [ID.truth-value | param-name] ; }

 { min_duration : [ID.unsigned | param-name] ; }

 { max_duration : [ID.unsigned | param-name] ; }
 { resources }

}

activity-name ::= ID.name

param-decl ::= param-type param-name

param-type ::= ATT.type-def

param-name ::= ID.name

Brahms Language Specification Version 3.0 Final Page 40
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

resources ::= resources : [param-name | OBJ.object-name]

[, [param-name | OBJ.object-name]*;

activity-ref ::= activity-name ({ param-expr [, param-expr]* }) ;

param-expr ::= GRP.group-name |
AGT.agent-name |
CLS.object-class-name |
OBJ.object-name |
COC.conceptual-class-name |
COB.conceptual-object-name |
ARE.area-name |
VAR.variable-name |
ID.literal |

 unknown

2.22.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for primitive activities. These input parameters
can be used to make activities more generic. In the reference the values for the input
parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Brahms Language Specification Version 3.0 Final Page 41
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Resources

Artifacts (objects) can be defined as being a resource or not by setting the resource
attribute to either true or false. In general artifacts that are worked on by agents are not
considered to be a resource in an activity (a form, a fax). Artifacts that are used by an
agent in an activity are considered to be resources (a fax machine, a telephone).

It is possible to associate artifacts with activities for statistical purposes and for the
purpose of generating object flows by defining them in the list of resources for an
activity. Artifacts that are defined as resources are also called resource objects.
Resource objects associated with activities will only collect statistics and will not be used
for the object flow generation. Artifacts which are defined not to be a resource and
which are associated with an activity are also called touch objects. Touch objects should
be associated with one or more conceptual object(s) for object flow purposes and
statistical purposes.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name>, the
parameters assigned to the resources must be either VAR.variable-name or
OBJ.object-name.

5. The minimum duration of the activity defines the minimum duration in seconds.

6. The maximum duration of the activity defines the maximum duration in seconds.

Brahms Language Specification Version 3.0 Final Page 42
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.23 MOVE ACTIVITY (MOV)

2.23.1 Description

A move activity is a primitive activity but is used to move an agent from its current
location to the location as specified in the activity. The move activity first checks whether
the duration is specified for the move activity. If the specified duration is larger than 0 it
will use that duration for the move. If no duration is specified or the specified duration is
0 then the simulation engine tries to determine its duration by calculating the time it
takes to move from the current location to the goal location using the shortest path
specified between the two location. If no paths are specified between the locations then
the duration of the move activity will be 0.

When the move activity is started the agent or object being moved will be location-less.
All of the facts and beliefs about the location of the agent will be retracted as well as the
location facts and beliefs of the agents or objects contained by the agent or object. By
default all agents in the same location as the start location of the move will detect that
the agent/object is leaving and will retract the beliefs about the location of those agents
and objects. It is possible to specify explicitly in which areas agents will detect the
moving agent leaving the location by specifying a list of areas in the detectDepartureIn
property for the move activity. By default all agents in the specified areas and their sub
areas will detect the agent leaving and will therefore retract the location beliefs about
that agent and the agents/objects being carried. If the detectDepartureInSubAreas is
false then only agents in the specified areas will detect the departure, not the agents in
the sub areas of the specified areas.

When the activity is interrupted or impassed the agent or object will still remain location-
less. It is possible that while the activity is interrupted the agent or object was moved to
another location. If the agent or object moves while the activity was interrupted the
duration of the interrupted activity will be recalculated as if the move starts all over
again. If the agent or object did not move while interrupted then the activity will resume
where it left of, the duration will not be recalculated, the activity will be active for the
remaining duration.

On arrival in the goal location a fact and belief will be asserted for the traveling agent or
object about its new location. For all contained agents/objects a fact is asserted about
their new location, the contained agents will also get a belief about their new location. By
default the agents in the goal location will detect the traveling agent as well as any
contained agents. The traveling agent and contained agent(s) will detect all the agents
and objects in the goal location. For any of the contained objects the traveling agent will
get a belief of the object if the agent already knew about the location of the contained
object before it started the move. The model builder can control who detects the arrival
by specifying a list of areas in the detectArrivalIn property for the activity. Only the
agents located in the specified list of areas and their sub-areas will detect the arrival of
the agent and its contained agents. If the detectArrivalInSubAreas property is set to

Brahms Language Specification Version 3.0 Final Page 43
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

false then the agents located in the sub areas of the specified areas will not detect the
arrival of the agent and its contained agents.

2.23.2 Syntax

move-activity ::= move PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 location : [ARE.area-name | PAC.param-name] ;

 { detectDepartureIn : [ARE.area-name |
 PAC.param-name]

 [, [ARE.area-name | PAC.param-name]* ; }

 { detectDepartureInSubAreas : [ID.truth-value |

 PAC.param-name] ; }

 { detectArrivalIn : [ARE.area-name | PAC.param-name]

 [, [ARE.area-name | PAC.param-name]* ; }

 { detectArrivalInSubAreas : [ID.truth-value |

 PAC.param-name] ; }

}

2.23.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for move activities. These input parameters can
be used to make activities more generic. In the reference the values for the input
parameters have to be passed. It is recommended to make the first parameter the goal-
location of the move activity.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity

Brahms Language Specification Version 3.0 Final Page 44
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

with the highest priority defined in the workframe.

Duration

Activities in general have duration. In case of the move activity it is not necessary to
define a duration of the activity. The duration of the activity is calculated by the
simulation engine using the path definitions defining the distance between two locations.
The simulation will determine the shortest path of travel from the current location to the
goal location and calculate the travel time based on the distance. The duration of the
move activity will in that case be the same as the calculated travel time. It is possible
however to still define the duration of the activity. If a duration is specified the travel time
will not be calculated and ignored, the specified duration will be used by the simulation
engine. The duration of the activity can be defined to be a fixed amount of time. The
random attribute has to be set to false and the max-duration attribute has to be set to
the maximum duration in seconds. The duration of the activity can also be defined to be
a random amount of time. To define a random amount of time the random attribute has
to be set to true, the min-duration attribute has to be set to the minimum duration of the
activity in seconds and the max-duration attribute has to be set to the maximum duration
of the activity in seconds.

DetectDepartureIn

The detectDepartureIn-property of the move activity specifies the areas for which the
agents located in those areas will detect the moving agent leaving its current location.
Those agents will retract the belief about the location of the moving agent if they have a
belief about the location of the moving agent.

DetectDepartureInSubAreas

The detectDepartureInSubAreas property has as a value either true or false and
specifies whether the departure of the agent is noticed by only the agents in the areas
specified by the detectDepartureIn property or also the sub areas of the specified areas.
If the value is true then not only will the agents located in the specified areas detect the
agent‟s departure, also the agents in the sub areas of the specified areas will detect the
departure. If the value is false the agents in the sub areas of the specified areas will not
detect the departure. The default is true.

DetectArrivalIn

The detectArrivalIn-property of the move activity specifies the areas for which the agents
located in those areas will detect the moving agent arriving in its destination location.
Those agents will assert the belief about the new location of the moving agent.

DetectArrivalInSubAreas

The detectArrivalInSubAreas property has as a value of either true or false and specifies

Brahms Language Specification Version 3.0 Final Page 45
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

whether the arrival of the agent is noticed by only the agents in the areas specified by
the detectArrivalIn property or also the agents in the sub areas of the specified areas. If
the value is true then not only will the agents located in the specified areas detect the
agent‟s arrival, also the agents in the sub areas of the specified areas will detect the
arrival. If the value is false the agents in the sub areas of the specified areas will not
detect the arrival. The default is true.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 detectDepartureIn = <the start location of the moving agent>
 detectDepartureInSubAreas = true
 detectArrivalIn = <the destination location of the moving agent>
 detectArrivalInSubAreas = true

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The location parameter must be of type <area-def-name>.

6. The parameter types for the „detectDepartureIn‟ and „detectArrivalIn‟ areas must be
of type <area-def-name>, the values for the parameters assigned to the
„detectDepartureIn‟ and „detectArrivalIn‟ property must be VAR.variable-name,
PAR.parameter-name or ARE.area-name.

7. The detectDepartureInSubAreas and detectArrivalInSubAreas parameters must be
of type boolean and its input values must be one of true or false.

Brahms Language Specification Version 3.0 Final Page 46
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

8. The minimum duration of the activity defines the minimum duration in seconds.

9. The maximum duration of the activity defines the maximum duration in seconds.

2.24 CREATE AGENT ACTIVITY (CAA)

2.24.1 Description

A create agent activity is a primitive activity allowing to dynamically create one or more
new agents. By default the activity creates only one agent. The user can also specify a
quantity defining how many agents have to be created in the activity, this is useful if
more than one agent has to be created in the activity without having to repeat the
activity. When creating agent(s) the agents can be made a member of one or more
groups. The groups have to be specified in the memberof property of the activity. The
created agents will inherit all the behavior specified for the groups.

The user can specify when the actual creation has to take place by setting the „when‟
value to either start or end. The created agent(s) are bound to the unbound variable
specified in the destination property of the activity. If no destination variable is specified
the binding does not take place.

After the agent is created the activity will determine whether it needs to place the object
in a specific location. The activity checks the location property. If a location is specified
the instance will be placed in that location. If no location is specified the agent remains
location-less. When the agent is placed in the location a fact will be created about the
location of the new agent and all agents in that location will detect the new agent‟s
location (they will get a belief about the location of the new instance) and the newly
created agent will detect all agents and objects in that location.

The newly created agent(s) will be initialized, initial beliefs will be asserted to the belief
set of the agent and initial facts about the new agent will be asserted to the fact set of
the world. The agent‟s work will be initialized.

The last thing the activity does is bind the unbound variable specified in the destination
property with the new agent(s). If more than one agent is created the variable must be a
collect-all variable. If the variable is for-one or for-each only the first agent will be bound
to the variable.

2.24.2 Syntax

create-agent-activity ::= create_agent PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

Brahms Language Specification Version 3.0 Final Page 47
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 { memberof : [GRP.group-name | PAC.param-name]

 [, [GRP.group-name | PAC.param-name]*

] ; }

 { quantity : [ID.unsigned | PAC.param-name] ; }

 { destination : [PAC.param-name] ; }

 { destination_name : ID.literal-symbol ; }

{ location : [ARE.area-name |

PAC.param-name] ; }

 { when : [start | end | PAC.param-name] ; }

}

2.24.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for create-agent activities. These input
parameters can be used to make activities more generic. In the reference the values for
the input parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set

Brahms Language Specification Version 3.0 Final Page 48
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

to the maximum duration of the activity in seconds.

When

The when attribute defines when the actual action has to take place, at the „start‟ of the
activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 memberof = BaseGroup
 quantity = 1
 destination = none
 destination_name = NoNameAgent
 location = none
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The memberof parameter type has to be of type GRP.group-name and its input
value must be one of VAR.variable-name or GRP.group-name.

6. The quantity parameter has to be of integer type and its input value must be one of
VAR.variable-name or an integer value. The quantity must be 1 or more.

7. The destination parameter type has to be of type Grp.group-name and its input
value must be an unbound variable (VAR.variable-name).

Brahms Language Specification Version 3.0 Final Page 49
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

8. The location parameter type has to be of type ADF.area-def and its input value must
be one of VAR.variable-name or ARE.area-name.

9. The when parameter must be of type symbol and its input values must be one of
start or end.

10. The minimum duration of the activity defines the minimum duration in seconds.

11. The maximum duration of the activity defines the maximum duration in seconds.

2.25 CREATE OBJECT ACTIVITY (COA)

2.25.1 Description

A create object activity is a primitive activity allowing to dynamically create new
(conceptual) objects or make copies of objects. The user can specify when the actual
creation/copy has to take place by setting the „when‟ value to either start or end. In
either case, new or copy, a new (conceptual) instance is created and assigned to the
unbound variable specified in the destination property of the activity.

The (conceptual) class from which an instance is created is determined differently
between the new and copy action. The behavior of the two will therefor be discussed
separately.

In case of a new action the activity will determine the class of the new instance from the
source property. If the source specifies a class or conceptual class the activity will
create an instance of that class. If the source specifies a (conceptual) object it will
create an instance of the class of that (conceptual) object.

In case if a copy action the activity will determine the class of the new instance from the
destination property. The source will determine the (conceptual) class from the unbound
variable. The activity then creates an instance of that class.

After the instance is created and if the instance is an object and not a conceptual object
the activity will determine whether it needs to place the object in a specific location. The
activity first checks the location property. If a location is specified the instance will be
placed in that location. If the location property does not specify a location the activity will
check the source property. If the source property is an object it will check if that object
has a location. If so the object will be placed in the same location as the source object.
When the instance is placed in the location a fact will be created about the location of
the new instance and all agents in that location will detect the new instance‟s location
(they will get a belief about the location of the new instance).

The newly created instance will be initialized, initial beliefs will be asserted to the belief

Brahms Language Specification Version 3.0 Final Page 50
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

set of the object and initial facts about the new instance will be asserted to the fact set
of the world. If the instance is an object with behavior its work will be initialized.

The activity will next determine whether the new (conceptual) instance needs to be
made a part of conceptual objects. The activity first checks whether the conceptual-
object property specifies any conceptual objects. If so it will make the new instance a
part of those conceptual object(s). If no value is specified for the conceptual-object
property the activity will check with the source. If the source property specifies an object
or conceptual object, it will make the new instance a part of the same conceptual objects
the source object is a part of. The appropriate aggregate relations will be generated as
facts and beliefs.

If the new instance is created as a copy the activity will copy all beliefs of the source
object to the new instance. This is only performed if both the source and new instance
are objects, not when they are conceptual instances.

The last thing the activity does is bind the unbound variable specified in the destination
property with the new instance.

2.25.2 Syntax

create-object-activity ::= create_object PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 action : [new | copy | PAC.param-name] ;

 source : [CLS.object-class-name |
OBJ.object-name |
COC.conceptual-class-name |
COB.conceptual-object-name |

PAC.param-name] ;

 destination : [PAC.param-name] ;

 { destination_name : ID.literal-symbol ; }

{ location : [ARE.area-name |

PAC.param-name] ; }

 { conceptual_object :
[COB.conceptual-object-name |
PAC.param-name]

[, [COB.conceptual-object-name |

PAC.param-name]] ; }

Brahms Language Specification Version 3.0 Final Page 51
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { when : [start | end | PAC.param-name] ; }

}

2.25.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for create-object activities. These input
parameters can be used to make activities more generic. In the reference the values for
the input parameters have to be passed. It is recommended to make the first three
parameters in a create-object activity:

1. action

2. source object

3. destination object

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

When

The when attribute defines when the actual action has to take place, at the „start‟ of the
activity or at the „end‟ of the activity.

Defaults

Brahms Language Specification Version 3.0 Final Page 52
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 name = no-name
 location = <location of source object>
 conceptual-object = <conceptual-object of source object>
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The action parameter must be of type symbol and its input values must be one of
new or copy.

6. The source parameter type has to be of type CLS.object-class-name or
COC.conceptual-class-name and its input value must be one of VAR.variable-name,
CLS.object-class-name, OBJ.object-name, COC.conceptual-class-name, or
COB.conceptual-object-name.

7. The destination parameter type has to be of type CLS.object-class-name or
COC.conceptual-class-name and its input value must be an unbound variable
(VAR.variable-name).

8. The location parameter type has to be of type ADF.area-def and its input value must
be one of VAR.variable-name or ARE.area-name.

9. The conceptual-object parameter type has to be of type COC.conceptual-class-
name or list-of COC.conceptual-class-name and its input value(s) must be one of
VAR.variable-name, COB.conceptual-object-name or a list of any one of these
elements.

Brahms Language Specification Version 3.0 Final Page 53
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

10. The when parameter must be of type symbol and its input values must be one of
start or end.

11. The minimum duration of the activity defines the minimum duration in seconds.

12. The maximum duration of the activity defines the maximum duration in seconds.

13. If the source of the create-object action is a class-name only the new action is
allowed.

2.26 CREATE AREA ACTIVITY (CRA)

2.26.1 Description

A create area activity is a primitive activity allowing to dynamically create a new area.
When creating a new area the area is by default made an instance of the area definition
BaseAreaDef, the user can specify his/her own area definition as well. The area
definition has to be specified in the „instanceof‟ property. The area will inherit all the
behavior specified for the area definition. The new area can be turned into a sub area
for another area by assigning the parent area for the new area to the „partof‟ property.

The new area can be inhabited by an initial set of agents or objects by specifying the
agents and objects that are to be the inhabitants of the new area using the „inhabitants‟
property.

The user can specify when the actual creation has to take place by setting the „when‟
value to either start or end. The created area is bound to the unbound variable specified
in the destination property of the activity. If no destination variable is specified the
binding does not take place.

The newly created area will next be initialized, initial facts about the new area will be
asserted to the fact set of the world.

The last thing the activity does is bind the unbound variable specified in the destination
property with the new area.

2.26.2 Syntax

create-area-activity ::= create_area PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

Brahms Language Specification Version 3.0 Final Page 54
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 { instanceof : [ADF.areadef-name | PAC.param-name] ; }

 { partof : [ARE.area-name | PAC.param-name] ; }

 { inhabitants : [AGT.agent-name | OBJ.object-name |
 PAC.param-name]

 [, [AGT.agent-name | OBJ.object-name |

 PAC.param-name]*] ; }

 { destination : [PAC.param-name] ; }

 { destination_name : ID.literal-symbol ; }

 { when : [start | end | PAC.param-name] ; }

}

2.26.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for create-area activities. These input
parameters can be used to make activities more generic. In the reference the values for
the input parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Brahms Language Specification Version 3.0 Final Page 55
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Instance Of

The instanceof property specifies the area definition the new area is to be an instance
of. It‟s the new area‟s parent „class‟.

Part Of

The partof property specifies the area the new area is to be made a part of. This makes
the new area a sub area of the specified „part of‟ area.

Inhabitants

The inhabitants property specifies the agents and objects that are to be located in the
new area. If any of the inhabitants is located somewhere else then they will be relocated
to the new area without any time consumption.

When

The when attribute defines when the actual action has to take place, at the „start‟ of the
activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 instanceof = BaseAreaDef
 partof = none
 inhabitants = none
 destination = none
 destination_name = NewArea
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

Brahms Language Specification Version 3.0 Final Page 56
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The instanceof parameter type has to be of meta-type AreaDef and its input value
must be one of VAR.variable-name or ADF.areadef-name.

6. The partof parameter has to be of type ADF.areadef-name and its input value must
be one of VAR.variable-name or ARE.area-name.

7. The inhabitant parameter has to be of type GRP.group-name or CLS.class-name
and its input value must be one of VAR.variable-name, AGT.agent-name or
OBJ.object-name.

8. The destination parameter type has to be of type ADF.areadef-name and its input
value must be an unbound variable (VAR.variable-name).

9. The when parameter must be of type symbol and its input values must be one of
start or end.

10. The minimum duration of the activity defines the minimum duration in seconds.

11. The maximum duration of the activity defines the maximum duration in seconds.

2.27 COMMUNICATE ACTIVITY (COM)

2.27.1 Description

The communicate activity is a primitive activity but allows for the communication of
beliefs between the initiating agent or object and another agent or object. With the
introduction of the communications library the communication can be more formalized
by specifying a message object being an instance of the CommunicativeAct class for the
transfer content. The communication activity in that case communicates the beliefs of
the CommunicativeAct‟s belief set. The user can specify when the actual transfer has to
take place by setting the „when‟ value to either start or end.

2.27.2 Syntax

communicate-activity ::= communicate PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

Brahms Language Specification Version 3.0 Final Page 57
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 { type : [phone | fax | email | face2face |

pager | none | PAC.param-name] ; }

 with : [[AGT.agent-name |
OBJ.object-name |
PAC.param-name]

[, [AGT.agent-name |
OBJ.object-name |

PAC.param-name]*] ;

 about : TDF.transfer-definition

[, TDF.transfer-definition]* ;

 { when : [start | end | PAC.param-name] ; }

}

2.27.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for communicate activities. These input
parameters can be used to make activities more generic. In the reference the values for
the input parameters have to be passed. It is recommended to make the first
parameter(s) in a communicate activity the concepts with which is communicated.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity

Brahms Language Specification Version 3.0 Final Page 58
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Type

The type attribute defines what type of communication is used. The type can be one of
phone, fax, email, face2face, pager, or none (meaning not specified).

About

The about attribute specifies what beliefs are to be communicated. The transfer
definition specifies either the beliefs that are to be transferred or a CommunicativeAct
defining the message to be transferred. If the transfer definition is a CommunicativeAct
and the transfer action is „send‟ then any destination agent or object can be specified.
However if the transfer definition is a CommunicativeAct and the transfer action is
„receive‟ then the value of the „with‟ attribute must be the CommunicativeAct declared in
the transfer definition to indicate that the agent or object wishes to read the contents of
the CommunicativeAct. An agent is not permitted to directly receive a
CommunicativeAct from another agent. The agent in such a case is required to request
the agent for the message and the receiving agent can then choose to send the
requesting agent the desired CommunicativeAct.

When

The when attribute defines when the actual communication has to take place, at the
„start‟ of the activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 type = none
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

Brahms Language Specification Version 3.0 Final Page 59
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The type-parameter type has to be a literal-symbol and its values must be one of
phone, fax, e-mail, face2face, pager, or none.

6. The with-parameter type has to be one of „Agent‟ , CLS.object-class-name, list-of
Agent or list-of CLS.object-class-name and its input value must be one of
AGT.agent-name, OBJ.object-name, VAR.variable-name or a list of any of these
elements. The with-parameter must be of type CommunicativeAct if the about-
parameter specifies a transfer definition of type „receive(<CommunicativeAct>)‟ and
must be the exact same CommunicativeAct value as specified in the transfer
definition.

7. The when parameter must be of type symbol and its input values must be one of
start or end.

8. The minimum duration of the activity defines the minimum duration in seconds.

9. The maximum duration of the activity defines the maximum duration in seconds.

2.28 BROADCAST ACTIVITY (BCT)

2.28.1 Description

The broadcast activity is a primitive activity but allows for the initiator to broadcast
information into a location. By default every agent in the same location as the initiator
will receive the broadcasted belief. The model builder can instead also specify to what
areas the beliefs are to be broadcast indicating whether their sub areas should be
included or not. If the model builder specifies a list of areas then the broadcast will
communicate all beliefs to be broadcast to all agents located in those specified areas.
The model builder can specify when the actual transfer has to take place by setting the
trigger value to either start or end. The user can in this case not specify with whom or
what should be communicated.

Brahms Language Specification Version 3.0 Final Page 60
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.28.2 Syntax

broadcast-activity ::= broadcast PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 { type : [phone | fax | email | face2face |

 pager | none | PAC.param-name] ; }

{ to : [ARE.area-name | PAC.param-name]

 [, ARE.area-name | PAC.param-name]* ; }

{ toSubAreas : [ID.truth-value | PAC.param-name] ; }

 about : TDF.transfer-definition

[, TDF.transfer-definition]* ;

 { when : [start | end | PAC.param-name] ; }

}

2.28.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for broadcast activities. These input parameters
can be used to make activities more generic. In the reference the values for the input
parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Brahms Language Specification Version 3.0 Final Page 61
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Duration

Activities in general have a duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

To

The to-property of the broadcast activity specifies the areas in which a broadcast can be
heard. This means that all agents located in the specified areas will receive the
broadcast beliefs.

ToSubAreas

The toSubAreas property has as a value either true or false and specifies whether a
broadcast is also heard in the sub areas of the areas specified in the to-property. If the
value is true then not only will the broadcast go to all agents located in the specified
areas, it will also go to all the sub areas of the areas specified in the to-property. The
default is true.

When

The when attribute defines when the actual broadcast has to take place, at the „start‟ of
the activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 to = <performing agent‟s location>
 toSubAreas = true
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

Brahms Language Specification Version 3.0 Final Page 62
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The parameter types for the „to‟ areas must be of type <area-def-name>, the values
for the parameters assigned to the „to‟ property must be either VAR.variable-name,
PAR.parameter-name or ARE.area-name.

6. The toSubAreas parameter must be of type boolean and its input values must be
one of true or false.

7. The when parameter must be of type symbol and its input values must be one of
start or end.

8. The minimum duration of the activity defines the minimum duration in seconds.

9. The maximum duration of the activity defines the maximum duration in seconds.

2.29 JAVA ACTIVITY (JAC)

2.29.1 Description

A java activity is a primitive activity but its actual behavior is specified in Java code. The
java activity specifies the fully qualified name of the class that implements the
IExternalActivity interface or extends the AbstractExternalActivity class. When the java
activity is to be executed an instance of the class is created and the code for the activity
executed. If the class extends the AbstractExternalActivity class then the java code will
have access to the parameters passed to the activity, belief set of the agent or object
and the fact set of the world and will be able to conclude new beliefs and facts.

2.29.2 Syntax

java-activity ::= java PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

Brahms Language Specification Version 3.0 Final Page 63
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 class : [ID.literal-string | PAC.param-name] ;

 { when : [start | end | PAC.param-name] ; }

}

2.29.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for java activities. These input parameters can
be used to make activities more generic. In the activity reference the values for the input
parameters have to be passed. It is possible to pass unbound variables as parameters
to the java activity that can then be bound to a value in the Java code called when the
activity is executed. This is a good method to get results back from a Java activity.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have a duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

When

The when attribute defines when the actual Java code has to be executed, at the „start‟
of the activity or at the „end‟ of the activity.

Defaults

Brahms Language Specification Version 3.0 Final Page 64
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The minimum duration of the activity defines the minimum duration in seconds.

6. The maximum duration of the activity defines the maximum duration in seconds.

7. The when parameter must be of type symbol and its input values must be one of
start or end.

8. The class parameter must be of type string. The value for the class must specify the
fully qualified name of the Java class. The class must be in the Java classpath. The
class must implement the interface gov.nasa.arc.brahms.vm.interfaces.
IExternalActivity or extend the abstract class gov.nasa.arc.brahms.vm.interfaces.
AbstractExternalActivity.

Brahms Language Specification Version 3.0 Final Page 65
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.30 GET ACTIVITY (GET)

2.30.1 Description

A get activity is a primitive activity that allows an agent or object to pick up or transfer
one or more objects and/or agents, referred to as items, form an area, agent or object,
to carry it with it while performing activities. The picked up agents and/or objects are
said to be contained by the agent or object that picked up the agents/objects. An agent
or object can put the picked up agents/objects down or transfer them to another agent
or object by using the put activity (PUT).

When the agents and/or objects are picked up the get activity will generate the
appropriate containment beliefs and facts. For each picked up agent/object the activity
will generate a fact in the world and a belief for the agent/object performing the activity
of the form:

 <agent|object> contains <item>

If the item(s) are being transferred from another agent or object then the containment
relation for that item for the agent or object the item is transferred from will be negated.

 <agent|object> contains <item> is false

Whenever the agent or object moves to another location it will take the contained items
with it to that new location. The contained items will no longer have a location until they
are put down in a location, i.e. no location facts will be generated for contained items. If
the moving agent/object knows of the location of the contained item before the move it
will also know of the location of the contained item after the move, i.e. a location belief
will be generated for the carried agent/object for the carrying agent/object.

2.30.2 Syntax

get-activity ::= get PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }
 items

 { source : [OBJ.object-name | AGT.agent-name |

 ARE.area-name | PAC.param-name] ; }

Brahms Language Specification Version 3.0 Final Page 66
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { when : [start | end | PAC.param-name] ; }

}

items ::= items : [param-name | OBJ.object-name | AGT.agent-name]

 [, [param-name | OBJ.object-name | AGT.agent-name]*;

2.30.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for get activities. These input parameters can be
used to make activities more generic. In the activity reference the values for the input
parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have a duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Items

The items are the agents or objects that need to be picked up or transferred and are to
be contained by the agent or object performing the get activity.

Source

The source specifies where the item(s) are being picked up or transferred from. The
source can be either an area, another agent or another object. If no source is specified,
then the agent‟s or object‟s current location is assumed.

Brahms Language Specification Version 3.0 Final Page 67
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

When

The when attribute defines when the actual pick-up or transfer has to take place, at the
„start‟ of the activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 source = <agent‟s of object‟s current location>
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The minimum duration of the activity defines the minimum duration in seconds.

6. The maximum duration of the activity defines the maximum duration in seconds.

7. The when parameter must be of type symbol and its input values must be one of
start or end.

8. The parameter types for items must be of type <group-name> or list-of <group-
name> or <object-class-name> or list-of <object-class-name>, the parameters
assigned to the items must be either VAR.variable-name or AGT.agent-name or
OBJ.object-name or a list of any of these three.

9. The parameter type for the source must be of type <areadef-name>, <class-name>
or <group-name>. The value assigned to the parameter must be one of

Brahms Language Specification Version 3.0 Final Page 68
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

VAR.variable-name, AGT-agent-name, OBJ-object-name, or ARE-area-name.

2.31 PUT ACTIVITY (PUT)

2.31.1 Description

A put activity is a primitive activity that allows an agent or object to put down (drop) or
transfer one or more objects and/or agents, referred to as items, carried by the agent or
object performing the activity. The items are either dropped in the current or specified
location or transferred to another agent or object. The carrying agent/object will no
longer carry the item while performing future activities. An agent or object must have
picked up, retrieved or received the items earlier by using the get activity (GET) or put
activity (in case of transfer to the agent). If the agent or object is not carrying an item
being put down by the carrying agent/object, then the put activity will do nothing except
take time if a duration is specified.

When the agents and/or objects are dropped or transferred, the put activity will generate
the appropriate negation of the containment beliefs and facts. For each dropped
agent/object the activity will generate a fact in the world and a belief for the agent/object
performing the activity of the form:

 <agent|object> contains <item> is false

If the items are being transferred to another agent or object then for those items a new
containment relation is generated both in the form of facts and beliefs:

 <agent|object> contains <item>

Whenever the agent or object moves to another location it will no longer take the
dropped items with it to that new location. For each item dropped in a location the
activity will generate a location fact and a location belief for the dropped item for each
agent that is located in the same location. The location of the dropped item will be the
same location as the carrying agent or object if no destination is specified and the
specified location if a destination location is specified. If the carrying agent or object
does not have a location when the item(s) are dropped then the dropped items will not
get a location either and no location facts and beliefs are generated for the dropped
items.

2.31.2 Syntax

put-activity ::= put PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

Brahms Language Specification Version 3.0 Final Page 69
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }
 items

 { destination : [OBJ.object-name | AGT.agent-name |

 ARE.area-name | PAC.param-name] ; }

 { when : [start | end | PAC.param-name] ; }

}

items ::= items : [param-name | OBJ.object-name | AGT.agent-name]

 [, [param-name | OBJ.object-name | AGT.agent-name]*;

2.31.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for get activities. These input parameters can be
used to make activities more generic. In the activity reference the values for the input
parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have a duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Items

Brahms Language Specification Version 3.0 Final Page 70
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

The items are the agents or objects that need to be dropped or transferred and are to
be contained by the agent or object receiving the items or are to receive a location when
dropped in a location. When dropped in a location they are no longer contained by
anything.

Destination

The destination specifies where the item(s) are to be dropped or to what the items are to
be transferred to. The destination can be either an area, another agent or another
object. If no destination is specified, then the agent‟s or object‟s current location is
assumed.

When

The when attribute defines when the actual drop has to take place, at the „start‟ of the
activity or at the „end‟ of the activity.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0
 max_duration = 0
 resources = none
 destination = <agent‟s of object‟s current location>
 when = end

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The minimum duration of the activity defines the minimum duration in seconds.

Brahms Language Specification Version 3.0 Final Page 71
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

6. The maximum duration of the activity defines the maximum duration in seconds.

7. The when parameter must be of type symbol and its input values must be one of
start or end.

8. The parameter types for items must be of type <group-name> or list-of <group-
name> or <object-class-name> or list-of <object-class-name>, the parameters
assigned to the resources must be either VAR.variable-name or AGT-agent-name or
OBJ.object-name or a list of any of these three.

9. The parameter type for the destination must be of type <areadef-name>, <class-
name> or <group-name>. The value assigned to the parameter must be one of
VAR.variable-name, AGT-agent-name, OBJ-object-name, or ARE-area-name.

2.32 GESTURE ACTIVITY (GAC)

2.32.1 Description

A gesture activity is a primitive activity used for indicating gesture changes made by an
agent or object. This activity is primarily to be used in combination with a virtual reality
environment such as OWorld/Adobe Atmosphere. The gestures as indicated by the
gesture activity are visualized in the virtual reality environment provided that
environment supports the specified gestures.

2.32.2 Syntax

gesture-activity ::= gesture PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

 {

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { random : [ID.truth-value | PAC.param-name] ; }

 { min_duration : [ID.unsigned | PAC.param-name] ; }

 { max_duration : [ID.unsigned | PAC.param-name] ; }
 { PAC.resources }

 gesture : [ID.literal-symbol | PAC.param-name] ;

}

Brahms Language Specification Version 3.0 Final Page 72
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.32.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for gesture activities. These input parameters
can be used to make activities more generic. In the activity reference the values for the
input parameters have to be passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Activities in general have a duration. The duration of the activity can be defined to be a
fixed amount of time. The random attribute has to be set to false and the max-duration
attribute has to be set to the maximum duration in seconds. The duration of the activity
can also be defined to be a random amount of time. To define a random amount of time
the random attribute has to be set to true, the min-duration attribute has to be set to the
minimum duration of the activity in seconds and the max-duration attribute has to be set
to the maximum duration of the activity in seconds.

Gesture

The gesture specifies the gesture made by the agent or object performing the activity.
This is just a symbolic value and does not affect an agent or object‟s behavior in a
Brahms simulation or agent-system. The virtual reality environment that interfaces with
the Brahms environment interprets the symbolic value and visualizes the gesture if that
environment supports the gesture. It is up to the model builder to come to an agreement
with the developers of the virtual environment on what gestures will be supported and
how they should be named.

Defaults

 display = <activity-name>
 priority = 0
 random = false
 min_duration = 0

Brahms Language Specification Version 3.0 Final Page 73
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 max_duration = 0
 resources = none

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

4. The parameter types for resources must be of type <object-class-name> or list-of
<object-class-name>, the parameters assigned to the resources must be either
VAR.variable-name or OBJ.object-name or a list of any of these two.

5. The minimum duration of the activity defines the minimum duration in seconds.

6. The maximum duration of the activity defines the maximum duration in seconds.

7. The parameter type for gesture must be of type symbol.

2.33 COMPOSITE ACTIVITY (CAC)

2.33.1 Description

A composite activity is an activity that has to be decomposed into more specific
workframes. Unlike primitive activities no duration is specified for this activity. The
duration of this type of activity depends on the workframes that will be worked on as part
of the activity. Composite activities allow us to build a hierarchy of workframes.

2.33.2 Syntax

composite-activity ::= composite_activity PAC.activity-name (

{ PAC.param-decl [, PAC.param-decl]* })

{

 { display : ID.literal-string ; }

 { priority : [ID.unsigned | PAC.param-name] ; }

 { end_condition : [detectable | nowork] ; }
 { WFR.detectable-decl }

Brahms Language Specification Version 3.0 Final Page 74
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 { GRP.activities }
 { GRP.workframes }
 { GRP.thoughtframes }

}

2.33.3 Semantics

Declaration and reference

All activities have to be declared in the activities section of either a group, agent, class,
object, or composite-activity. The declared activities can then be referenced in the
workframes defined for the group, agent, class or object.

Parameters

It is possible to define input parameters for composite activities. These input parameters
are in the first place used to pass on variables defined in a workframe for use in the
workframes defined for the composite activity and second they can be used to make
activities more generic. In the reference the values for the input parameters have to be
passed.

Priority

Activities can be assigned a priority. The priorities of activities in a workframe are used
to define the priority of a workframe. The workframe will get the priority of the activity
with the highest priority defined in the workframe.

Duration

Composite activities themselves do not have a duration. Composite activities are
decomposed into other workframes that a concept can work on as part of the activity
which eventually result in a primitive activity to be executed having a specific duration.

End-condition

The end-condition of a composite activity defines how a composite activity can be
ended. There are three possibilities:

1. Only end it on the basis of an end-activity detectable. The end-condition has to
be set to „detectable‟. When a detectable having an action type of „end-activity‟ is
detected the composite activity will be ended.

2. End the activity when there‟s no more work to work on. The end-condition has to
be set to „no-work‟. If none of the workframes as defined in the composite-
activities can be worked on the activity will be ended.

Brahms Language Specification Version 3.0 Final Page 75
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. End the activity when there‟s o more work to work on, or when an end-activity
detectable is detected. The end-condition has to be set to „no-work‟ and an end-
activity detectable needs to be defined for the composite activity. This case
combines the first two cases.

Defaults

 display = <activity-name>
 priority = 0
 end_condition = nowork

Constraints

1. The signature of an activity must be unique within the definition of a group, agent,
class, object, or composite-activity. The signature consists of the name of the activity
and the types of the argument list in the order the arguments are listed.

2. The input parameter type of a parameter defined in the declaration of an activity
must be the same as the input value type or variable type in the reference of the
activity.

3. The parameters assigned to any of the attributes must be of the correct type.

2.34 PRECONDITION (PRE)

2.34.1 Description

Preconditions control the activation of a workframe or thoughtframe. For a frame to
become active the preconditions defined for the frame have to be satisfied.
Preconditions are satisfied by either matching beliefs of an agent (if the workframes are
defined for an agent or the frame is a thoughtframe) or by matching facts in the world (if
the workframes are defined for an object). Preconditions can include variables as part of
their matching of specific beliefs/facts.

2.34.2 Syntax

precondition ::= { [known | unknown] } (novalcomparison) |

 { [knownval | not] } (evalcomparison)

novalcomparison ::= BEL.obj-attr |
 BEL.obj-attr REL.relation-name |
 BEL.tuple-object-ref REL.relation-name

Brahms Language Specification Version 3.0 Final Page 76
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

evalcomparison ::= eval-val-comp | rel-comp

eval-val-comp ::= expression BEL.evaluation-operator expression |
 BEL.obj-attr BEL.equality-operator ID.literal-symbol |
 BEL.obj-attr BEL.equality-operator ID.literal-string |
 BEL.obj-attr BEL.equality-operator BEL.sgl-object-ref |
 BEL.sgl-object-ref BEL.equality-operator BEL.sgl-object-
 ref

rel-comp ::= BEL.obj-attr REL.relation-name BEL.obj-attr

{ is ID.truth-value } |
 BEL.obj-attr REL.relation-name BEL.sgl-object-ref

{ is ID.truth-value } |
 BEL.tuple-object-ref REL.relation-name BEL.sgl-object-ref

{ is ID.truth-value }

expression ::= term | expression [+ | -] term

term ::= factor | term [* | / | div | mod] factor

factor ::= primary | factor ^ primary

primary ::= - primary | element

element ::= ID.number |
BEL.obj-attr |
VAR.variable-name |

 unknown

2.34.3 Semantics

Precondition modifiers

A precondition may be defined with one of four modifiers: known, knownval, unknown,
or not. The modifier for a precondition may be omitted; in this case, the modifier defaults
to „known‟ for a novalcomparison (no right-hand-side value) and to „knownval‟ for an
evalcomparison (a right-hand-side value is present). The modifiers have the following
meaning.

known:

The modifier „known‟ represents the possibility for an agent/object to have a belief/fact,
but be unspecific as to whether the agent/objects knows the actual value.

For example, to evaluate the following precondition:

Brahms Language Specification Version 3.0 Final Page 77
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

known (car1.color)

The simulation engine would simply check with the belief set of an agent to see whether
the agent has a belief of the form:

car1.color = ?

If the engine finds a belief of this form, as it would when the following belief is present:

car1.color = red

then the engine would evaluate the precondition as true. A simple relational precondition
like:

known (John is-the-son-of)

will evaluate to true when the engine finds any of the following beliefs (the right hand
side and truth-value are completely ignored):

John is-the-son-of Bill is true

John is-the-son-of Bill is false

John is-the-son-of Jack is true

John is-the-son-of Jack is false

A more complex precondition like:

known (Cimap-order1.service-tech is-the-son-of)

will evaluate to true if the following beliefs are present:

Cimap-order1.service-tech = <agent1>
<agent1> is-the-son-of ?

where <agent1> is either an agent or object.

knownval:

The modifier „knownval‟ (known value) means that the simulation engine must find a
precise match for the precondition. The precondition is only true if matching beliefs/facts
can be found for both the left hand side and the right hand side and if the relation
between them is found as well. For an example of a complex precondition such as:

knownval(Cimap-order1.service-tech is-the-son-of Cimap-
order2.service-tech)

the following beliefs must be present:

Cimap-order1.service-tech = <agent1>
Cimap-order2.service-tech = <agent2>
<agent1> is-the-son-of <agent2>

Brahms Language Specification Version 3.0 Final Page 78
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

When using variables, the engine will find as many matches as there are valid
instantiations for the variables.

unknown (aka no-knowledge-of):

When the modifier „unknown‟ is used, the simulation engine looks at the beliefs of the
agent or facts in the world for objects for possible matches of the precondition. If there
are any matches, the precondition evaluates to false, if no matches are found the
precondition evaluates to true. The „unknown‟ modifier can be interpreted as „The
agent/object has no beliefs/facts for <precondition>‟. However, there are intricacies that
need to be explained further.

When matching a precondition of the form: O1A1, the simulation engine looks for a belief
of the form O1A1= ?. When a belief of the form O1A1= ? is found, the simulation engine
interprets this to mean that the agent „knows‟ about this object and attribute and thus the
precondition is false.

When the precondition is of the form O1 rel however, no matter what the right hand side
or the truth of the relation is, the simulation engine will simply look up whether the
agent/object possesses the belief/fact O1 rel ?, and if so will evaluate the precondition to
be false.

All other preconditions, require at least two steps for the simulation engine to determine
the truth or falsehood of the precondition.

The form O1A1 rel requires the simulation engine to evaluate first the O1A1 then the
result of the O1A1 (say O2) with the relation. When a belief/fact for either the OA or for
O2 rel is not found, the precondition will be evaluated to true, if both are found the
precondition will evaluate to false. For example given the following beliefs:

John.car = car1
car1 is-driven-by Jack

and the precondition:

unknown (John.car is-driven-by)

The simulation engine will evaluate the precondition to false, because it finds a belief for
“John.car = ?” with the value car1 and it finds a belief for car1 is-driven-by. If either of
the beliefs were not available the precondition would evaluate to true.

not (aka no-matching-beliefs):

Not works similar to unknown in that when there is no belief for the precondition
specified with the not modifier the precondition will evaluate to true. If a belief does exist
for the condition in the precondition then the not modifier works similar to the modifier
knownval, but negates the resulting truth-value. The simulation engine will first try the

Brahms Language Specification Version 3.0 Final Page 79
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

knownval for the precondition. If the precondition with the knownval modifier evaluates
to true then the precondition with the not modifier evaluates to false and vice versa.

Precondition Evaluation Order

When variables are used in one or more precondition(s) the order in which the
preconditions are specified is important. Depending on the order different outcomes are
possible. The reason that precondition order is important is that the simulation engine is
not a standard pattern matcher, but actually evaluates the preconditions causing
potential assignments of values to variables. For example:

 knownval(John.car = <car>)

The simulation engine tries to find a belief of the form „John.car=‟. If it finds one stating
„John.car=car1‟ then it will assign the value car1 to the variable <car>.

If you were to write the following two preconditions in the following order the outcome
might be unexpexted:

 not(John.car = <car>)

 knownval(<car> belongs-to <company>)

Suppose we have the following beliefs:

 John.car = car1

 car2 belongs-to nynex

The simulation engine will evaluate the first precondition first and first treat the
precondition as a knownval therefor assigning the value „car1‟ to the variable <car>
because it matches the precondition with the belief „John.car = car1‟. Since this
precondition is a not this precondition will always evaluate to false. The simulation
engine would not continue but if it would then the simulation engine would verify the
second precondition. It found a binding for the <car> variable and will substitute its
value. It will then try to find a belief of the form „car1 belongs-to <company>. It cannot
find such a belief and therefor will fail the evaluation causing the frame not to be made
available. However if you turn the preconditions around the outcome is different.

 knownval(<car> belongs-to <company>)

 not(John.car = <car>)

In this case <car> will be bound to car2, the first precondition evaluates to true. The
second precondition will be evaluated and the simulation engine tries to find the belief
„John.car=car2‟, it cannot find such a belief but due to the „not‟ modifier the precondition
will evaluate to true causing the frame to be made available.

Brahms Language Specification Version 3.0 Final Page 80
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

The precondition ordering will also be important when taking into account the use of
variables. The next section discusses the distinction made by the simulation engine in
the types variables and how that can affect the importance of the precondition order.

Pre-, Post- and Unassigned Variables

The simulation engine makes a distinction in how variables are bound in a frame. The
three types of value assignments are pre-assigned, post-assigned and unassigned.

Unassigned variables are variables not used in any preconditions but that get their
binding in an activity.

Pre-assigned variables are variables that get their values assigned in preconditions and
get a pre-binding before the preconditions are evaluated. Pre-assigned variables are
variables used in an object/attribute tuple (OA) or that are used in an object/relation
tuple (OR) or object/relation/object triplet (ORO) where the object is a variable. In case
of the ORO it could be one of the objects that is a variable or both. The simulation
engine makes sure that for each OA, OR (with an (un)known modifier) and ORO there is
at least one matching belief/fact before fully evaluating the preconditions. The variables
used in these condition elements will get a pre-binding by matching the variables with
the object values in the beliefs/facts. A final binding will be determined when the
preconditions are evaluated.

Post-assigned variables are variables that get their values assigned in preconditions as
well, but they will get a binding during the evaluation of the preconditions. These
variables have no pre-binding like pre-assigned variables do. Post-assigned variables
are the variables not used in any OA, OR, ORO condition elements but are usually
„assignment‟ variables specified on the left hand side or right hand side of a value
condition, for example:

 <myagent>.car = <mycar>

<myagent> is part of an OA pair and is therefor a post-assigned variable. <mycar> is
not specified in any OA, OR, ORO condition element and is therefor a post-assigned
variable. The simulation engine will have found potential matched for the OA and will
have pre-bound the <myagent> variable. During the evaluation of the precondition the
simulation engine will then for each value of <myagent> get the belief/fact that caused
that value binding for <myagent> and retrieve its right hand side. Assume that the belief
was:

 John.car = car1

<myagent> is John and the right hand side is „car1‟. The simulation engine will now
assigne the value „car1‟ to the variable <mycar> during the evaluation of the
precondition.

Brahms Language Specification Version 3.0 Final Page 81
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Due to the distinction between pre- and post-assigned variables ordering of
preconditions is also important if no conflicts are to occur with the constraints listed
below. Assume a frame with the following preconditions:

 knownval(<totalOrders> = <numVMOrders>+Builder.numOrders)

 knownval(VM.numOrders = <numVMOrders>)

In this case the first precondition has two post-assigned variables <totalOrders> and
<numVMOrders>. The simulation engine can resolve Builder.numOrders to a value but
cannot resolve the values for the post-assigned variables. This would be an endless list
of possible values. The simulation engine would report an error and fail the evaluation of
the precondition. If the preconditions would now be reversed

 knownval(VM.numOrders = <numVMOrders>)

 knownval(<totalOrders> = <numVMOrders>+Builder.numOrders)

then the simulation engine resolves the <numVMOrders> post-assigned variable first, it
will bind a value to it by finding a belief of the form VM.numOrders = ? and assigning the
right hand side value to the variable. Then during the evaluation of the second
precondition the <numVMOrders> variable will have a value bound to it that can be used
together with the right hand side value of the belief Builder.numOrders = ? to assign a
value to <totalOrders>. The evaluation of all preconditions will succeed and the frame
can be made available.

Constraints

1. The left hand side attribute type and the right hand side value-type or right hand side
attribute type of a value-expression must be the same, except in the case of an
attribute being of a collection type and an index having been specific for the
attribute, in that case any value can be assigned, if no index is specified however
only unknown is valid or an expression resulting in the same collection type. If an
object-attribute-index is used on the left or right hand side to resolve to a value then
the type compatibility constraint is relaxed, the compiler will assume that a value of
the correct type is returned to compare to the left or right hand side. The virtual
machine will at run-time ensure that type compatibility holds, if not it will evaluate the
precondition to false and generate a warning message in the log.

2. The left hand side and right hand side types in a relational expression must match
the types as defined for the relation used in the relational expression. Only the right
hand side can be defined to use an object-attribute-index. The compiler will allow
this without type checking, the compiler will assume that a value of the correct type
is returned for the relation. The virtual machine will at run-time ensure that type
compatibility holds, if not it will evaluate the precondition to false and generate a
warning message in the log. The use of object-attribute-index on the left hand side
would resolve to an unknown type not allowing the compiler to verify whether the
relation is declared for that type and is therefore not permitted.

Brahms Language Specification Version 3.0 Final Page 82
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. Expressions must evaluate to a value of type int, long or double.

4. No nested expressions are allowed. The first release of the virtual machine will not
support them yet. As soon as the virtual machine is able to support nested
expressions, this constraint will be lifted.

5. Only one unbound post-assigned variable can be used in a precondition.

6. No unbound post-assigned variables can be used in a precondition using one of the
relational operators „<‟, „>‟ or „!=‟.

7. No unbound post-assigned variables can be used in an expression.

Note that constraints 5 to 7 cannot be detected by the compiler but only by the
simulation engine. The simulation engine will report errors in the error log and will fail
the evaluation of the precondition in which these constraints are violated.

2.35 CONSEQUENCE (CON)

2.35.1 Description

A consequence is a logical statement for concluding/asserting new beliefs for an agent
or object and/or facts in the world. When new facts are concluded about a Java object,
the corresponding properties of the Java object are updated accordingly. In addition to
explicitly specifying the new beliefs or facts to be concluded, a consequence may be
used to query the beliefs of a Brahms object or the property values of a Java object.
The results of the query will be concluded as new beliefs for the agent or object and/or
facts in the world. For such a query on a Java object, the Brahms engine may attempt
to register the Brahms agent or object as a property change listener with the Java object
so that subsequent updates to the object‟s attributes from within Java code will be
mirrored in Brahms beliefs and/or facts.

2.35.2 Syntax

consequence ::= conclude (resultcomparison

 { con-config }) ;

resultcomparison ::= old-style-comp | new-style-comp

old-style-comp ::= ([result-val-comp | PRE.rel-comp])

new-style-comp ::= result-val-comp |
 PRE.rel-comp |

Brahms Language Specification Version 3.0 Final Page 83
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 BEL.tuple-object-ref { member-property-list }

result-val-comp ::= BEL.obj-attr BEL.equality-operator JAV.expression

member-prop-list ::= { member-property

 [, member-property]* }

member-property ::= ATT.attribute-name

 { (BEL.collection-index) }

 { : JAV.expression }

 con-configuration ::= , { { } config-prop-name : ID.literal

 [, config-prop-name : ID.literal]* { } }

config-prop-name ::= fc | bc |

factChangeSupport |

beliefChangeSupport |

 changesupport

2.35.3 Semantics

Fact certainty (fc)

The fact certainty is a number ranging from 0 to 100 and represents the percentage of
chance that a fact will be created based on the consequence. A fact certainty of 0%
means that no fact will be created, 100% means that a fact will be created at all times.

Belief certainty (bc)

The belief certainty is a number ranging from 0 to 100 and represents the percentage of
chance that a belief will be created based on the consequence. A belief certainty of 0%
means that no belief will be created, 100% means that a belief will be created at all
times.

New style syntax

The syntax of consequences has been updated and extended to provide a more
compact way to conclude multiple attribute values for the same object and to support
integration with the properties of Java objects. The new syntax and its semantics will be
explained according to the major types of consequences that it supports.

 Single comparison consequences

The old-style syntax supports the conclusion of facts and/or beliefs based on a single
comparison expression. The determination of whether facts and/or beliefs are

Brahms Language Specification Version 3.0 Final Page 84
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

concluded is based on the values of optional fact certainty and belief certainty
configuration properties. For example, the old-style syntax for concluding that the
John‟s full name is “John Doe” as both a belief and a fact is:

conclude((John.fullName = “John Doe”), bc:100, fc:100);

Note that parentheses are used to surround the value comparison and the bc:100 and
fc:100 proprties are specified as additional arguments to the conclude statement. The
old-style syntax is still supported, but a new-style syntax is now preferred for
consistency with the expanded functionality of the conclude statement.

The new-style syntax for the above conclude statement is:

conclude(John.fullName = “John Doe”, {bc:100, fc:100});

Note that parentheses are no longer used to surround the value comparison and the bc
and fc configuration properties are enclosed by brackets.

Multiple attribute consequences

It is common to conclude values for more than one attribute of a concept. The new
syntax provides a way of specifying the new values for the attributes in a single
conclude statement. For example, to conclude that the John‟s full name is “John Doe”
and his age is 43, we could use the following:

conclude(John{fullName:“John Doe”, age: 43}, { bc:100, fc:100});

Note that a single comma is used to separate the subject and set of attribute/value pairs
from the set of configuration property/value pairs.

For attributes that have a collection type, the attribute name can be followed by a
collection index in parentheses to conclude a new value for the collection attribute at
that index. For example, if car1 has a “parts” map attribute relating it to Brahms objects
for its various component parts we could associate an “engine” object with the following:

conclude(car1 { parts(“engine”) : engine11}, {bc:100, fc:100});

The new syntax also supports setting the property values of a Java object. When the
object‟s class follows the naming conventions of the Java Bean Specification for
properties. The properties of the object are accessed by public accessor methods with
names setPropertyName, getPropertyName(for non-boolean properties), and
isPropertyName (for Boolean properties), where PropertyName is the name of the
attribute/property used in Brahms. Generalizing the Java Bean definition of a property, a
property name may also be resolved to a method or field with that exact name (see the
Attribute ATT section for details).

Unlike Brahms concepts or Java classes, Java objects don‟t have names that can be

Brahms Language Specification Version 3.0 Final Page 85
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

used to refer to them in Brahms code. Instead, they are referenced using Brahms
variables or parameters that have been declared with a Java type. For example,
suppose a Java class named Person is defined in the package
„gov.nasa.arc.brahms.example‟ and defines properties “name” and “available” according
to the Java Bean conventions for naming property accessor methods. (See Appendix
A.2 for a listing of the Person source file.) In order to access objects of the Person class
in a Brahms source file, the Brahms source file can have a jimport statement in the
imports section (see the Import Declaration section):

jimport gov.nasa.arc.brahms.example.Person;

Then, in the body of a workframe, a local variable can be declared and initialized to a
new instance of the Person class:

java(Person) oPerson = new Person();

Now that the oPerson variable references the new Person object, we can set its
properties using a conclude statement:

conclude(oPerson {name:“John Doe”,available:true},

{bc:100, fc:100});

The execution of the this conclude statement will not only set the values of the
properties in the oPerson object, but may also create beliefs representing those property
values in the agent executing the frame and as well as facts in the world state. Whether
beliefs or facts are created is controlled by the values of the belief-certainty and fact-
certainty. Whether the values of the properties of the Java object are set to the new
values depends on whether facts are created as the state of the Java object should be
mirrored by the facts in the world state whereas an agent‟s beliefs about the property
values of an object can vary from the actual values.

Reading the attributes of a Java or Brahms object

A conclude may be used to read property values from a Java object and then create
beliefs representing those property values in the executing Brahms agent or object
and/or create facts in the world state. This can be done for all of the bean properties of
a Java object with a conclude statement like the following:

Brahms Language Specification Version 3.0 Final Page 86
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

conclude(oPerson, {bc:100, fc:100});

As usual, whether beliefs or facts are created depends on the values of the belief-
certainty and fact-certainty. If is not desirable to read the values of all the bean
properties and “reify” them as Brahms beliefs or facts, the specific properties to be read
can be listed in the conclude statement:

conclude(oPerson { name } {bc:100, fc:0});

This conclude statement will read only the value of the name property of the Java object
referenced by the oPerson variable and will create a belief of the form object.name =
namevalue, but will not create any facts.

The new conclude syntax also supports reading the beliefs of a Brahms object and
creating corresponding beliefs in the agent or object that is executing the frame. If car1
is a Car object then the conclude statement:

conclude(car1, {bc:100, fc:0});

will retrieve all beliefs from the car1 object and create corresponding beliefs in the agent
or object executing the frame. If a set of attribute names is specified in the conclude
statement, as in

conclude(car1 { color, model }, {bc:100, fc:0});

only the attribute value beliefs with those attribute names will be retrieved from the
object and created as beliefs in the executing agent or object.

For a Brahms object, a collection index can also be given to retrieve only beliefs for a
map attribute and the given index:

conclude(car1 { parts(“engine”) }, {bc:100, fc:0});

Unknown and „null‟ values

Whenever a null value is read from a Java bean property it will be represented as
„unknown‟ in the corresponding belief and or fact. Conversely, when „unknown‟ is
specified for the value of a property of a Java object as in the statement:

conclude(oPerson {name: unknown}, {bc:100, fc:100});

Brahms Language Specification Version 3.0 Final Page 87
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

then a reference-valued property of the Java object will be set to „null‟. If „unknown‟ is
specified for a property that has a numeric primitive type, such as int or float, the
property will be set to a zero value of that type. Finally, if „unknown‟ is specified for a
property with the Boolean primitive type the property will be set to „false‟. In general, the
value corresponding to „unknown‟ is the default inititialization value used by Java for the
property.

Detecting changes to properties of Java objects

When a value is changed in a Java object outside of Brahms or when just a method is
called on a Java object to change the value Brahms would not know about the value
change, i.e. any beliefs about the property will remain unchanged. If values change only
from within Brahms just using the 'conclude' action will be sufficient.

An alternative is to re-conclude the properties that we know could have changed:

conclude(oPerson { name }, {bc:100, fc:100});

This triggers re-reading the value of the name property and concluding that value as
both a belief and fact. The following would force a re-read of all properties of a Java
object and cause the belief/fact assertion for all of them:

conclude(oPerson, {bc:100, fc:100});

To trigger an automatic notification the Java class must provide methods to register
PropertyChangeListeners and send PropertyChangeEvents whenever the value of a
property changes. Appendix A.3 lists the Java source for the Person class with
modifications for property change support. Now whenever you perform a conclude:

conclude(oPerson, {bc:100, fc:100});

Brahms will detect whether property change support is available and register a property
change listener with that object. Whenever the a PropertyChangeEvent is fired, Brahms
will update both the beliefs and facts about the properties (depending on the values set
for bc and fc at the time of assertion.

If you do not wish that automatic notification takes place or wish to control which values
are automatically changed, the beliefChangeSupport and factChangeSupport
configuration properties may be used

conclude(oPerson, {bc:100,

 fc:100,

 beliefChangeSupport: false,

 factChangeSupport: true });

This will trigger automatic value changes only for facts. To disable both, a the
changeSupport configuration property can be used:

Brahms Language Specification Version 3.0 Final Page 88
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

conclude(oPerson, {bc:100, fc:100, changeSupport: false });

This will disable automatic value notification for both beliefs and facts. If bc or fc is set to
0 then the appropriate change support will automatically be disabled for that Java
object.

Defaults

 fc = 100
 bc = 100

Constraints

1. In the comparison the left hand side attribute type and the right hand side value-type
or right hand side attribute type of a value-expression must be the same, except in
the case of an attribute being of a collection type. If the left hand side attribute is of a
collection type and an index is specified any value type can be assigned. If no index
is specified then only the value unknown or a value resolving to a collection type can
be defined on the right hand side. If the right hand side is of a collection type and an
index is specified then the compiler will assume that the type it resolves to is
compatible with the left hand side type, the virtual machine will at run-time ensure
type compatibility. If the right hand side resolves to a type that is incompatible with
the left hand side type then an error is reported in the log and the consequence will
fail.

2. In the comparison the left hand side and right hand side types in a relational
expression must match the types as defined for the relation used in the relational
expression. Only the right hand side can be defined to use an object-attribute-index.
The compiler will allow this without type checking, the compiler will assume that a
value of the correct type is returned for the relation. The virtual machine will at run-
time ensure that type compatibility holds, if not it will generate an error message in
the log and fail the consequence. The use of object-attribute-index on the left hand
side would resolve to an unknown type not allowing the compiler to verify whether
the relation is declared for that type and is therefore not permitted.

3. The values of fact-certainty and belief-certainty range from 0 to 100 and represent a
percentage.

4. A consequence defined in the body of a thoughtframe can only conclude beliefs.
The fact certainty argument will be ignored, a warning will be generated in case the
belief-certainty is set to 0.

5. The values of factChangeSupport, beliefChangeSupport, and changeSupport must
be of type boolean and be one of true or false.

Brahms Language Specification Version 3.0 Final Page 89
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.36 DETECTABLE (DET)

2.36.1 Description

A detectable is a declarative statement defining first which state changes an agent or
object can detect and second what action results from detecting the state change.

Detecting facts is a two-phase process. In the first phase, the agent or object detects
the fact and the fact becomes a belief for the agent or object. No matter what the right
hand side is in the form OA=V and OA=O the fact will become a belief for the agent or
object. To make this behavior clearer, the detection condition may be stated without the
equality and right hand side (OA) or the right hand side may be given as a wildcard
character (OA=?). In the case of an ORO, the right hand side and truth value are also
ignored in determining the matching facts and they also may be omitted from the
condition (OR) or given as the wildcard character (OR?) to indicate that any fact with the
specified relation and matching the left hand side should match the condition no matter
what it has for a right hand side object or truth value.

In the second phase, the beliefs of the agent or object are matched with the detectable
definition and if there is a positive match, the detectable action is executed. In contrast
to the fact detection phase, the right hand side of a condition of the form OA=V, OA=O,
or ORO is not ignored when matching beliefs. But if the right hand side of the condition
is omitted or given as the wildcard „?‟ any right hand side value or object is allowed in
matching beliefs.

Note that these two phases are independent for agents and objects, i.e. regardless of
whether the fact is present in the world, the second phase is performed. This means
that if the agent or object has received a matching belief through a communication, the
belief will trigger the action of the detectable.

2.36.2 Syntax

detectable ::= detectable-name {

{ when ([whenever | ID.unsigned]) }

 detect ((resultcomparison) { , detect-certainty })

 { then detectable-action } ;

 }

detectable-name ::= ID.name

resultcomparison ::= [detect-val-comp | detect-rel-comp]

detect-val-comp ::= obj-attr |
obj-attr BEL.evaluation-operator PRE.expression |

Brahms Language Specification Version 3.0 Final Page 90
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 obj-attr BEL.equality-operator ID.literal-symbol |
 obj-attr BEL.equality-operator ID.literal-string |
 obj-attr BEL.equality-operator sgl-object-ref

detect-rel-comp ::= detectable-object REL.relation-name |
 detectable-object REL.relation-name sgl-object-ref

{ is ID.truth-value } |

obj-attr ::= detectable-tuple { (BEL.collection-index) }

detectable-tuple ::= detectable-object . ATT.attribute-name

detectable-object ::= BEL.tuple-object-ref | < ID.name >

sgl-object-ref ::= BEL.sgl-object-ref | < ID.name > | ?

detect-certainty ::= dc : ID.unsigned

detectable-action ::= continue | impasse | abort | complete | end_activity

2.36.3 Semantics

When

For each detectable it must be specified when the agent or object can detect a certain
fact. There are two options:

whenever:

This means that the detectable is checked every time a new fact is asserted in the world
and for an agent also every time a new belief is asserted.

at a specified time:

This specifies exactly when the detectable needs to be activated. The value must be any
value of 0 or greater. This value specifies the time relative to the start time of the
workframe in which the detectable is specified at which the detectable is to be activated.

< Class Variable >

Brahms Language Specification Version 3.0 Final Page 91
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Agents and objects do not always have the ability to know in advance about what
concepts they can detect facts. To allow these agents and objects to detect facts about
unknown concepts it is possible to define the class of concepts for which facts need to
be detected. On the left hand side of the detectable condition instead of specifying the
name of a variable, parameter or concept instance (agent, object, conceptual object, or
area) the class of concept is specified in between the brackets < and > such as
<BaseGroup>. This will have the agent or object detect all facts of which the left hand

side concept instance is an instance of the specified class or an instance of any of its
sub classes. The matches can be restricted by specifying a more specific class in the
detectable condition. The agent or object will in that case only detect those instances
that are instances of that class or any of its subclasses, but not any of its superclasses,
even if the superclass defines that attribute and facts for concept instances of that super
class exist. A bracketed class name may also be used on the right hand side of a
detectable condition to indicate that, in the belief matching step, beliefs may have any
right hand side concept that is an instance of that class or any of its subclasses.

Wildcard

A wildcard character, „?‟, may be used on the right-hand side of a detectable condition to
indicate that the right-hand side value or object of a matching fact (in step one) or a
matching belief (in step 2) is ignored. Normally, this may be stated more directly by
simply omitting the operator and right-hand side of a value comparison or by omitting
the right-hand side object of a relation comparison. However, the wildcard may
occasionally be useful in a relation comparison together with „is false‟ or „is unknown‟ to
match beliefs with truth values other than „true‟.

Detect-certainty

The detect-certainty is a number ranging from 0 to 100 and represents the percentage
of chance that a fact will be detected based on the detectable. A detect-certainty of 0%
means that the fact will never be detected and basically means that the detectable is
switched off. A detect-certainty of 100% means that a fact will always be detected based
on the detectable.

Detectable action

There are 5 different detectable actions possible:

continue:

Has no effect, only used for having agents or object detect facts and turn them into
beliefs.

Brahms Language Specification Version 3.0 Final Page 92
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

impasse:

Impasses the workframe on which the agent or object is working until the impasse is
resolved.

abort:

Terminates the workframe on which the agent or object is working immediately.

complete:

Terminates the workframe on which the agent or object is working immediately, but still
executes all remaining consequences defined in the workframe. All remaining activities
are skipped.

end_activity:

This action type is only meaning full when used with composite activities. Causes the
composite activity on which the agent or object is working to be ended.

Defaults

 when = whenever
 dc = 100
 action = continue

Constraints

1. In the comparison the left hand side attribute type and the right hand side value-type
or right hand side attribute type of a value-expression must be the same. Object-
attribute-index is considered type compatible with any type and is permitted on both
the left and right hand side. For detectables the right hand side is ignored and
therefore no errors or warnings will ever be generated even if the right hand side
resolves to a value that is type incompatible with the left hand side. However for the
trigger the right hand side is relevant and if the value resulting from evaluating the
right hand side is type incompatible with the left hand side a warning is generated in
the log and the detectable action is not executed.

2. In the comparison the left hand side and right hand side types in a relational
expression must match the types as defined for the relation used in the relational
expression.

3. An ID.name when used in a class variable must be the name of a concept class, i.e.
a group, class, conceptual class or area definition.

4. The value of the detect-certainty ranges from 0 to 100 and represents a percentage.

Brahms Language Specification Version 3.0 Final Page 93
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

5. The end-activity action type can only be used when a detectable is defined in a
composite activity.

2.37 TRANSFER DEFINITION (TDF)

2.37.1 Description

A transfer-definition describes what belief(s) are to be communicated between two
actors. The transfer-definition also describes whether the belief has to be sent to the
actor with whom the initiating actor is communicating or whether the belief has to be
received from the actor with whom it is communicating. The transfer definition can
specify the exact belief(s) that are to be communicated or can specify a
CommunicativeAct defining the message that is to be communicated. A
CommunicativeAct is a much more formal representation of a message based on the
CommunicativeAct specification defined by the Foundation for Intelligent Physical
Agents (FIPA). When a CommunicativeAct is specified the transfer will consist of all the
beliefs in that CommunicativeAct‟s belief set. An actor can only send a
CommunicativeAct to another actor and never receive a CommunicativeAct from
another actor (the initiating actor cannot force another actor to communicate). The
receive action is therefore only valid to read all the beliefs of a CommunicativeAct.

2.37.2 Syntax

transfer-definition ::= transfer-action (communicative-act |

 DET.resultcomparison)

transfer-action ::= send | receive

communicative-act ::= OBJ.object-name | PAC.param-name

2.37.3 Semantics

Transfer-action

The transfer action defines the direction of the communication. The „send‟ action states
that belief(s) of the initiating agent or object matching the transfer definition are
transferred from the initiating agent or object to the non-initiating agent or object. The
„receive‟ action states that belief(s) of the non-initiating agent or object matching the
transfer definition are transferred from the non-initiating agent or object to the initiating
agent or object. Note that if the transfer definition specifies a condition as an
object/attribute tuple (OA=V) the right hand side value is ignored in the matching
process. To make this behavior clearer, the condition may be stated without the equality
and right hand side (OA) or the right hand side may be given as a wildcard character

Brahms Language Specification Version 3.0 Final Page 94
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

(OA=?). In the case of an ORO, the right hand side is not ignored in the matching
process but it may be omitted from the condition (OR) or given as the wildcard character
(OR?) to indicate that any right hand side object should match the condition.

< Class Variable >

To provide more flexibility in determining the beliefs to be transferred in a
communication a transfer definition condition may use bracketed class variables. A
transfer definition condition, instead of specifying the name of a variable, parameter or
concept instance (agent, object, conceptual object, or area), may specify the class of
concept in between the brackets < and > such as <BaseGroup>. A class variable may

be used anywhere a concept reference may appear in the condition. It may be used
either on the left-hand or right-hand sides of the condition and may appear as a
standalone object reference or paired with an attribute name. This will have the transfer
condition match all beliefs that have a concept instance in a position corresponding to
the class variable that is an instance of the specified class or an instance of any of its
subclasses. The matches can be restricted by specifying a more specific class in the
transfer definition condition. The agent or object will in that case only send beliefs
involving those instances that are instances of that class or any of its subclasses, but
not any of its superclasses, even if the superclass defines the attribute or relation and
beliefs for concept instances of that super class exist.

Wildcard

A wildcard character, „?‟, may be used on the right-hand side of a transfer definition
condition to indicate that the right-hand side value or object of a matching belief is
ignored. Normally, this may be stated more directly by simply omitting the operator and
right-hand side of a value comparison or by omitting the right-hand side object of a
relation comparison. However, the wildcard may occasionally be useful in a relation
comparison together with „is false‟ or „is unknown‟ to transfer beliefs with truth values
other than „true‟.

Constraints

1. In the comparison the left hand side attribute type and the right hand side value-type
or right hand side attribute type of a value-expression must be the same. Object-
attribute-index is considered type compatible with any type and is permitted on both
the left and right hand side. Since the right hand side of the condition is ignored, no
errors or warnings will ever be generated event if the value resulting from the right
hand side is type incompatible.

2. In the comparison the left hand side and right hand side types in a relational
expression must match the types as defined for the relation used in the relational
expression.

Brahms Language Specification Version 3.0 Final Page 95
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. An ID.name when used in a class variable must be the name of a concept class, i.e.
a group, class, conceptual class or area definition.

4. If a communicative-act is specified and the action is send then the object-name or
value passed to the parameter identified by param-name must be an object instance
that is an instance of brahms.communication.CommunicativeAct.

5. If a communicative-act is specified and the action is receive then the object-name or
value passed to the parameter identified by param-name must be an object instance
that is an instance of brahms.communication.CommunicativeAct and the value for
the communication activities „with‟ property must be identical to the communicative-
act specified in the transfer definition to indicate the reading of the communicative-
act‟s beliefs.

2.38 DELETE (DEL)

2.38.1 Description

The delete action is an action used to reclaim memory obtained for agents, objects and
conceptual objects created at simulation/run-time, the delete action cannot be used on
agents, objects, conceptual objects that are created at design-time. The deletion of an
agent, object, or conceptual object results in the deregistration of the element from the
directory service (in case of a distributed system), removal of references to the element
for the calling agent/object, and removal of the element from the model. Elements
declared as part of the model at compile time cannot be deleted. Delete operations on
static model elements are no-ops and will cause the Brahms virtual machine to print a

warning.Element Creation and References

Agents, objects and conceptual objects are created either when a model is loaded when
they are defined as part of the model, when created using one of the create activities or
created through the Java API. In distributed mode these elements are registered in the
directory service. References to these elements are made in beliefs, facts, and as part
of variable contexts maintained for frames defining variables that have their repeat
property set to false. References to agents or objects are held using beliefs by either
these agents or objects themselves (beliefs about themselves) or references to agents,
objects, and conceptual objects are held by other agents or objects (beliefs about those
elements). The world state maintains references to elements through facts. In
distributed mode beliefs referencing these elements can be communicated to a remote
agent or object. Objects that have no frames can be communicated by value to a
remote agent or object effectively creating a duplicate copy of the object (this happens
when communicating CommunicativeActs).

The delete action may also be applied to Java objects that are referenced as the object
or value of beliefs or facts or as part of a frame variable context. Deletion of a Java

Brahms Language Specification Version 3.0 Final Page 96
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

object only cleans up references to the Java object from the Brahms virtual machine.
The Java object will not be garbage collected by the Java virtual machine if there are
remaining references to the object from other Java objects.

Reference Counting

To identify when an object can truly be deleted the Brahms virtual machine maintains a
reference count for every element per agent/object holding beliefs with a reference to
the element.

The reference count will go up:

1. when an agent/object creates the element

2. when an agent/object asserts a belief with a reference to the element

3. when an external agent acquires a memory reference
(IActiveInstance::acquireMemoryReference(),
IConceptualInstance::acquireMemoryReference())

The count will go down:

1. when an agent invokes 'delete <element>'

2. when an external agent releases a memory reference
(IActiveInstance::releaseMemoryReference(),
IConceptualInstance::releaseMemoryReference())

Notes regarding the reference count:

1. The agent/object that creates the element and that asserts beliefs with
references to the element will only increment the reference count by 1, not 2.
Any agent/object can at maximum hold one reference to the element.

2. References held by remote agents/objects are not counted since we can't
guarantee network availability, remote system uptime, and proper notifications of
element deletion in a remote Brahms virtual machine.

3. Object copies (due to transfer by value) will have their own reference count in the
Brahms virtual machine in which they were created as a copy and will therefore
require separate deletion.

4. The element for which a reference count is being maintained has itself no impact
on the reference count even when beliefs about the element are being asserted
in that element about that element.

Brahms Language Specification Version 3.0 Final Page 97
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

5. Multiple invocations of the delete action on the same element by the same
agent/object will have no effects on the reference count. Only the first delete will
cause the reference count to go down by 1.

6. If an external agent creates a new dynamic element automatically a reference to

it for the external agent will be created! This means that the external agent must
release any references to elements it creates using either
(IActiveInstance::releaseMemoryReference() or
IConceptualInstance::releaseMemoryReference().

7. When an external agent is notified of a belief (via invocation on onReceive) no
automatic reference is obtained for any of the dynamic elements referenced in
the belief. It is up to the external agent to acquire and release the necessary
references.

Hard and Soft Reference

For the purposes of element deletion the Brahms virtual machine differentiates between
hard and soft references.

A hard reference is a reference held by an agent/object that has frames. This
agent/object is able to invoke a delete of the element at the appropriate time.

A soft reference is a reference held by an object that has no reasoning capabilities (a
data object). It has beliefs in its beliefset that reference the element.

If there are no more hard references to an element and only soft references then the
element will only be deleted when all agents/objects that have references to the element
to be deleted themselves are marked for deletion and have no more hard references to
those elements. If object O1 and object O2 have references to eachother in their
beliefsets under normal circumstances neither would ever be deleted since the
reference count never goes to 0. Assuming O1 and O2 are data objects then the
references to eachother would be soft references. If no hard references exist for either
of these two objects then the Brahms virtual machine will garbage collect them and
perform the final deletion on both O1 and O2.

Results of a Delete

When an agent or object invokes a delete on an element E the Brahms virtual machine
will take the following actions:

1. Retract all beliefs in which E is referenced, whether it be on the left hand side or
right hand side of the belief.

2. Remove all previously executed frame contexts that hold a reference to E in a
variable context when the frame has the repeat property set to false.

Brahms Language Specification Version 3.0 Final Page 98
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. Reduce the hard reference count by 1 for the caller. If delete was invoked earlier
the reference count remains unchanged.

When the Hard Reference Count goes to 0

When there are no soft references to the element E:

1. Retract all facts referencing E, whether it be on the left hand side or right hand
side of the fact.

2. Deregister E from the directory service.

3. Remove E from the model.

When there are soft references to the element E:

1. Mark E for garbage collection.

2. Verify all soft references that reference E and delete any elements marked for
garbage collection that only had a soft reference remaining to E.

Can an element be brought back?

Yes. If an object still has soft references the facts about the object are not yet retracted.
This means that object detection is still possible. When an agent/object detects the
object and asserts a new belief about the object the hard reference count is
incremented and the object is no longer marked for garbage collection.

Remote References

If an element E is created in Brahms virtual machine VM1 and a belief referencing E is
communicated to an agent/object in Brahms virtual machine VM2, E is deleted in VM1
and VM1 no longer holds any hard or soft references to E then the element will be
deleted. The reference to E held in VM2 becomes stale. Any operations on E in VM2
can result in exceptions. Operations that cause exceptions:

1. reading of beliefs from E

2. communication of beliefs referencing E to a remote agent, an exception will be
raised in the receiving virtual machine when it attempts to resolve E by looking it
up in the directory service (E is longer registered in the directory service and
cannot be located)

If E is a data object that was communicated by value then a separate reference count is
maintained for this 'copy'. NOTE however that this copy is not registered in the directory
service and if its original has been deleted then exceptions will be raised when:

Brahms Language Specification Version 3.0 Final Page 99
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

1. beliefs referencing E are communicated to a remote agent/object. The exception
is raised in the receiving virtual machine when it attempts to resolve E using the
directory service (E is longer registered in the directory service and cannot be
located)

Note that transmitting E in its entirety by value will cause no problems since when
transmitting the entire object all relevant information to create a copy of it will be
included as part of the message. This is generally only done with CommunicativeActs. It
is safe to communicate a copy of a CommunicativeAct using a communicate activity to a
remote agent even if its original has been deleted. Just communicating a belief about
the CommunicativeAct to a remote agent however will raise an exception in the
receiving virtual machine.

Any agent/object holding references to a copy of an element must call 'delete' for that
element to ensure that it is deleted just like any other element.

Invoking delete on an element E for which the original does not exist in the virtual
machine or where E is not a copy the delete will:

1. Retract all beliefs referencing E from the beliefset of the agent/object invoking
delete

2. Remove all previously executed frame contexts that hold a reference to E in a
variable context when the frame has the repeat property set to false.

There will be no reference count modifications since the original/copy is not held in that
virtual machine.

2.38.2 Syntax

delete-action ::= delete [VAR.variable-name | PAC.param-name] ;

2.38.3 Semantics

Constraints

1. The variables and parameters referenced in a delete statement must be of a Group,
Class,Conceptual Class, or Java type since delete is not supported on any other
types.

Brahms Language Specification Version 3.0 Final Page 100
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.39 JAVA EXPRESSION (JAV)

2.39.1 Description

A defined subset of Java statements and expressions may be used in the body of a
workframe or thoughtframe. A workframe may include assignment statements and
method invocation statements in addition to local variable declarations with Java
initializer expressions. Both thoughtframes and workframes may use Java expressions
in conclude statements for the right-hand values of attribute value comparisons.

A Java expression may contain Brahms object references (BEL.sgl-object-ref), and
object attribute references (BEL.obj-attr). Java expressions are thus a generalization of
Brahms expressions as defined in the Preconditions section (PRE.expression).

2.39.2 Syntax

assignment-statement ::= assign-lhs = expression ;

method-invocation-statement ::= method-invocation ;

assign-lhs ::= [VAR.variable-name | PAR.parameter-name]

 [[expression]]*

expression ::= binary-expression |
 method-invocation |
 constructor-invocation |
 array-creation |
 array-access |
 BEL.obj-attr |
 BEL.sgl-object-ref |
 ID.literal

binary-expression ::= term [+ | - | * | /] term

term ::= method-invocation |
 array-access |
 BEL.obj-attr |
 BEL.sgl-object-ref |
 ID.number

method-invocation ::= ID.qualified-name

 { . nonwild-type-arguments ID.name }

 ({ expression-list })

Brahms Language Specification Version 3.0 Final Page 101
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

constructor-invocation ::= new
{ nonwildcard-type-arguments }
ATT.java-class-or-interface-type-def

({ expression-list })

 nonwild-type-arguments ::= < ATT.java-ref-type-def

[, ATT.java-ref-type-def]* >

 expression-list ::= expression [, expression]*

array-creation ::= new ATT.java-class-or-interface-type-def

 [dimension-expressions [[]]* |

 [[]]* array-initializer]

 dimension-expressions ::= [[expression]]+

array-initializer ::= {
{ initializer-expression [, initializer-expression]* }

 }

initializer-expression ::= expression | array-initializer

array-access ::= [VAR.variable-name | PAR.parameter-name]

 [[expression]]+

2.39.3 Semantics

The Java expressions that may be used in Brahms are a subset of the full Java
expression language. The key restrictions are the following:

1. The only kinds of Java expressions allowed are method invocations, constructor
invocations, array creation expressions, array access expressions, simple binary
arithmetic expressions, and literals. Array initializer expressions may be used in
local variable declarations and array creation expressions. Java expressions may
also include Brahms object references (BEL.sgl-object-ref), and object attribute
references (BEL.obj-attr).

2. Instance method invocations may only be made where the target object
reference is a Brahms variable or parameter. This restriction rules out a
sequence of method invocations separated by „.‟ characters. Static method
invocations may be made using the name of a Java class followed by „.‟ and the
static method name.

3. Array access expressions must reference the array by means of a Brahms
variable or parameter that has a Java array type.

Brahms Language Specification Version 3.0 Final Page 102
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

4. Arithmetic expressions are limited to top-level expressions with two operands
and the operators „+‟, „-„, „*‟, and „/‟. So there is currently no support for more
than two operands or for nested arithmetic expressions.

Invocations of generic methods and constructors are supported. Type arguments may
be supplied explicitly (see non-wildcard-type-arguments) or will be inferred by the
Brahms compiler for most common cases.

Unknown and „null‟ values

Whenever a null value is returned from a Java method invocation or array access in a
context that requires a Brahms value it is converted to „unknown‟. Conversely,
„unknown‟ may be passed as an argument in a Java method invocation, constructor
invocation, array creation, array initialization, or array access where there is an expected
Java type for that argument. The „unknown‟ value will be converted to the default
initialization value that Java uses for variables and fields of that type. For reference
types this will be the „null‟ value, for numeric primitive types the value zero, and for the
Boolean primitive type the value „false‟.

Multi-valued expressions and list conversion

Due to the effect of collect-all variables and parameters that are bound at runtime to
collect-all variables, it is possible for an expression to evaluate to multiple values. In
addition to collect-all variables and parameters, this is possible for object/attribute tuples
that contain a collect-all variable or parameter, method invocations and array accesses
whose target object or array is specified by a collect-all variable or parameter, and
binary expressions one of whose terms can be multi-valued.

By default, if a multi-valued expression is used as an argument to a method invocation,
constructor invocation, array creation, array access, or array initializer expression, only
the first value is passed as the actual argument value. However, for arguments to
method invocations and constructor invocations, it is sometimes useful to accumulate
into a Java List all the values resulting from the evaluation of a potentially multi-valued
argument expression. This will result in a single List value being passed as an argument
to a method or constructor invocation whose corresponding parameter is typed as a List
or Collection. The Brahms compiler determines that this “list conversion” should take
place when the type of the method or constructor parameter is assignable from a List
type whose type parameter is the type of the argument expression. This requires that
the method or constructor parameter be typed as a List, Collection, or Iterable.

For assignment statements and local variable declarations with an initializer expression
“list conversion” is also performed if the variable is given a List, Collection, or Iterable
type that is assignable from a List type whose type parameter is the type of the right-
hand expression. Otherwise, only the first value from the evaluation of the right-hand
expression is assigned to the variable.

Brahms Language Specification Version 3.0 Final Page 103
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.40 THE „UNKNOWN‟ VALUE

The Brahms language provides support for the „unknown‟ value and „unknown‟ truth-
value in beliefs, facts, preconditions, consequences, detectables and transfer
definitions.

The „unknown‟ value is a type independent value and can be assigned to any variable,
parameter, attribute or relation. The model builder must be aware that the value
„unknown‟ can at runtime potentially be assigned to a property of an activity (such as
max_duration). Properties such as max_duration do not allow the value „unknown‟. If
such a value is assigned anyway at runtime then the virtual machine will generate a
warning in the virtual machine‟s log and use the default value for that property. If
however no default value is available for the property an error will be generated and the
agent/object in which the error occurred will be halted.

The „unknown‟ value can be tested for in preconditions, can be communicated in
communication and broadcast activities, can be detected using detectables and can be
concluded using consequences. Note that when the value „unknown‟ is concluded for a
relation that all the previously existing values for that relation are retracted. If an agent
concludes that it doesn‟t know the value of the relation (unknown) it is necessary to
remove all existing values for the relation. The reverse is valid as well. If an agent
concludes a value for a relation other then „unknown‟ and the value „unknown‟ was
already present for that relation, then the „unknown‟ value will be retracted and replaced
by the new value.

The value „unknown‟ for the truth-value can be used to specify that the truth-value for a
relation is unknown or uncertain. The „unknown‟ truth-value can also be tested for in
preconditions and can be used in consequences to conclude the truth-value.

Before reporting any errors to the support team when a model doesn‟t behave as
expected make sure to check the vm.log file first. This log file might list warnings or
errors that relate to assigning the value „unknown‟ to a property of an activity that
doesn‟t allow for the value unknown.

2.41 COLLECTION TYPES

The Brahms language lacked support for multi-valued attributes, only relations allowed
for multiple values. To address this issue the language will now receive support in the
form of collection types. The type currently supported in the language is the map type.

Brahms Language Specification Version 3.0 Final Page 104
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

2.41.1 Map

The map collection type is a type that can only be used as part of the declaration of
attributes. It allows for the assignment of multiple values to the attribute where each
value is addressable using an index or key. The attribute‟s values are index/value or
key/value pairs. The index or key can be any positive integer or string value.

2.41.1.1 Declaring Maps

A map is declared by declaring an attribute of type „map‟.

 attributes:

 public map myMap;

2.41.1.2 Creating Map Values

A map value is an index/value or key/value pair. Where we specify index we also imply
key. Map values like any other attribute values are represented as beliefs and/or facts. A
map is created when at least one belief or fact exists defining a map value. The creation
of these beliefs/facts is done like any other beliefs/facts, through initial beliefs/facts or by
concluding the beliefs. The index of a map value can only be an integer or a string. The
value as part of the index/value pair can be any value of any type.

Using initial beliefs/facts map values can be created as:

 initial_beliefs:

 (current.myMap(1) = 10); // int

 (current.myMap(2) = 100L); // long

 (current.myMap(240) = 10.0); // double

 (current.myMap(3) = true); // boolean

 (current.myMap(4) = SomeSymbol // symbol

 (current.myMap(5) = “Some String” // string

 (current.myMap(6) = MyAgent // agent

 (current.myMap(7) = MyObject // object

Brahms Language Specification Version 3.0 Final Page 105
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 (current.myMap(8) = unknown // unknown

 (current.myMap(“intValue”) = 10); // int

 (current.myMap(“longValue”) = 100L); // long

 (current.myMap(“doubleValue”) = 10.0); // double

 (current.myMap(“booleanValue”) = true); // boolean

 (current.myMap(“symbolValue”) = SomeSymbol // symbol

 (current.myMap(“stringValue”) = “Some String” // string

 (current.myMap(“agentReference”) = MyAgent // agent

 (current.myMap(“objectReference”) = MyObject // object

 (current.myMap(“unknownValue”) = unknown // unknown

 initial_facts:

 (current.myMap(1) = 10); // int

 (current.myMap(2) = 100L); // long

 (current.myMap(240) = 10.0); // double

 (current.myMap(3) = true); // boolean

 (current.myMap(4) = SomeSymbol // symbol

 (current.myMap(5) = “Some String” // string

 (current.myMap(6) = MyAgent // agent

 (current.myMap(7) = MyObject // object

 (current.myMap(8) = unknown // unknown

 (current.myMap(“intValue”) = 10); // int

 (current.myMap(“longValue”) = 100L); // long

 (current.myMap(“doubleValue”) = 10.0); // double

 (current.myMap(“booleanValue”) = true); // boolean

 (current.myMap(“symbolValue”) = SomeSymbol // symbol

 (current.myMap(“stringValue”) = “Some String” // string

 (current.myMap(“agentReference”) = MyAgent // agent

 (current.myMap(“objectReference”) = MyObject // object

 (current.myMap(“unknownValue”) = unknown // unknown

The numeric indices do not need to be sequential, they can be any valid positive integer
value. Any string can be used for the index of a map as well. Generally when a numeric
index value is used we refer to it as an index, when a string index value is used we refer
to it as a key. The numeric value can be referred to as a key and the string value as an
index as well so in this document will just refer to all of them as an index.

Besides defining map values through initial beliefs and facts the map values can also be
created using consequences. The following consequences show the most simplistic way
to create new map values. Just like with initial beliefs and facts any value can be
assigned to an index of a map.

 conclude((current.myMap(100) = “Some Value”));

 conclude((current.myMap(“newValue”) = 25.0));

It is also possible to change the values of an index for a map. The value can be
changed to any other value, it does not necessarily have to be of the same value type as
the previously assigned value. The following consequences show examples of this, the
first consequence just changes the value, not the type (both strings), the second
consequence changes the value type from double to boolean.

Brahms Language Specification Version 3.0 Final Page 106
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 conclude((current.myMap(100) = “Some Other Value”));

 conclude((current.myMap(“newValue”) = true));

When a value is replaced the virtual machine will first retract the old belief/fact for that
index/value pair followed by asserting the new belief/fact.

Variables declared for the workframe or thoughtframe can also be used for either or
both the index and value in a consequence. A variable that is intended to be used for
the index must be of type int or string. The variables must also be bound to a valid value
or the virtual machine will generate an error.

 variables:

 foreach(string) sKey;

 foreach(symbol) sSymbolValue;

 foreach(int) nIntValue;

 when(…)

 do {

 conclude((current.myMap(25) = sSymbolValue));

 conclude((current.myMap(sKey) = nIntValue));

 } // end do

Parameters declared for activities can also be used for either or both the index and
value in a consequence. They work in the same way as variables. The parameter must
be resolvable to a value, either an actual value passed as an argument for the
parameter or a variable passed as an argument for the parameter that is bound to a
value. An error is generated by the virtual machine if this is not the case. Parameters
used for the index of a map value must be declared to be of type int or string.

 composite_activity myActivity(string key,

 symbol symbolValue,

 int intValue) {

 workframes:

 workframe wf_myWorkframe {

 do {

 conclude((current.myMap(25) = symbolValue));

 conclude((current.myMap(key) = intValue));

 } // end do

 } // wf_myWorkframe

 } // myActivity

It is also possible to assign values to an index of a map by resolving a belief or fact on
the right hand side of a consequence. The right hand side can be an object/attribute
tuple or the right hand side can consist of a reference to the index of a map that is
resolved to a value. Again variables can be used anywhere in these consequences both
on the left and right hand side.

 conclude((current.myMap(30) = current.location));

 conclude((current.myMap(“value”) = current.myMap(“intValue”));

Brahms Language Specification Version 3.0 Final Page 107
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

It is not possible to assign a map to an index of a map. The compiler will not permit this
and will generate a compiler error. The following is not permitted:

 conclude((current.myMap(“someMap”) = current.myMap));

2.41.1.3 Using Map Values in Preconditions

The use of map values in preconditions is no different then using regular values.
Preconditions now allow you to specify an index for attributes of type map to allow for
the proper matching of beliefs in the preconditions. Variables can be declared for both
the index and the index value.

 knownval(current.myMap(1) = 10)

 knownval(current.myMap(“stringValue”) = “Some String”)

 knownval(current.myMap(1) = current.myMap(“intValue”)

 knownval(current.myMap(nIndexVar) = 10)

 knownval(nValue = current.myMap(nIndexVar))

 knownval(current manages current.myMap(“agentReference”))

 knownval(current manages current.myMap(nIndexVar))

 knownval(current.myMap = unknown)

 known(current.myMap)

 known(current.myMap(1))

 known(current.myMap(nIndexVar))

All of these preconditions are valid preconditions. The virtual machine ensures that the
variables used in these preconditions get the proper matching binding. A few notes
about the known preconditions. In the case of known(current.myMap) the precondition
will only evaluate to true if the belief (current.myMap = unknown) exists, if beliefs with
index/value pairs exist for the map then that precondition evaluates to false. For the
known precondition specifying the index the precondition will only evaluate to true if the
index value matches with a belief that has that same index value or it evaluates to true
for any index value that is matched for the index if a variable is specified for the index
that has not been bound in earlier preconditions.

Note that since map values are not typed the virtual machine will do run-time type
checking to make sure that any values resulting from the evaluation of a object-attribute-
index expression is type compatible with the opposite side of the condition if an attribute
or variable is specified or if a relation is used.

 attributes:

 public int numEmployees;

 relations:

 public BaseGroup manages;

 knownval(current.numEmployees = current.myMap(“stringValue”))

 knownval(current manages current.myMap(“intValue”))

These preconditions will generate warnings in the log file and will evaluate to false, since
the map value for the “stringValue” index is a string and not an integer and since the
map value for “intValue” is an integer and not an agent reference with the agent being a

Brahms Language Specification Version 3.0 Final Page 108
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

member of BaseGroup.

2.41.1.4 Using Map Values in Concludes

Map values can be used in the right hand side of consequences to conclude a new
value of a single valued attribute or to conclude a new value of a relation. The values of
index/value pairs are not strongly typed for maps and any value is supported. However
attributes that are not of a collection type and relations are strongly typed. Care is
therefore required when assigning a value to an attribute using a map value.

 attributes:

 public int numEmployees;

 conclude((current.numEmployees = current.myMap(“intValue”));

 conclude((current.numEmployees = current.myMap(“doubleValue”));

The first consequence will succeed since the agent currently beliefs the integer value 10
for the index “intValue” for myMap which is of the correct type for numEmployees. For
the second one however the virtual machine will generate an error in the log file since
double values are not type compatible with integers and the double value can therefore
not be assigned to numEmployees.

 relations:

 public BaseGroup manages;

 conclude((current manages current.myMap(“agentReference”));

 conclude((current manages current.myMap(“objectReference”));

In this case with the use of relations the first consequence again will succeed since the
agent currently beliefs MyAgent as the value for the index “agentReference” for myMap
which is an agent that is always a memberof BaseGroup and is therefore type
compatible with the manages relation. The second consequence however returns
MyObject from the map when using the index “objectReference” which is of type
BaseClass and not type compatible with BaseGroup. The virtual machine will generate
an error in the log file and not execute the consequence.

2.41.1.5 Copying Maps

The language makes it easy to copy the map values of one map to another map. This is
done by using consequences.

Assume that we have two attributes declared myMap and myMapCopy both of type
map. Also assume that we have assigned values to myMap already as we‟ve shown in
the examples for initial beliefs and assume that this consequence is executed for an
agent.

 conclude((current.myMapCopy = current.myMap));

Brahms Language Specification Version 3.0 Final Page 109
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

This consequence will copy all beliefs with the index/value pairs for myMap to
myMapCopy, creating the identical index/value pairs for myMapCopy. If myMapCopy
had any indices that were identical to those in myMap then the values for those indices
for myMapCopy will be replaced with those of myMap.

Before the conclude we have the following beliefs:

 (current.myMap(1) = 10)

 (current.myMap(“stringValue”) = “Some String”)

 (current.myMapCopy(1) = 50)

After the conclude we have the following beliefs:

 (current.myMap(1) = 10)

 (current.myMap(“stringValue”) = “Some String”)

 (current.myMapCopy(1) = 10)

 (current.myMapCopy(“stringValue”) = “Some String”)

The value 50 for index 1 for myMapCopy was retracted and the new value 10 was
asserted and a new belief for index “stringValue” with value “Some String” was asserted
for myMapCopy. Note that since we didn‟t specify belief or fact certainties both were
defaulted to 100% and therefore also facts were asserted for the myMapCopy
index/value pairs.

2.41.1.6 Clearing Maps

A consequence is also used to clear a map of all of its index/value pairs. This is done by
concluding the value unknown for the map attribute without specifying an index.

 conclude((current.myMap = unknown));

This retracts all index/value pair beliefs and facts for myMap and asserts the new
belief/fact:

 (current.myMap = unknown)

When a new index/value pair for this cleared map is concluded then first the unknown
belief/fact for that map is retract followed by the assertion of the new index/value pair.

2.41.1.7 Communicating Maps/Map Values

Using broadcast and communicate activities it is possible to communicate beliefs from
one agent to another. Since index/value pairs for maps are represented as beliefs they
are communicated in the same way.

In the transfer definitions of the broadcast and communicate activities either single map
values can be communicated or an entire map.

Brahms Language Specification Version 3.0 Final Page 110
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 communicate communicateMapValues(string key, SomeGroup agt) {

 …

 about:

 send(current.myMap(1) = unknown),

 send(current.myMap(“intValue”) = unknown),

 send(current.myMap(key) = unknown),

 send(current.myMap = unknown),

 receive(agt.otherMap(1) = unknown),

 receive(agt.otherMap(“intValue” = unknown),

 receive(agt.otherMap(key) = unknown),

 receive(agt.otherMap = unknown);

 } // communicateMapValues

When an index is specified only the belief matching the OA(index) will be sent/received.
The index can be specified using a parameter declared for the activity. If no index is
specified for the map all beliefs about the map will be sent/received. This makes it easy
to send/receive the entire contents of a map.

2.41.1.8 Detecting Map Values

Map values can also be detected in detectables and can be used to trigger detectable
actions. They operate in a similar way as in preconditions. For detection of facts on the
left hand side of the detectable condition is relevant. On that left hand side can be
specified whether a single map value is to be detected by specifying the index for the
map value to be detected or whether all map values need to be detected.

 detect((current.myMap(1) = unknown));

 detect((current.myMap(“intValue”) = unknown));

 detect((current.myMap(someVariable) = unknown));

 detect((current.myMap = unknown));

The first three detectable conditions detect a single value, with the third one using a
variable to specify the index to be detected. That variable must have been bound in the
preconditions. The last detectable condition detects all map values for myMap.

For triggers the right hand side value must match with the detected belief or belief
matching the left hand side. The right hand side of the detectable can also specify a
reference to a map value. The following are all valid detectable/trigger conditions.

 detect((current.myMap(1) = current.myMap(“intValue”));

 detect((current.numEmployees = current.myMap(1));

 detect((current manages current.myMap(“agentReference”));

In the last two conditions there is a potential for type mismatch. For the condition using an
attribute on the left hand side no warnings or errors are generated if there is a type mismatch.
The virtual machine just compares the right hand side value of the belief matching
(current.numEmployees = ?) with the right hand side value of the belief (current.myMap(1) = ?).
If they match the detectable action is triggered, if not the action is not performed. For the
condition using a relation a warning is generated if the map value is not type compatible with
the relation due to the fact that relations are handled differently then attributes by the virtual

Brahms Language Specification Version 3.0 Final Page 111
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

machine. The detectable action is not triggered in that case, only when the resulting reference
matches that of the right hand side reference of the belief (current manages ?).

2.42 JAVA INTEGRATION

The Brahms language supports several forms of integration with the Java language:

1. Brahms has built-in types that correspond to the primitive Java types: byte, char,
short, int, long, float, double, and Boolean. The Brahms string and symbol types
correspond to the Java String type (see the Attribute (ATT) section).

2. A Brahms attribute, variable, or parameter can be declared to have a Java type
that is either a Java class or interface. Values of the attribute, variable, or
parameter are then required to be Java objects of that type (see the Attribute
(ATT), Variable (VAR), and Primitive Activity (PAC) sections).

3. The bodies of Java workframes can contain references to a special kind of
activity that is implemented by user-defined Java code (see the Java Activity
(JAC) section).

4. Brahms supports beliefs and facts about the values of the properties of a Java
object (see the Consequence (CON) section).

5. The bodies of Brahms workframes can contain occurrences of a subset of Java
expressions, including method invocations, constructor invocations, array
creation and references (see the Java Expression (JAV) section).

This section presents an extended example illustrating 1, 2, 4, and 5. The example is a
simplistic hiring scenario in which a manager considers two persons for a position,
selects one as a candidate, and refers that person to an HR manager. A manager is
represented by an agent belonging to the Brahms Manager group, but the persons
considered for the position are represented by instances of the Person Java class.
Brahms code for the example is listed in Appendix A.1 and Java code for the Person
class is listed in Appendix A.3.

In order to reference Java types without having to use fully qualified names, the Brahms
source file uses several jimport statements (see the Import Statement (IMP) section):

jimport brahms.base.util.Log;

jimport gov.nasa.arc.brahms.example.Person;

jimport java.util.List;

jimport java.util.ArrayList;

jimport java.util.Collections;

These statements reference a Java utility class that provides logging functionality, the
example Person class, and classes and interfaces from the Java Collections Framework
that will be used in the example.

Brahms Language Specification Version 3.0 Final Page 112
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

The Brahms Manager group declares two attributes:

group Manager {

 attributes:

 public java(Person) selected;

 public Manager hrRep;

The „selected‟ attribute is declared to have a Java type; it will have as its value the
candidate Person object selected for hiring. The „hrRep‟ attribute has as its type the
Brahms Manager group. A line manager will have as the value of its „hrRep‟ attribute
the HR manager to whom it should refer a selected candidate.

The main workframe in the example is „create_and_refer‟, which is executed by a
Manager to create two candidate Person objects, select one, and then refer the selected
candidate to the appropriate HR manager:

 workframes:

workframe create_and_refer {

 variables:

 forone(Manager) hrguy;

 when ((current.hrRep = hrguy))

 do {

 java(Person) oCandidate = new Person("Wally");

 java(List<Person>)loCandidates

= new ArrayList<Person>();

 loCandidates.add(oCandidate);

 Log.info("%s added %s", current, oCandidate);

 oCandidate = new Person("Dilbert");

 loCandidates.add(oCandidate);

 Log.info("%s added %s", current, oCandidate);

 Collections.sort(loCandidates);

 java(Person) oSelected = loCandidates.get(0);

 conclude(oSelected {name,available},

 {bc:100, fc:100});

 oSelected.setAvailable(true);

 refer(oSelected, hrguy);

}

} // create_and_refer

The „create_and_refer‟ workframe will be executed for a Manager agent that has an
associated HR manager. We will now consider each of the body elements of the
„create_and_refer‟ workframe in turn:

 java(Person) oCandidate = new Person("Wally");

is an example of a local variable declaration with an initializer expression (see the
Variable (VAR) section). The oCandidate variable is declared to have the Java type
Person and is initialized to hold a reference to a newly created instance of Person with
name “Wally”.

java(List<Person>) loCandidates = new ArrayList<Person>();

Brahms Language Specification Version 3.0 Final Page 113
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Next, a local variable named „loCandidates‟ is declared to have a Java type that is the
generic type java.util.List with a type parameter that is the Person class. This is an
example of how the Java Collections framework may be used with Brahms. The
loCandidates variable is initialized with a newly created instance of the java.util.ArrayList
implementation class. The loCandidates variable will be used to accumulate a List of
candidate Person objects.

loCandidates.add(oCandidate);

adds the value of the oCandidate variable to the List of candidate Persons. This is an
example of invoking a Java instance method on a Java target object – in this case, the
List that is the value of the loCandidates variable.

 Log.info("%s added %s", current, oCandidate);

invokes the „info‟ static method of the Log class to write out a message to the console
and to the Brahms log file. The „info‟ and „debug‟ static methods of the Log utility class
use the Java format string conventions for their first argument.

The next three statements:

oCandidate = new Person("Dilbert");

loCandidates.add(oCandidate);

Log.info("%s added %s", current, oCandidate);

create a second candidate Person object named “Dilbert”, add it to the list of candidates,
and write out a log message. Note that, unlike a variable declared in the variables:
section of a workframe, a local variable can be assigned a new value even if it already
has a value.

To select from the list of candidate Person objects, we will rely on the fact that the
Person class implements the Comparable interface and use a static sort method from
the java.io.Collections class to order the list with the most promising candidate
appearing first in the list. For this simplistic example, Person objects are ordered based
on the lexicographic ordering of their names. An expanded example could use more
realistic criteria for the ordering.

 Collections.sort(loCandidates);

Once the list of candidates has been sorted, we can bind a local variable to the first
element of the list:

 java(Person) oSelected = loCandidates.get(0);

http://java.sun.com/javase/6/docs/api/java/util/Formatter.html#syntax

Brahms Language Specification Version 3.0 Final Page 114
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

So far, the „create_and_refer‟ workframe has created two new Java objects, added them
to a list, and sorted the list. In order for Brahms to be able to trigger workframes and
thoughtframes based on the properties of a Java object, the values of those properties
must be mirrored as Brahms beliefs and/or facts. This can be done with a conclude
statement:

conclude(oSelected {name,available}, {bc:100, fc:100});

As described in the Consequence (CON) section, this will retrieve the values of the
name and available properties from the selected Person object and create
corresponding beliefs in the Manager agent‟s belief set and facts in the world state. In
addition, the agent will be registered as a PropertyChangeListener on that Person object
so that future updates to the name and available properties will cause corresponding
updates to the beliefs and facts.

When initially created, a Person object has the default value of false for the available
property. To assert that the selected candidate is available, a second conclude
statement could be used:

conclude(oSelected {available: true}, {bc:100, fc:100});

Instead, we illustrate the change detection functionality by making a direct call to a Java
set method:

oSelected.setAvailable(true);

This call could also have been made from a Java activity. In either case calling the
setAvailable method will cause the agent to be notified of the change so that it can
update the belief and/or fact representing the value of the available property.

Now that a candidate Person has been selected and beliefs for its properties have been
concluded, the selected candidate can be referred to the HR manager using an activity
reference:

 refer(oSelected, hrguy);

The refer activity has the definition:

activities:

 communicate refer(java(Person) selected, Manager referTo) {

 max_duration: 100;

 type: phone;

 with: referTo;

 about: send(selected.name = ?),

 send(selected.available = ?);

 } // refer

Brahms Language Specification Version 3.0 Final Page 115
TM99-0008 12/2/2009 Language Definition

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

This illustrates how beliefs about the selected Java object can be communicated to
another Brahms agent.

Finally, the update_selected workframe shows how beliefs about a Java object‟s
properties can trigger further activity:

workframe update_selected {

 variables:

 foreach(java(Person)) person;

 foreach(string) name;

 when ((person.available = true) and

 (person.name = name))

 do {

 conclude((current.selected = person), bc:100, fc:0);

 Log.info("%s has a selected candidate: %s",

 current, name);

 delete person;

 }

} // update selected

This workframe relies on the fact that only the selected candidate Person object has had
beliefs created for its properties and had its available property set to true. When fired,
the update_selected workframe concludes a value for the Manager agent‟s selected
attribute and logs a message to that effect. It also calls the delete operation on the
selected Person object (see the Delete (DEL) section). This retracts any beliefs that the
agent has involving that particular Person object and, if no other agent has any beliefs
remaining that involve that object, it also retracts any facts involving the object from the
world state. The purpose of using the delete operation on a Java object is to remove
the agent‟s references to the object when an agent is finished with it so that the Java
object may eventually be garbage collected by the Java VM when no references to it
remain.

Brahms Language Specification Version 3.0 Final Page 116
TM99-0008 12/2/2009 Keywords

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

3. KEYWORDS

This chapter gives an overview of all the keywords defined for the Brahms language.
None of these keywords can be used as identifiers when building models.

ActiveClass delete move

ActiveConcept destination name

ActiveInstance detect new

Agent detectable nowork

Area detectables not

AreaDef detectArrivalIn object

Class detectArrivalInSubAreas package

Concept detectDepartureIn partof

ConceptualClass detectDepartureInSubAreas path

ConceptualConcept display primitive_activity

ConceptualObject distance priority

GeographyConcept div private

Group do protected

Object double public

abort end_activity put

about end_condition quantity

action extends random

activities factframe receive

agent false relation

and fc relations

area float repeat

area1 foreach resource

area2 forone resources

areadef gesture send

assigned get short

attributes group source

bc impasse string

boolean import super

broadcast icon symbol

byte inhabitants then

char initial_beliefs thoughtframe

class initial_facts thoughtframes

collectall instanceof time_unit

communicate int to

complete is toSubAreas

composite_activity java true

conceptual_class jimport type

conceptual_object known unassigned

Brahms Language Specification Version 3.0 Final Page 117
TM99-0008 12/2/2009 Keywords

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

conclude knownval unknown

continue listof variables

cost location with

create_agent long when

create_area map whenever

create_object max_duration workframe

current memberof workframes

dataframe min_duration

dc mod

Brahms Language Specification Version 3.0 Final Page 118
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

4. BASE MODEL

Every Brahms model will import this Base Model into its model. No explicit import
statement is required for importing the Base Model. In this chapter the Base Model is
defined using the syntax as described in this document.

/*

 * The base model is the base for every model to be build in

 * Brahms. This model contains standard relations, attributes,

 * etc. required for a basic model. This model is imported/merged by

 * default.

 */
/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)1997-2007 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package brahms.base;

/**

 * This group serves as the base for every group and agent in a brahms

 * model and provides groups and agents with a minimum work set.

 *

 * library brahms.base

 */

group BaseGroup {

 attributes:

 public BaseAreaDef location;

 relations:

 public Group isMemberOf;

 public ActiveConcept contains;

 public Exception thrownException;

 activities:

 //

 // ***** Directory Activities *****

 //

 /**

 * The findAgent activity tries to locate and load an agent or agent reference.

 * A search strategy can be specified to indicate where the activity

 * can search for the agent, memory, disk and/or in the directory service.

 * <p>

 * Five different strategies are supported for finding an agent:

 *

 * MEMORY - only look into the model's cache for the instance

 * don't load it from disk or the directory service

 * MEMORY_DISK - first look for the instance in the model's cache,

 * if it doesn't exist load it from the local disk

 * MEMORY_DIRECTORY - first look for the instance in the model's cache,

 * if it doesn't exist try to locate it in the directory

 * service and load a reference to it <bold>(default)</bold>

 * MEMORY_DISK_DIRECTORY - first look for the instance in the model's

 * cache, if it doesn't exist try to load if from the local disk,

 * if it can't be found there, try to locate it in the directory

 * service and load a reference to it

 * MEMORY_DIRECTORY_DISK - first look for the instance in the model's

 * cache, if it doesn't exist try to locate it in the directory

 * service and load a reference to it, if it can't be found in the

 * directory service try to load if from the local disk

 *

 *

Brahms Language Specification Version 3.0 Final Page 119
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 * @param name the fully qualified name of the agent to be found

 * @param strategy the search strategy to be used

 * @return agt a variable to store the located agent

 * @return success a boolean variable indicating success or failure for the search

 */

 java findAgent(string name, symbol strategy, ActiveInstance agt, boolean success) {

 max_duration: 1;

 class: "brahms.base.directory.FindAgent";

 when: start;

 } // findAgent

 /**

 * The findObject activity tries to locate and load an object or object reference.

 * A search strategy can be specified to indicate where the activity

 * can search for the object, memory, disk and/or in the directory service.

 * <p>

 * Five different strategies are supported for finding an object:

 *

 * MEMORY - only look into the model's cache for the instance

 * don't load it from disk or the directory service

 * MEMORY_DISK - first look for the instance in the model's cache,

 * if it doesn't exist load it from the local disk

 * MEMORY_DIRECTORY - first look for the instance in the model's cache,

 * if it doesn't exist try to locate it in the directory

 * service and load a reference to it <bold>(default)</bold>

 * MEMORY_DISK_DIRECTORY - first look for the instance in the model's

 * cache, if it doesn't exist try to load if from the local disk,

 * if it can't be found there, try to locate it in the directory

 * service and load a reference to it

 * MEMORY_DIRECTORY_DISK - first look for the instance in the model's

 * cache, if it doesn't exist try to locate it in the directory

 * service and load a reference to it, if it can't be found in the

 * directory service try to load if from the local disk

 *

 *

 * @param name the fully qualified name of the object to be found

 * @param strategy the search strategy to be used

 * @return obj a variable to store the located object

 * @return success a boolean variable indicating success or failure for the search

 */

 java findObject(string name, symbol strategy, ActiveInstance obj, boolean success) {

 max_duration: 1;

 class: "brahms.base.directory.FindObject";

 when: start;

 } // findObject

 //

 // ***** Agent Activities *****

 //

 /**

 * The createExternalAgent activity dynamically creates a new

 * external agent. It requires the fully qualified Java class

 * name with the implementation for the Java agent and optionally

 * specify the base name to assign to the external agent. The

 * Brahms virtual machine will add additional information to the

 * name to guarantee name uniqueness.

 * <p>

 * The Java class must implement the Java interface:

 * <code>gov.nasa.arc.brahms.vm.api.jagt.IExternalAgent</code>

 *

 * @param classname the fully qualified Java classname with the agent's

 * implementation (must implement IExternalAgent)

 * @param agentname the base name to be assigned to the agent

 * @return out the reference to the created agent

 */

 java createExternalAgent(string classname, string agentname, ActiveInstance out) {

 class: "brahms.base.system.CreateExternalAgentActivity";

 } // createExternalAgent

 /**

 * The createExternalAgent activity dynamically creates a new

 * external agent. It requires the fully qualified Java class

 * name with the implementation for the Java agent and optionally

 * specify the base name to assign to the external agent. The

 * Brahms virtual machine will add additional information to the

 * name to guarantee name uniqueness.

 * <p>

Brahms Language Specification Version 3.0 Final Page 120
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 * The Java class must implement the Java interface:

 * <code>gov.nasa.arc.brahms.vm.api.jagt.IExternalAgent</code>

 *

 * @param classname the fully qualified Java classname with the agent's

 * implementation (must implement IExternalAgent)

 * @param agentname the base name to be assigned to the agent

 * @return out the reference to the created agent

 * @return outfqn the qualified name assigned to the agent

 */

 java createExternalAgent(string classname, string agentname, ActiveInstance out, symbol outfqn) {

 class: "brahms.base.system.CreateExternalAgentActivity";

 } // createExternalAgent

 //

 // ***** Belief and Fact Activities *****

 //

 /**

 * The readBeliefs activity allows an agent to read beliefs

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to read beliefs

 * @param attribute the name of the attribute or relation about which

 * to read beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java readBeliefs(Concept subject, string attribute) {

 class: "brahms.base.system.ReadBeliefsActivity";

 } // readBeliefs

 /**

 * The retractBelief activity allows an agent to retract beliefs

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to retract a belief

 * @param attribute the name of the attribute or relation about which

 * to retract beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java retractBelief(Concept subject, string attribute) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the belief retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractBeliefsActivity";

 when: start;

 } // retractBelief

 /**

 * The retractBeliefValue activity allows an agent to retract beliefs

 * about a specified subject's attribute or relation and value.

 *

 * @param subject the Concept about which to retract a belief

 * @param attribute the name of the attribute or relation about which

 * to retract beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 * @param value the optional Concept value to be retracted when a

 * relation is used, by default all values for the relation

 * are removed

 */

 java retractBeliefValue(Concept subject, symbol attribute, Concept value) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the belief retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractBeliefsActivity";

 when: start;

 } // retractBeliefValue

 /**

Brahms Language Specification Version 3.0 Final Page 121
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 * The retractFact activity allows an agent to retract facts

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to retract a fact

 * @param attribute the name of the attribute or relation about which

 * to retract facts, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java retractFact(Concept subject, string attribute) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the fact retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractFactsActivity";

 when: start;

 } // retractFact

 /**

 * The retractFactValue activity allows an agent to retract facts

 * about a specified subject's attribute or relation and value.

 *

 * @param subject the Concept about which to retract a fact

 * @param attribute the name of the attribute or relation about which

 * to retract facts, this attribute or relation must be

 * declared for the type of the declared subject

 * @param value the optional Concept value to be retracted when a

 * relation is used, by default all values for the relation

 * are removed

 */

 java retractFactValue(Concept subject, symbol attribute, Concept value) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the fact retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractFactsActivity";

 when: start;

 } // retractFactValue

} // BaseGroup

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)1997-2007 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package brahms.base;

/**

 * class BaseClass

 *

 * This class serves as the base for every class in a brahms model

 * and provides classes with a minimum work set.

 *

 * library brahms.base

 */

class BaseClass {

 attributes:

 public BaseAreaDef location;

 relations:

 public Class isInstanceOf;

Brahms Language Specification Version 3.0 Final Page 122
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 public ActiveConcept contains;

 public Exception thrownException;

 activities:

 //

 // ***** Directory Activities *****

 //

 /**

 * The findAgent activity tries to locate and load an agent or agent reference.

 * A search strategy can be specified to indicate where the activity

 * can search for the agent, memory, disk and/or in the directory service.

 * <p>

 * Five different strategies are supported for finding an agent:

 *

 * MEMORY - only look into the model's cache for the instance

 * don't load it from disk or the directory service

 * MEMORY_DISK - first look for the instance in the model's cache,

 * if it doesn't exist load it from the local disk

 * MEMORY_DIRECTORY - first look for the instance in the model's cache,

 * if it doesn't exist try to locate it in the directory

 * service and load a reference to it <bold>(default)</bold>

 * MEMORY_DISK_DIRECTORY - first look for the instance in the model's

 * cache, if it doesn't exist try to load if from the local disk,

 * if it can't be found there, try to locate it in the directory

 * service and load a reference to it

 * MEMORY_DIRECTORY_DISK - first look for the instance in the model's

 * cache, if it doesn't exist try to locate it in the directory

 * service and load a reference to it, if it can't be found in the

 * directory service try to load if from the local disk

 *

 *

 * @param name the fully qualified name of the agent to be found

 * @param strategy the search strategy to be used

 * @return agt a variable to store the located agent

 * @return success a boolean variable indicating success or failure for the search

 */

 java findAgent(string name, symbol strategy, ActiveInstance agt, boolean success) {

 max_duration: 1;

 class: "brahms.base.directory.FindAgent";

 when: start;

 } // findAgent

 /**

 * The findObject activity tries to locate and load an object or object reference.

 * A search strategy can be specified to indicate where the activity

 * can search for the object, memory, disk and/or in the directory service.

 * <p>

 * Five different strategies are supported for finding an object:

 *

 * MEMORY - only look into the model's cache for the instance

 * don't load it from disk or the directory service

 * MEMORY_DISK - first look for the instance in the model's cache,

 * if it doesn't exist load it from the local disk

 * MEMORY_DIRECTORY - first look for the instance in the model's cache,

 * if it doesn't exist try to locate it in the directory

 * service and load a reference to it <bold>(default)</bold>

 * MEMORY_DISK_DIRECTORY - first look for the instance in the model's

 * cache, if it doesn't exist try to load if from the local disk,

 * if it can't be found there, try to locate it in the directory

 * service and load a reference to it

 * MEMORY_DIRECTORY_DISK - first look for the instance in the model's

 * cache, if it doesn't exist try to locate it in the directory

 * service and load a reference to it, if it can't be found in the

 * directory service try to load if from the local disk

 *

 *

 * @param name the fully qualified name of the object to be found

 * @param strategy the search strategy to be used

 * @return obj a variable to store the located object

 * @return success a boolean variable indicating success or failure for the search

 */

 java findObject(string name, symbol strategy, ActiveInstance obj, boolean success) {

 max_duration: 1;

 class: "brahms.base.directory.FindObject";

 when: start;

 } // findObject

Brahms Language Specification Version 3.0 Final Page 123
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 //

 // ***** Agent Activities *****

 //

 /**

 * The createExternalAgent activity dynamically creates a new

 * external agent. It requires the fully qualified Java class

 * name with the implementation for the Java agent and optionally

 * specify the base name to assign to the external agent. The

 * Brahms virtual machine will add additional information to the

 * name to guarantee name uniqueness.

 * <p>

 * The Java class must implement the Java interface:

 * <code>gov.nasa.arc.brahms.vm.api.jagt.IExternalAgent</code>

 *

 * @param classname the fully qualified Java classname with the agent's

 * implementation (must implement IExternalAgent)

 * @param agentname the base name to be assigned to the agent

 * @return out the reference to the created agent

 */

 java createExternalAgent(string classname, string agentname, ActiveInstance out) {

 class: "brahms.base.system.CreateExternalAgentActivity";

 } // createExternalAgent

 /**

 * The createExternalAgent activity dynamically creates a new

 * external agent. It requires the fully qualified Java class

 * name with the implementation for the Java agent and optionally

 * specify the base name to assign to the external agent. The

 * Brahms virtual machine will add additional information to the

 * name to guarantee name uniqueness.

 * <p>

 * The Java class must implement the Java interface:

 * <code>gov.nasa.arc.brahms.vm.api.jagt.IExternalAgent</code>

 *

 * @param classname the fully qualified Java classname with the agent's

 * implementation (must implement IExternalAgent)

 * @param agentname the base name to be assigned to the agent

 * @return out the reference to the created agent

 * @return outfqn the qualified name assigned to the agent

 */

 java createExternalAgent(string classname, string agentname, ActiveInstance out, symbol outfqn) {

 class: "brahms.base.system.CreateExternalAgentActivity";

 } // createExternalAgent

 //

 // ***** Belief and Fact Activities *****

 //

 /**

 * The readBeliefs activity allows an agent to read beliefs

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to read beliefs

 * @param attribute the name of the attribute or relation about which

 * to read beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java readBeliefs(Concept subject, string attribute) {

 class: "brahms.base.system.ReadBeliefsActivity";

 } // readBeliefs

 /**

 * The retractBelief activity allows an agent to retract beliefs

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to retract a belief

 * @param attribute the name of the attribute or relation about which

 * to retract beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java retractBelief(Concept subject, string attribute) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the belief retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

Brahms Language Specification Version 3.0 Final Page 124
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractBeliefsActivity";

 when: start;

 } // retractBelief

 /**

 * The retractBeliefValue activity allows an agent to retract beliefs

 * about a specified subject's attribute or relation and value.

 *

 * @param subject the Concept about which to retract a belief

 * @param attribute the name of the attribute or relation about which

 * to retract beliefs, this attribute or relation must be

 * declared for the type of the declared subject

 * @param value the optional Concept value to be retracted when a

 * relation is used, by default all values for the relation

 * are removed

 */

 java retractBeliefValue(Concept subject, symbol attribute, Concept value) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the belief retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractBeliefsActivity";

 when: start;

 } // retractBeliefValue

 /**

 * The retractFact activity allows an agent to retract facts

 * about a specified subject's attribute or relation.

 *

 * @param subject the Concept about which to retract a fact

 * @param attribute the name of the attribute or relation about which

 * to retract facts, this attribute or relation must be

 * declared for the type of the declared subject

 */

 java retractFact(Concept subject, string attribute) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the fact retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractFactsActivity";

 when: start;

 } // retractFact

 /**

 * The retractFactValue activity allows an agent to retract facts

 * about a specified subject's attribute or relation and value.

 *

 * @param subject the Concept about which to retract a fact

 * @param attribute the name of the attribute or relation about which

 * to retract facts, this attribute or relation must be

 * declared for the type of the declared subject

 * @param value the optional Concept value to be retracted when a

 * relation is used, by default all values for the relation

 * are removed

 */

 java retractFactValue(Concept subject, symbol attribute, Concept value) {

 // max_duration set to 1 and when set to start to ensure that

 // retraction takes place before the end of the activity, otherwise

 // if the activity is the last activity in a repeatable workframe

 // the fact retraction event is scheduled just after the end

 // workframe event, which results in the workframe becoming

 // available again and after being available it is made unavailable,

 // this context switch is unnecessary

 max_duration: 1;

 class: "brahms.base.system.RetractFactsActivity";

 when: start;

 } // retractFactValue

Brahms Language Specification Version 3.0 Final Page 125
TM99-0008 12/2/2009 Base Model

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

} // BaseClass

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)1997-1999 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package brahms.base;

/**

 * This class serves as the base for every conceptual class in a

 * brahms model and provides conceptual classes with a minimum work set.

 *

 * library brahms.base

 */

conceptual_class BaseConceptualClass {

 relations:

 public BaseClass isAConceptualObjectOf;

} // BaseConceptualClass

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)1997-2001 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package brahms.base;

/**

 * areadef BaseAreaDef

 *

 * This areadef serves as the base for every area definition in a

 * brahms model and provides conceptual classes with a minimum work set.

 *

 * library brahms.base

 */

areadef BaseAreaDef {

 relations:

 public BaseAreaDef isSubAreaOf;

 public BaseAreaDef hasSubArea;

} // BaseAreaDef

Brahms Language Specification Version 3.0 Final Page 126
TM99-0008 12/2/2009 Appendix A: Java Integration Example

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

APPENDIX A: JAVA INTEGRATION EXAMPLE

A.1 Brahms Group and Agent Definitions

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)2009 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package example;

/**

 * The RecruitExample model shows how Java objects can be created and

 * referenced in a Brahms model. This example defines a Manager group

 * with a communicate activty named refer for referring a candidate to

 * an HR manager, and workframes create_and_refer, report_person, and

 * update selected

 *

 * Build this example using the Brahms compiler V3.0 alpha

 * and then run the example using the Brahms virtual machine

 * V3.0 alpha. Make sure to include the path of this example

 * in the library path of the compiler and the virtual machine (modify

 * the vm.cfg file). Also make sure that the build path of the java

 * class Person is in the class path of the java virtual machine. You can

 * add the build path to the virtual machine's classpath by editing the

 * vm.cfg file. Add an entry 'class_path=<your path>'. If the entry

 * is already present, modify it to include your class path.

 **/

jimport brahms.base.util.Log;

jimport gov.nasa.arc.brahms.example.Person;

jimport java.util.List;

jimport java.util.ArrayList;

jimport java.util.Collections;

group Manager {

 attributes:

 public java(Person) selected;

 public Manager hrRep;

 activities:

 /** Communicates beliefs about the candidate Person to a Manager */

 communicate refer(java(Person) candidate, Manager referTo) {

 max_duration: 100;

 type: phone;

 with: referTo;

 about: send(candidate.name = ?),

 send(candidate.available = ?);

 } // refer

 workframes:

 /**

 * Creates two instances of the Java Person class, adds them to a list, sorts the list,

 * and the picks the first element of the list to refer to the manager's HR representative.

 */

 workframe create_and_refer {

 variables:

 forone(Manager) hrguy;

 when ((current.hrRep = hrguy))

 do {

java(Person) oCandidate = new Person("Wally");

java(List<Person>)loCandidates = new ArrayList<Person>();

loCandidates.add(oCandidate);

Log.info("%s added %s", current, oCandidate);

oCandidate = new Person("Dilbert");

loCandidates.add(oCandidate);

Brahms Language Specification Version 3.0 Final Page 127
TM99-0008 12/2/2009 Appendix A: Java Integration Example

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

Log.info("%s added %s", current, oCandidate);

Collections.sort(loCandidates);

java(Person) oSelected = loCandidates.get(0);

conclude(oSelected {name,available}, {bc:100, fc:100});

oSelected.setAvailable(true);

 refer(oSelected, hrguy);

 }

 } // create_and_refer

 workframe report_person {

 priority: 10;

 variables:

 foreach(java(Person)) person;

 foreach(string) name;

 foreach(boolean) available;

 when ((person.name = name) and

 (person.available = available))

 do {

 Log.info("%s knows about %s with availability %b", current, name, available);

 }

 } // report_person

 workframe update_selected {

 variables:

 foreach(java(Person)) person;

 foreach(string) name;

 when ((person.available = true) and

 (person.name = name))

 do {

 conclude((current.selected = person), bc:100, fc:0);

 Log.info("%s has a selected candidate: %s", current, name);

 delete person;

 }

 } // update selected

} // Manager

agent PointyHair memberof Manager {

 initial_beliefs:

 (current.hrRep = Catbert);

 (current.selected = unknown);

} // PointyHair

agent Catbert memberof Manager {

} // Catbert

A.2 Java Person Class Definition

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)2009 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package gov.nasa.arc.brahms.example;

/**

* A simple class representing a a person who is a potential hire

* with name and availability properties

*/

public class Person implements Comparable<Person> {

 /*

 * Constructors

 */

 /**

 * Construct a new Person object with default name and availability

 */

 public Person() {

 } // Person

 /**

 * Construct a new Person object with the given name

Brahms Language Specification Version 3.0 Final Page 128
TM99-0008 12/2/2009 Appendix A: Java Integration Example

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 *

 * @param name the person's name

 */

 public Person(String name) {

 m_sName = name;

 } // Person

 /*

 * Instance Attributes

 */

 /** The person's name */

 private String m_sName = "Jack";

 /** Whether the person is currently available */

 private boolean m_bAvailable = false;

 /*

 * Instance Methods

 */

 /**

 * Set the person's name

 *

 * @param the String name to be set for the person

 */

 public void setName(String name) {

 m_sName = name;

 } // setName

 /**

 * Retrieve the person's name

 *

 * @return String the person's name

 */

 public String getName() {

 return m_sName;

 } // getName

 /**

 * Sets whether the person is available for hire

 *

 * @param avail true if available for hire, else false

 */

 public void setAvailable(boolean avail) {

 m_bAvailable = avail;

 } // setAvailable

 /**

 * Determines whether the person is available for hire

 *

 * @return boolean true if available for hire, else false

 */

 public boolean isAvailable() {

 return m_bAvailable;

 } // isAvailable

 /**

 * Compares this Person with the specified Person for order. Returns a

 * negative integer, zero, or a positive integer as this Person is less

 * than, equal to, or greater than the specified Person

 * @param other the Person to be compared to

 * @return -1 if this Person comes before the specified Person, 0 if

 * this Person is equal in the ordering, 1 if this Person comes

 * after the specified Person

 * @see java.lang.Comparable#compareTo(java.lang.Object)

 */

 public int compareTo(Person other) {

 return m_sName.compareTo(other.m_sName);

 } // compareTo

 /**

 * Return a string representation of this Person

 *

 * @return String the string representing this Person

 */

 public String toString() {

 return m_sName;

 } // toString

} // Person

Brahms Language Specification Version 3.0 Final Page 129
TM99-0008 12/2/2009 Appendix A: Java Integration Example

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

A.3 Java Person Class with PropertyChangeSupport

/**

 * NASA CONFIDENTIAL INFORMATION *

 * (c)2009 Nasa Ames Research Center *

 * All Rights Reserved *

 * *

 * This program contains confidential and proprietary information *

 * of NASA Ames Research Center, any reproduction, disclosure, *

 * or use in whole or in part is expressly prohibited, except as *

 * may be specifically authorized by prior written agreement. *

 * *

 **/

package gov.nasa.arc.brahms.example;

import java.beans.PropertyChangeListener;

import java.beans.PropertyChangeSupport;

/**

* A simple class representing a a person who is a potential hire

* with name and availability properties. The class has been augmented

* with PropertyChangeSupport.

*/

public class Person implements Comparable<Person> {

 /*

 * Constructors

 */

 /**

 * Construct a new Person object with default name and availability

 */

 public Person() {

 } // Person

 /**

 * Construct a new Person object with the given name

 *

 * @param name the person's name

 */

 public Person(String name) {

 m_sName = name;

 } // Person

 /*

 * Instance Attributes

 */

 /** The person's name */

 private String m_sName = "Jack";

 /** Whether the person is currently available */

 private boolean m_bAvailable = false;

 /**

 * Contains a PropertyChangeSupport instance to support notification of listeners

 * when Person properties are changed.

 */

 private PropertyChangeSupport m_oPCS = new PropertyChangeSupport(this);

 /*

 * Instance Methods

 */

 /**

 * Set the person's name

 *

 * @param the String name to be set for the person

 */

 public void setName(String name) {

 String sOldValue = m_sName;

 m_sName = name;

 m_oPCS.firePropertyChange("name", sOldValue, m_sName);

 } // setName

 /**

 * Retrieve the person's name

 *

 * @return String the person's name

 */

 public String getName() {

 return m_sName;

 } // getName

Brahms Language Specification Version 3.0 Final Page 130
TM99-0008 12/2/2009 Appendix A: Java Integration Example

Printed on: This is an uncontrolled copy when printed.

12/2/09 11:00 AM Refer to the NX Brahms location for the latest version.

NOTICE: Not for use or disclosure outside of NASA Ames Research Center except under written agreement.

© 1999-2009 NASA Ames Research Center. All Rights Reserved.

 /**

 * Sets whether the person is available for hire

 *

 * @param avail true if available for hire, else false

 */

 public void setAvailable(boolean avail) {

 boolean bOldValue = m_bAvailable;

 m_bAvailable = avail;

 m_oPCS.firePropertyChange("available", bOldValue, m_bAvailable);

 } // setAvailable

 /**

 * Determines whether the person is available for hire

 *

 * @return boolean true if available for hire, else false

 */

 public boolean isAvailable() {

 return m_bAvailable;

 } // isAvailable

 /**

 * Adds a PropertyChangeListener to the list of property change listeners.

 * The listener is registered for all properties.

 *

 * @param listener a PropertyChangeListener instance that implements a propertyChange method

 * @see java.beans.PropertyChangeSupport#addPropertyChangeListener(PropertyChangeListener)

 * @see java.beans.PropertyChangeListener

 */

 public void addPropertyChangeListener(PropertyChangeListener listener) {

 m_oPCS.addPropertyChangeListener(listener);

 } // addPropertyChangeListener

 /**

 * Removes a PropertyChangeListener for a PropertySupport bean's list of property change listeners.

 * The listener is unregistered for all properties.

 *

 * @param listener a PropertyChangeListener instance that implements a propertyChange method

 * @see java.beans.PropertyChangeSupport#removePropertyChangeListener(String,

PropertyChangeListener)

 * @see java.beans.PropertyChangeListener

 */

 public void removePropertyChangeListener (PropertyChangeListener listener) {

 m_oPCS.removePropertyChangeListener(listener);

 } // removePropertyChangeListener

 /**

 * Compares this Person with the specified Person for order. Returns a

 * negative integer, zero, or a positive integer as this Person is less

 * than, equal to, or greater than the specified Person

 * @param other the Person to be compared to

 * @return -1 if this Person comes before the specified Person, 0 if

 * this Person is equal in the ordering, 1 if this Person comes

 * after the specified Person

 * @see java.lang.Comparable#compareTo(java.lang.Object)

 */

 public int compareTo(Person other) {

 return m_sName.compareTo(other.m_sName);

 } // compareTo

 /**

 * Return a string representation of this Person

 *

 * @return String the string representing this Person

 */

 public String toString() {

 return m_sName;

 } // toString

} // Person

	BRAHMS
	TM99-0008
	Version 3.0 Final
	2 December 2009
	Technical Memorandum
	CONTACT
	ABSTRACT
	This document describes the Brahms language. It specifies the language in the Backus-Naur Form. This document specifies all language constructs in the Brahms language syntactically and semantically. Models written using this version of the language sp...
	Date: 2 December 2009
	Keywords: Brahms, Language, Backus-Naur Form, Syntax, Semantics, Element Description
	Contributors
	Approved
	Revision History
	Tables
	Introduction
	Purpose
	Usage of this document
	Intended Audience
	Summary

	Language Definition
	Identifiers (ID)
	Compilation Unit (CUN)
	Description
	Syntax
	Semantics

	Package Declaration (PCK)
	Description
	Syntax
	Semantics

	Import Declaration (IMP)
	Description
	Syntax
	Semantics

	Model (MOD)
	Description
	Syntax
	Semantics

	Group (GRP)
	Description
	Syntax
	Semantics

	Agent (AGT)
	Description
	Syntax
	Semantics

	Object Class (CLS)
	Description
	Syntax
	Semantics

	Object (OBJ)
	Description
	Syntax
	Semantics

	Conceptual Object Class (COC)
	Description
	Syntax
	Semantics

	Conceptual Object (COB)
	Description
	Syntax
	Semantics

	Area Definition (ADF)
	Description
	Syntax
	Semantics

	Area (ARE)
	Description
	Syntax
	Semantics

	Path (PAT)
	Description
	Syntax
	Semantics

	Attribute (ATT)
	Description
	Syntax
	Semantics

	Relation (REL)
	Description
	Syntax
	Semantics

	Variable (VAR)
	Description
	Syntax
	Semantics

	Initial-Belief (BEL)
	Description
	Syntax
	Semantics

	Initial-Fact (FCT)
	Description
	Syntax
	Semantics

	Workframe (WFR)
	Description
	Syntax
	Semantics

	Thoughtframe (TFR)
	Description
	Syntax
	Semantics

	Primitive Activity (PAC)
	Description
	Syntax
	Semantics

	Move Activity (MOV)
	Description
	Syntax
	Semantics

	Create Agent Activity (CAA)
	Description
	Syntax
	Semantics

	Create Object Activity (COA)
	Description
	Syntax
	Semantics

	Create Area Activity (CRA)
	Description
	Syntax
	Semantics

	Communicate Activity (COM)
	Description
	Syntax
	Semantics

	Broadcast Activity (BCT)
	Description
	Syntax
	Semantics

	Java Activity (JAC)
	Description
	Syntax
	Semantics

	Get Activity (GET)
	Description
	Syntax
	Semantics

	Put Activity (PUT)
	Description
	Syntax
	Semantics

	Gesture Activity (GAC)
	Description
	Syntax
	Semantics

	Composite Activity (CAC)
	Description
	Syntax
	Semantics

	Precondition (PRE)
	Description
	Syntax
	Semantics

	car1.color = ?
	car1.color = red
	John.car = car1 car1 is-driven-by Jack
	Consequence (CON)
	Description
	Syntax
	Semantics

	Detectable (DET)
	Description
	Syntax
	Semantics

	Transfer Definition (TDF)
	Description
	Syntax
	Semantics

	Delete (DEL)
	Description
	Syntax
	Semantics

	Java Expression (JAV)
	Description
	Syntax
	Semantics

	The ‘Unknown’ Value
	Collection Types
	Map
	Declaring Maps
	Creating Map Values
	Using Map Values in Preconditions
	Using Map Values in Concludes
	Copying Maps
	Clearing Maps
	Communicating Maps/Map Values
	Detecting Map Values

	Java Integration

	Keywords
	Base Model
	Appendix A: Java Integration Example
	A.1 Brahms Group and Agent Definitions
	A.2 Java Person Class Definition
	A.3 Java Person Class with PropertyChangeSupport

